• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      沁水盆地深煤層注入CO2提高煤層氣采收率可行性分析

      2016-04-18 06:37:50張春杰胡秋嘉
      煤炭學報 2016年1期
      關鍵詞:采收率

      申 建,秦 勇,張春杰,胡秋嘉,陳 偉

      (1.中國礦業(yè)大學 資源與地球科學學院,江蘇 徐州 221116;2.中國石油華北油田分公司,河北 任丘 062552)

      ?

      沁水盆地深煤層注入CO2提高煤層氣采收率可行性分析

      申建1,2,秦勇1,張春杰1,胡秋嘉2,陳偉2

      (1.中國礦業(yè)大學 資源與地球科學學院,江蘇 徐州221116;2.中國石油華北油田分公司,河北 任丘062552)

      摘要:探討CO2注入深煤層提高煤層氣采收率可行性對于解放我國豐富深部煤層氣資源具有積極意義。分析了沁水盆地不同深度條件下儲層參數(shù)的變化規(guī)律,開展了CO2注入煤層增產(chǎn)效應的數(shù)值模擬研究。結(jié)果顯示,煤儲層參數(shù)隨埋深呈非線性變化且各參數(shù)顯著變化深度具有較好的對應性,存在500~600 m,950~1 150 m兩個關鍵轉(zhuǎn)折界限,據(jù)此將煤層劃分為淺部、過渡、深部三帶。隨著埋深增加煤儲層強非均質(zhì)向均質(zhì)轉(zhuǎn)換,即所有參數(shù)在淺部較為離散而深部收斂。通過不同深度煤層的CO2注入生產(chǎn)效果模擬顯示,注入CO2后煤層氣采收率均得到不同幅度提高;注入CO2提高煤層氣采收率效果由過渡帶、淺部、深部逐步遞減;注入時間越早和越長,提高采收率效果越顯著;要實現(xiàn)深部煤層氣采收率顯著增加必須保證一定的CO2注入量;深部CO2封存優(yōu)勢顯著。

      關鍵詞:沁水盆地;深煤層;CO2注入;采收率;封存

      我國埋深1 200~2 000 m的煤層氣地質(zhì)資源量約為16.77萬億m3,主要盆地埋深2 000~3 000 m的煤層氣地質(zhì)資源量達18.47億m3[1-2],由于缺乏適合的增產(chǎn)技術(shù)尚難動用。研究顯示,煤層CO2吸附量約為甲烷的2倍,當煤層注入CO2后能有效置換甲烷,可提高20%煤層氣采收率,且CO2可被安全封存在煤層中[3-4],對于我國豐富深部煤層氣資源開發(fā)具有積極意義[5]。Puri等最早提出了CO2注入煤層提高煤層氣采收率設想[6],至此學界從理論、實驗和數(shù)值模擬等方面進一步驗證了該項技術(shù)的可行性[7-15]。工業(yè)界開展了相關先導性試驗,例如1995—2001年美國圣胡安盆地首次實施了井組CO2注入煤層提高煤層氣產(chǎn)量(CO2-ECBM)工程,大約有335 000 t CO2被注入到900 m深煤層,其采收率約增加了18%。隨后加拿大在Alberta、日本在Ishikari、德國在勃蘭登堡州的克爾欽、波蘭在Silesian含煤盆地、中國在沁水盆地等亦開展了試驗[8,10,16-20]。

      然而,這些工程在實施過程中,或多或少存在問題,理論和實踐存在差距,其CO2-ECBM效果仍然不明確。針對我國深部煤儲層特點,CO2注入煤層是否可行?哪些因素制約著其增產(chǎn)效果?以及為了實現(xiàn)CO2強化開采目標,在選區(qū)上應該注意哪些關鍵問題?針對這些問題,以沁水盆地為例,在系統(tǒng)總結(jié)沁水盆地不同埋深條件下煤層氣儲層特性變化規(guī)律基礎上,通過分類對比模擬研究,探討我國高階煤深煤層CO2注入提高采收率可行性。

      1深部煤層界定及儲層特性

      1.1地質(zhì)背景

      圖1 沁水盆地含煤地層巖性疊置和剖面形態(tài)Fig.1 Lithology and profile of coal bearing strata in Qinshui Basin

      沁水盆地為一大型NNE向展布復式向斜。盆地內(nèi)部以開闊的短軸褶皺為主,次級褶皺發(fā)育為特征,南北翹起端呈箕狀斜坡;東西兩翼基本對稱,西翼地層傾角相對稍陡,東翼相對平緩。斷裂以NE,NNE和NEE向高角度正斷層為主,集中分布于盆地的西北部、西南部以及東南部邊緣,盆地東北部及腹部地帶斷裂稀少。含煤地層為上石炭統(tǒng)~下二疊統(tǒng)的太原組和山西組。太原組厚80~130 m,以碳酸鹽瀉湖-潮坪-障壁體系積為主,主要由砂巖、粉砂巖、砂質(zhì)泥巖、黑色泥巖、煤和深灰色灰?guī)r組成。山西組發(fā)育以濱海三角洲為主的巖相古地理格局,主要由砂巖、粉砂巖、泥巖和煤層組成。整體而言,沁水盆地內(nèi)部構(gòu)造簡單,且主力煤層頂?shù)装迳皫r層連續(xù)性差且致密,泥巖層發(fā)育較為穩(wěn)定,封閉性好,注入CO2泄漏風險低(圖1)。3,15號煤層為區(qū)內(nèi)煤層氣勘探開發(fā)的主要目標層,其中3號煤層厚度介于0.8~6.4 m之間,厚度大于5 m的富煤帶主要分布在西部的鄭莊—馬必—沁源以及東部的柿莊—長子—屯留一帶;15號煤層厚度介于1.0~5.0 m,厚度大于3.5 m的富煤帶分布在寨疙瘩—安澤—端氏之間的地帶。兩個主煤層間距相對穩(wěn)定,其煤層埋深均從盆地邊緣向盆地中心逐漸增加。主煤層埋深最大的區(qū)域位于兩個地帶:一是沁源區(qū)塊東部和東北部,最大埋深1 600~2 300 m;二是鄭莊區(qū)塊北部和沁南區(qū)塊南部,最大埋深可達1 000~1 300 m。

      3號煤層鏡質(zhì)組最大反射率介于1.3%~4.0%之間,平均3.19%;15號煤層鏡質(zhì)組最大反射率變化范圍為1.1%~3.8%,平均2.91%,以無煙煤為主。宏觀煤巖類型以光亮型煤和半亮型煤為主,部分地點半暗型煤和暗淡型煤較為發(fā)育。煤體結(jié)構(gòu)以原生結(jié)構(gòu)為主,天然裂隙較為發(fā)育。主煤層顯微煤巖組分以鏡質(zhì)組占優(yōu)勢,3號煤層鏡質(zhì)組含量59.8%~93.1%,平均80.4%;惰質(zhì)組含量6.9%~35.2%,平均18.9%;殼質(zhì)組含量介于0~10.5%之間,平均0.7%。15號煤層鏡質(zhì)組含量70.7%~92.5%,平均82.0%;惰質(zhì)組含量7.5%~28.4%,平均17.6%;殼質(zhì)組含量0~6.2%,平均0.4%。鏡惰比高,總體上形成于偏還原環(huán)境。

      1.2煤儲層參數(shù)特性及深部煤層界定

      圖2 煤儲層參數(shù)垂向變化特征及分帶Fig.2 Variations of coalbed methane reservoir with burial depth

      煤層氣儲層相關參數(shù)統(tǒng)計結(jié)果顯示,最小地應力介于3.3~23.7 MPa,總體隨深度增加呈階躍式變化,在煤層埋深淺于500 m,其值低于10 MPa;在50~950 m,其值低于20 MPa;當埋深大于950 m,其值多在20 MPa以上(圖2)。地溫介于16.97~40 ℃,隨煤層埋深增加呈快速—緩慢—快速增大的變化趨勢。儲層壓力梯度介于0.15~1.12 MPa/100 m,隨著埋深增加壓力梯度趨近于正常壓力狀態(tài),且淺部壓力梯度變化大而深部變化較小(圖2)。含氣量介于0.33~37.93 m3/t,隨埋深呈現(xiàn)典型三段式分布;當埋深小于500 m,地層壓力正效應主導導致煤層含氣量升高;當埋深介于500~1 000 m,溫度負效應增強和壓力正效應導致平衡吸附段;當埋深進一步增加地層溫度負效應主導煤層含氣量降低(圖2)。煤層試井滲透率介于(0.01~41.08)×10-15m2,隨埋深增加呈降低趨勢,埋深超過600 m,滲透率基本在1×10-15m2以下;當埋深超過900 m,滲透率低于0.1×10-15m2(圖2)。Langmuir體積和壓力及孔隙率外包絡線值總體隨著埋深增加呈遞減趨勢,且淺部數(shù)據(jù)均較為離散,而深部同樣趨近一致,暗示了相對淺部,深部煤層吸附能力降低且其更難解吸(圖2)。綜上,隨著煤層埋深的增加,煤層氣儲層參數(shù)呈現(xiàn)如下變化規(guī)律:

      (1)埋深呈非線性關系,參數(shù)顯著轉(zhuǎn)折深度具有較好對應性。據(jù)此,按照各地質(zhì)與儲層參數(shù)外包絡線明顯轉(zhuǎn)折處,即以500~600,950~1 150 m為關鍵界限,可將煤層劃分為淺部、過渡、深部3個帶(圖2);

      (2)強非均質(zhì)向均質(zhì)轉(zhuǎn)換,即所有參數(shù)在淺部較為離散而深部收斂。在“轉(zhuǎn)折”和“轉(zhuǎn)換”雙重特殊性作用下,深部煤儲層增產(chǎn)改造的方式適應性必然與淺部存在顯著差異。

      2CO2注入數(shù)值模擬

      2.1模擬方案與參數(shù)設置

      為了分析深部條件下煤層注入CO2提高采收率可行性,本模擬基于研究區(qū)實際儲層參數(shù),按照前述及煤層淺部、過渡帶及深部等3深度段劃分標準進行模擬對比研究。各深度帶的儲層參數(shù)選取采用參數(shù)與埋深的關系予以確定(圖2),見表1。

      表1 CO2注入煤層模擬關鍵參數(shù)

      模擬采用101 m×101 m均質(zhì)方形模擬區(qū)塊,產(chǎn)注井距為100 m,方形網(wǎng)格且大小2 m。為了防止注入CO2速率過快導致井底壓力增長過高,超過煤層破裂壓力而使得注入的CO2逸散,注入速率采用雙控制,即首先限定注入速率為10 000 m3(標準狀態(tài),下同)條件下再限定注入井井底壓力極大值為該深度下煤層破裂壓力(表 1)。注入時間按照開井后連續(xù)注入1 800 d CO2,然后關閉注入井;煤層氣排采1 800 d后,開始往注入井連續(xù)注入CO21 800 d,然后關閉注入井;開井后連續(xù)注入CO23 600 d,然后關閉注入井。

      2.2模擬結(jié)果與討論

      2.2.1深部CO2注入效果

      圖3為在不同的注入方式條件下深部煤儲層累積甲烷產(chǎn)量隨排采時間增加變化規(guī)律。分別采用表1中平均儲層參數(shù)模擬(圖3(a))和最大儲層參數(shù)(圖3(b))模擬顯示,深部煤層氣儲層產(chǎn)氣表現(xiàn)為如下特點:① 隨著排采時間增加,累積甲烷產(chǎn)量增加;② 煤層氣排采1 800 d后注入CO2,前期生產(chǎn)規(guī)律與不注入CO2相同,后期由于注入CO2導致儲層壓力升高,阻滯了煤層甲烷的解吸,導致在30 a內(nèi)其累積產(chǎn)氣量低于不注入,但其在25 a處甲烷產(chǎn)量增加趨勢明顯,在30 a后甲烷產(chǎn)量將超過不注入CO2條件;③ 開井注入CO21 800 d與開井注入3 600 d早期產(chǎn)氣量一致,中期受注入影響后者產(chǎn)氣量低于前者,后期CO2置換效應體現(xiàn),后者甲烷產(chǎn)量迅速升高,并在17 a超過了不注入CO2的累積甲烷產(chǎn)量;④ 30 a內(nèi)未有CO2產(chǎn)出,即CO2完全儲存在煤層中。

      圖3 不同注入條件甲烷累積產(chǎn)量對比分析Fig.3 Methane production comparison under different CO2 injection condition

      無論采用平均儲層參數(shù)還是最大儲層參數(shù),不同深度條件下提高采收率量隨著累積CO2注入量呈先快速增加,當達到一定界限后呈緩慢增加趨勢(圖4)。按照平均儲層參數(shù)計算,當累積注入量達到約5×107m3,研究區(qū)煤層氣采收率能夠提高20%。

      圖4 不同條件下累積CO2注入量與提高采收率量關系Fig.4 Relationship between accumulated CO2 injection quantity and enhanced coalbed methane recovery

      據(jù)此,取得3點基本認識:① 較早和更長時間的注入,在同等時間有利于提高采收率;② 通過注入CO2能夠提高深部煤層氣采收率,前提必須要確保一定的注入量;③ 深部煤儲層可較好的實現(xiàn)CO2封存。

      2.2.2不同深度條件下CO2注入效果對比

      采用研究區(qū)不同深度儲層參數(shù),模擬了30 a煤層氣井甲烷產(chǎn)氣量情況(表2)。由表2結(jié)果顯示,隨著煤層深度增加,30 a煤層氣井甲烷的采收呈降低趨勢;無論采用平均參數(shù)還是最大儲層參數(shù),淺部帶和過渡帶注入CO2提高采收率均較為顯著,而過渡帶注入增產(chǎn)效果優(yōu)于淺部;3 600 d注入增產(chǎn)效果優(yōu)于1 800 d,說明同等注入方式注入時間越長,增產(chǎn)效果越顯著;同等注入時間(1 800 d),越早注入增產(chǎn)效果來臨越早;深部煤層注入CO2由于其自然滲透率極低,要實現(xiàn)顯著增產(chǎn)效果其注入量必須要達到一定界限。

      表2 不同深度條件下30 a注入CO2提高采收率效果

      圖5 不同條件下采出CO2與注入CO2量百分比Fig.5 Percent of drained and sequestrated CO2 quantity under different conditions

      進一步分析基于儲層參數(shù)平均值(圖5(a))和最大值(圖5(b))模擬預測CO2產(chǎn)出效果顯示,淺部和過渡帶30 a CO2采出量與注入量百分比介于60.04%~97.44%,封存在煤層的CO2量較少,且存在2個遞減規(guī)律:一是由淺部、過渡帶到深部呈遞減趨勢;二是同等條件注入時間越短百分率越低。

      綜上,最佳注入CO2增產(chǎn)煤層深度為過渡帶。換言之,中高滲透率儲層更適合CO2注入增產(chǎn)方式,而深部煤儲層更有利于CO2封存。

      3結(jié)論

      (1)沁水盆地構(gòu)造簡單,主力煤層頂?shù)装迥鄮r層發(fā)育穩(wěn)定,CO2注入泄漏風險低。

      (2)儲層參數(shù)隨埋深增加呈非線性變化且由淺部較為離散向深部收斂轉(zhuǎn)換,在500~600 m,950~1 150 m存在2個關鍵轉(zhuǎn)折界限,對應將煤層劃分為淺部、過渡、深部3個帶。

      (3)CO2注入不同深度煤層均能提高煤層氣采收率,同等時間過渡帶煤層采收率增加效果最為顯著,而要實現(xiàn)深煤層采收率顯著增加,CO2注入量需達到一定界限值。

      (4)深部煤儲層可實現(xiàn)CO2安全封存。

      參考文獻:

      [1]陳剛.深部低階含煤層氣系統(tǒng)及其成藏機制—以準噶爾盆地彩南地區(qū)為例[D].徐州:中國礦業(yè)大學,2014.

      Chen Gang.Deep low-rank coalbed methane system and reservoiring mechanism-in the case of the Cainan block in Junggar basin[D].Xuzhou:China University of Mining and Technology,2014.

      [2]劉成林,朱杰,車長波,等.新一輪全國煤層氣資源評價方法與結(jié)果[J].天然氣工業(yè),2009,29(11):130-132.

      Liu Chenglin,Zhu Jie,Che Changbo,et al.Methodologies and results of the latest assessment of coalbed methane resources in China[J].Natural Gas Industry,2009,29(11):130-132.

      [3]Godec M,Koperna G,Gale J.CO2-ECBM:A review of its status and global potential[J].Energy Procedia,2014,63(58):58-69.

      [4]周來,馮啟言,李向東,等.深部煤層對CO2地質(zhì)處置機制及應用前景[J].地球與環(huán)境,2007,35(1):9-14.

      Zhou Lai,Feng Qiyan,Li Xiangdong,et al.Mechanism and application potential of geological sequestration of carbon dioxide in deep coal seams[J].Earth and Environment,2007,35(1):9-14.

      [5]朱慶忠,左銀卿,楊延輝.如何破解我國煤層氣開發(fā)的技術(shù)難題——以沁水盆地南部煤層氣藏為例[J].天然氣工業(yè),2015,35(2):106-109.

      Zhu Qingzhong,Zuo Yinqing,Yang Yanhui.How to solve the technical problems in the CBM development:A case study of a CBM gas reservoir in the southern Qinshui Basin[J].Natural Gas Industry,2015,35(2):106-109.

      [6]Puri R,Yee D.Enhanced coalbed methane recovery[A].SPE Annual Technical Conference and Exhibition[C].New Orleans,Louisiana,1990:193-202.

      [7]張松航,唐書恒,潘哲軍,等.晉城無煙煤CO2-ECBM數(shù)值模擬研究[J].煤炭學報,2011,36(10):1741-1747.

      Zhang Songhang,Tang Shuheng,Pan Zhejun,et al.Numerical simulation of CO2enhanced coalbed methane recovery on Jincheng anthracite coal reservoir[J].Journal of China Coal Society,2011,36(10):1741-1747.

      [8]Busch A,Gensterblum Y.CBM and CO2-ECBM related sorption processes in coal:A review[J].International Journal of Coal Geology,2011,87(2):49-71.

      [9]Qin Y.Mechanism of CO2enhanced CBM recovery in China:A review[J].Journal of China University of Mining and Technology,2008,18(3):406-412.

      [10]Shi J Q,Durucan S.A numerical simulation study of the Allison Unit CO2-ECBM pilot:The impact of matrix shrinkage and swelling on ECBM production and CO2injectivity[A].Greenhouse Gas Control Technologies 7[C].Oxford:Elsevier Science Ltd.,2005:431-439.

      [11]唐書恒,湯達禎,楊起.二元氣體等溫吸附實驗及其對煤層甲烷開發(fā)的意義[J].地球科學——中國地質(zhì)大學學報,2004,29(2):219-223.

      Tang Shuheng,Tang Dazhen,Yang Qi.Binary-component gas adsorption isotherm experiments and their significance to exploitation of coalbed methane[J].Earth Science—Journal of China University of Geoscience,2004,29(2):219-223.

      [12]降文萍,崔永君.深部煤層封存CO2的地質(zhì)主控因素探討[J].中國煤炭地質(zhì),2010,22(11):1-6.

      Jiang Wenping,Cui Yongjun.A discussion on main geologic controlling factors of CO2Sequestration in deep coal seams[J].Coal Geology of China,2010,22(11):1-6.

      [13]Reeves S,Taillefert A,Pekot L,et al.The allison unit CO2-ECBM pilot-A reservoir and economic analysis.International coalbed Methane symposium[R].Tuscaloosa:University of Alabama,2005.

      [14]Zarrouk S J,Moore T A.Preliminary reservoir model of enhanced coalbed methane (ECBM) in a subbituminous coal seam,Huntly coalfield,New Zealand[J].International Journal of Coal Geology,2008,77(1-2):153-161.

      [15]席長豐,吳曉東,王新海.多分支井注氣開發(fā)煤層氣模型[J].煤炭學報,2007,32(4):402-406.

      Xi Changfeng,Wu Xiaodong,Wang Xinhai.A model for enhanced coalbed methane and CO2sequestration with multilateral wells[J].Journal of China Coal Society,2007,32(4):402-406.

      [16]Hamelinck C N,Faaij A P C,Turkenburg W C,et al.CO2enhanced coalbed methane production in the Netherlands[J].Energy,2002,27(7):647-674.

      [17]Gw D,Mm J,Rj R.CO2storage and enhanced methane production:Field testing at Fenn-Big Valley,Alberta,Cananda,with application[A].7th International Conference on Greenhouse Gas Control Techonlogy[C].Vancouver,2004:5-9.

      [18]Van Bergen F,Krzystolik P,van Wageningen N,et al.Production of gas from coal seams in the Upper Silesian Coal Basin in Poland in the post-injection period of an ECBM pilot site[J].International Journal of Coal Geology,2009,77(1-2):175-187.

      [19]Fujioka M,Yamaguchi S,Nako M.CO2-ECBM field tests in the Ishikari Coal Basin of Japan[J].International Journal of Coal Geology,2010,82(3-4):287-298.

      [20]葉建平,馮三利,范志強,等.沁水盆地南部注二氧化碳提高煤層氣采收率微型先導性試驗研究[J].石油學報,2007,28(4):77-80.

      Ye Jianping,Feng Sanli,Fan Zhiqiang,et al.Micro-pilot test for enhanced coalbed methane recovery by injecting carbon dioxide in south part of Qinshui Basin[J].Acta Petrolei Sinica,2007,28(4):77-80.

      Feasibility of enhanced coalbed methane recovery by CO2sequestration into deep coalbed of Qinshui Basin

      SHEN Jian1,2,QIN Yong1,ZHANG Chun-jie1,HU Qiu-jia2,CHEN Wei2

      (1.SchoolofResourceandGeoscience,ChinaUniversityofMiningandTechnology,Xuzhou221116,China;2.PetroChinaHuabeiOilfieldCompany,Renqiu062552,China)

      Abstract:Feasibility analysis of enhanced coalbed methane recovery by CO2 sequestration is important for the development of abundant deep coalbed methane resource in China.In this study,the relationships between reservoir parameters and burial depth were analyzed,and the simulation on CO2 sequestration into coal were carried out.The results show that reservoir parameters vary nonlinearly with the increase of burial depth and their transition burial depths are close.The coalbed in Qinshui Basin are divided into shallow,transition and deep part according to two key proposed transition burial depth of 500-600 m and 950-1 150 m.Strongly heterogeneous of reservoir parameters in shallow coal seams transform into homogeneous in deep coal seams.Through the contrasting simulations of CO2 sequestration into different burial depth coal seams,the coalbed methane recoveries are enhanced in all the cases,and the increments of coalbed methane recovery comparing with none injection decrease in the order of transition,shallow and deep coal seams.More early and longer injection time have higher improvement on coalbed methane recovery.To achieve an obvious coalbed methane recovery,a certain amount of CO2 should be sequestrated into coal seams.Deep coalbed has higher CO2 storage capacity than shallow and transition part coal seams.

      Key words:Qinshui Basin;deep coalbed;CO2 sequestration;coalbed methane recovery;storage

      中圖分類號:P618.11

      文獻標志碼:A

      文章編號:0253-9993(2016)01-0156-06

      作者簡介:申建(1983—),男,四川遂寧人,副教授,博士。Tel:0516-83592253,E-mail:cumtshenjian@126.com

      基金項目:國家自然科學基金資助項目(41302131);國家科技重大專項資助項目(2011ZX05042);華北油田分公司博士后資助項目(2013E-2208-2015-M08)

      收稿日期:2015-09-02修回日期:2015-11-01責任編輯:張曉寧

      申建,秦勇,張春杰,等.沁水盆地深煤層注入CO2提高煤層氣采收率可行性分析[J].煤炭學報,2016,41(1):156-161.doi:10.13225/j.cnki.jccs.2015.9030

      Shen Jian,Qin Yong,Zhang Chunjie,et al.Feasibility of enhanced coalbed methane recovery by CO2sequestration into deep coalbed of Qinshui Basin[J].Journal of China Coal Society,2016,41(1):156-161.doi:10.13225/j.cnki.jccs.2015.9030

      猜你喜歡
      采收率
      《油氣地質(zhì)與采收率》征稿簡則
      《油氣地質(zhì)與采收率》第六屆編委會
      《油氣地質(zhì)與采收率》征稿簡則
      《油氣地質(zhì)與采收率》第六屆編委會
      《油氣地質(zhì)與采收率》征稿簡則
      《油氣地質(zhì)與采收率》第六屆編委會
      《油氣地質(zhì)與采收率》征稿簡則
      《油氣地質(zhì)與采收率》第六屆編委會
      《油氣地質(zhì)與采收率》征稿簡則
      《油氣地質(zhì)與采收率》征稿簡則
      克东县| 集安市| 西华县| 辉南县| 香河县| 锦州市| 兴山县| 庆城县| 马山县| 庐江县| 凤凰县| 色达县| 广西| 荥阳市| 辰溪县| 边坝县| 惠水县| 西乡县| 方山县| 崇义县| 香河县| 新晃| 淮滨县| 九江市| 沧州市| 彰武县| 综艺| 武胜县| 武功县| 鄯善县| 共和县| 麦盖提县| 泗阳县| 吴江市| 怀柔区| 合阳县| 新河县| 资源县| 衢州市| 乌鲁木齐市| 武胜县|