• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      鎵鋅氧化物半導(dǎo)體薄膜的晶粒生長(zhǎng)特性及其微結(jié)構(gòu)研究

      2016-04-21 12:37:14鐘志有
      關(guān)鍵詞:磁控濺射微結(jié)構(gòu)

      鐘志有, 陸 軸, 龍 路, 康 淮

      (中南民族大學(xué) 電子信息工程學(xué)院, 智能無(wú)線通信湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430074)

      ?

      鎵鋅氧化物半導(dǎo)體薄膜的晶粒生長(zhǎng)特性及其微結(jié)構(gòu)研究

      鐘志有, 陸軸, 龍路, 康淮

      (中南民族大學(xué) 電子信息工程學(xué)院, 智能無(wú)線通信湖北省重點(diǎn)實(shí)驗(yàn)室, 武漢 430074)

      摘要采用ZnO:Ga3O2高密度陶瓷靶作為濺射源材料,利用射頻磁控濺射技術(shù)在玻璃基片上制備了鎵鋅氧化物(GaZnO)半導(dǎo)體薄膜.基于X射線衍射儀的測(cè)試表征,研究了薄膜厚度對(duì)GaZnO樣品晶粒生長(zhǎng)特性和微結(jié)構(gòu)性能的影響.研究結(jié)果表明:所制備的GaZnO樣品為多晶薄膜,并且都具有六角纖鋅礦型結(jié)構(gòu)和(002)晶向的擇優(yōu)取向生長(zhǎng)特性;其(002)取向程度、結(jié)晶性能和微結(jié)構(gòu)參數(shù)等均與薄膜厚度密切相關(guān).隨著薄膜厚度的增大,GaZnO樣品的(002)擇優(yōu)取向程度和晶粒尺寸表現(xiàn)為先增大后減小,而位錯(cuò)密度和晶格應(yīng)變則表現(xiàn)為先減小后增大.當(dāng)薄膜厚度為510 nm時(shí),GaZnO樣品具有最大的(002)晶向織構(gòu)系數(shù)(2.959)、最大的晶粒尺寸(97.8 nm)、最小的位錯(cuò)密度(1.044×10(14) m(-2))和最小的晶格應(yīng)變(5.887×10(-4)).

      關(guān)鍵詞磁控濺射;氧化鋅薄膜;晶粒生長(zhǎng);微結(jié)構(gòu)

      Grain Growth and Microstructure of Gallium-Zinc Oxide Semiconductor Thin Films

      ZhongZhiyou,LuZhou,LongLu,KangHuai

      (Hubei Key Laboratory of Intelligent Wireless Communications, College of Electronic Information Engineering,South-Central University for Nationalities, Wuhan 430074, China)

      AbstractThe gallium-zinc oxide (GaZnO) semiconductor thin films were deposited on glass substrates by radio-frequency magnetron sputtering technique using the ceramic target fabricated by sintering the mixture of ZnO and Ga2O3nanometer powder. The influence of thickness on grain growth characteristics and microstructure of the deposited films was investigated by X-ray diffractometer. The results show that the deposited thin films with the hexagonal crystal structure are polycrystalline and have a strongly preferred orientation of (002) plane. The grain growth and mirostructure properties of the thin films are closely related to the thickness. As the thickness increases, the texture coefficient of (002) plane and grain size firstly increase and then decrease, while the dislocation density and lattice strain exhibit the reverse variation trend. The GaZnO thin film with the thickness of 510 nm possesses the best crystallite quality and microstructural properties, with the highest texture coefficient of (002) plane (2.959), the largest grain size (97.8 nm), the smallest dislocation density (1.044×1014m-2) and the minimum lattice strain (5.887×10-4).

      Keywordsmagnetron sputtering; zinc oxide thin films; grain growth; microstructure

      由于具有獨(dú)特的光學(xué)和電學(xué)性能,氧化物透明半導(dǎo)體薄膜被廣泛應(yīng)用于光伏太陽(yáng)能電池(PSC)[1-6]、發(fā)光二極管(LED)[7-12]、液晶顯示器(LCD)[13-16]、薄膜晶體管(TFT)[17,18]、氣體傳感器[19-21]和觸控面板[22]等光電子領(lǐng)域,其中摻錫氧化銦(ITO)是其家族中最為重要和最具有代表性的成員之一.在PSC和LED等光電子器件中,ITO薄膜是目前普遍使用的透明電極材料,但是由于ITO的主要成份銦(In)為稀有金屬,不僅有毒、高溫下不穩(wěn)定,而且其自然存儲(chǔ)量有限,導(dǎo)致ITO薄膜的價(jià)格飆升,因此極大地限制了ITO薄膜的應(yīng)用范圍.氧化鋅(ZnO)薄膜是一種具有c軸擇優(yōu)取向纖鋅礦結(jié)構(gòu)的功能材料,已經(jīng)得到廣泛應(yīng)用,而鎵鋅氧化物(GaZnO)透明半導(dǎo)體薄膜作為一種重要的光電子信息材料,由于其原材料來(lái)源豐富、價(jià)格低廉、制備簡(jiǎn)單、性能穩(wěn)定,并具有可以與ITO薄膜相媲美的光電特性,被認(rèn)為是最有可能替代ITO薄膜的候選材料,已被廣泛應(yīng)用于LED、PSC、LCD、傳感器、觸摸屏等眾多領(lǐng)域.目前,GaZnO薄膜的制備技術(shù)主要有磁控濺射、真空反應(yīng)蒸發(fā)、化學(xué)氣相沉積、脈沖激光沉積、噴射熱分解、分子束外延、溶膠-凝膠法等[23-38],而其中采用射頻磁控濺射技術(shù)制備GaZnO薄膜具有沉積速率高、均勻性好、粘附性能好、便于大批量工業(yè)生產(chǎn)等優(yōu)勢(shì)[39,40],所以獲得了廣泛應(yīng)用.本文以普通玻璃為基片材料,以ZnO:Ga3O2陶瓷靶為濺射靶材,采用射頻磁控濺射技術(shù)制備GaZnO透明半導(dǎo)體薄膜,通過(guò)X射線衍射儀、紫外-可見(jiàn)光分光光度計(jì)、四點(diǎn)探針儀等測(cè)試表征,研究了薄膜厚度對(duì)GaZnO薄膜晶粒生長(zhǎng)特性及其微結(jié)構(gòu)性能的影響.

      1實(shí)驗(yàn)

      選用普通玻璃作為基片材料,樣品大小約為30 mm×30 mm.首先對(duì)玻璃基片依次進(jìn)行擦拭、沖洗,然后依次在丙酮溶液、無(wú)水乙醇和去離子水中進(jìn)行超聲清洗約15 min,并自然干燥.

      GaZnO薄膜樣品通過(guò)射頻磁控濺射方法制備,成膜設(shè)備為沈陽(yáng)科友真空設(shè)備公司生產(chǎn)的KDJ-567型高真空磁控與離子束復(fù)合鍍膜系統(tǒng),所用射頻頻率為13.56 MHz.系統(tǒng)的本底真空度為5.2×10-4Pa,基片溫度為670 K,濺射功率為190 W,鍍膜時(shí)間為30 min,所用陶瓷靶材為合肥科晶材料技術(shù)有限公司生產(chǎn),由純度均為99.99%的ZnO和Ga2O3(兩者的質(zhì)量比為97%:3%)經(jīng)過(guò)高溫?zé)Y(jié)而成,靶材直徑為50 mm,厚度為4.0 mm,靶材與基片之間的距離為70 mm.濺射時(shí)所用工作氣體為99.999%的高純氬氣,濺射時(shí)氬氣壓強(qiáng)為0.5 Pa.為了研究薄膜厚度對(duì)GaZnO樣品晶粒生長(zhǎng)特性及其微結(jié)構(gòu)的影響,實(shí)驗(yàn)中通過(guò)改變鍍膜時(shí)間制備了薄膜厚度分別為320 nm、510 nm、730 nm和850 nm的GaZnO樣品,本文中它們分別被標(biāo)記為樣品D1、D2、D3和D4.

      GaZnO薄膜樣品的晶體結(jié)構(gòu)通過(guò)X射線衍射儀(D8-ADVANCE型,德國(guó)Bruker公司)表征(Cu Kα射線,波長(zhǎng)λ=0.15406 nm),采用θ-2θ連續(xù)掃描方式,掃描速度為10 °/min,掃描步長(zhǎng)為0.0164 °,工作電壓為40 kV,工作電流為40 mA.掃描角度為20~80°,測(cè)試在室溫和大氣條件下完成.

      2結(jié)果與討論

      圖1 GaZnO薄膜的XRD圖譜Fig. 1 XRD patterns of the GaZnO thin films

      不同厚度時(shí)GaZnO薄膜樣品的XRD圖譜如圖1所示.

      從圖中可知,在20~80°的掃描范圍內(nèi),所有的GaZnO樣品均出現(xiàn)有3個(gè)較強(qiáng)的XRD衍射峰,對(duì)于2θ為30.7°、34.2°和71.9°附近,它們分別對(duì)應(yīng)于ZnO晶面(100)、(002)和(004)的特征譜線,其結(jié)果與標(biāo)準(zhǔn)ZnO晶體(JCPDS No. 36-1451)的衍射峰數(shù)據(jù)基本吻合[41,42],另外,XRD圖譜中并沒(méi)有出現(xiàn)金屬Ga和Zn以及Ga3O2的特征衍射峰,這一測(cè)試結(jié)果表明:在所制備的樣品中,Ga替代了Zn的位置,或者存在于六角晶格之中,或者分布在晶粒間界的區(qū)域,所有GaZnO薄膜樣品具有ZnO六角纖鋅礦型結(jié)構(gòu),并且都為多晶薄膜.

      圖2 GaZnO薄膜的衍射峰強(qiáng)度Fig. 2 The intensity of diffraction peaks for the GaZnO thin films

      圖2為薄膜厚度對(duì)GaZnO樣品各個(gè)晶面衍射峰強(qiáng)度(I(100)、I(002)、I(004))的影響,可以看出,I(100)、I(002)和I(004)均顯示出相同的變化趨勢(shì),隨著薄膜厚度的增加,它們都是先增加而后減小.通過(guò)觀察圖中的I(100)、I(002)、I(004)可見(jiàn),對(duì)于同一個(gè)樣品而言,I(002)比I(100)大3個(gè)數(shù)量級(jí)、比I(004)大2個(gè)數(shù)量級(jí),這說(shuō)明所制備的GaZnO樣品均具有明顯的(002)晶面擇優(yōu)取向特性.晶體的擇優(yōu)取向程度可以采用晶面的織構(gòu)系數(shù)(TC(hkl))進(jìn)行表征.織構(gòu)系數(shù)TC(hkl)定義為某個(gè)晶面的相對(duì)衍射強(qiáng)度與各晶面相對(duì)衍射強(qiáng)度總和的平均值之比[43].即有:

      (1)

      圖3 GaZnO薄膜的織構(gòu)系數(shù)Fig. 3 The values of TC(hkl) of the GaZnO thin films

      圖4(a)給出了不同薄膜厚度時(shí)GaZnO樣品(002)衍射峰的半高寬(Δθ)數(shù)據(jù),厚度對(duì)薄膜半高寬Δθ具有較為明顯的影響,薄膜厚度增加時(shí),Δθ逐漸減小,但當(dāng)厚度大于510 nm時(shí),Δθ則隨之增大.可見(jiàn),GaZnO樣品的半高寬Δθ隨厚度增大而呈現(xiàn)出先減后增的變化趨勢(shì).由于樣品(002)衍射峰位的變化很小,因此半高寬Δθ的大小反映了薄膜結(jié)晶質(zhì)量的好壞.基于XRD測(cè)試數(shù)據(jù),GaZnO樣品的晶粒尺寸t可以利用謝樂(lè)公式[44,45]進(jìn)行計(jì)算:

      (2)

      (2)式中,λ為X射線波長(zhǎng)(λ=0.15406 nm),θB為最大衍射峰(002)晶面的Bragg角,Δθ為(002)衍射峰的半高寬.圖4(b)為GaZnO樣品的晶粒尺寸t隨薄膜厚度變化的關(guān)系曲線,由圖可見(jiàn),薄膜厚度明顯影響GaZnO樣品的晶粒尺寸t,當(dāng)厚度從320 nm增大到510 nm時(shí),GaZnO樣品的晶粒尺寸t迅速增大(97.8 nm),但當(dāng)厚度進(jìn)一步增大時(shí),其晶粒尺寸t則明顯減小.GaZnO薄膜開(kāi)始生長(zhǎng)時(shí),由于薄膜與基片之間存在晶格不匹配,所以開(kāi)始生長(zhǎng)的薄膜存在較多的位錯(cuò)等晶體缺陷,導(dǎo)致GaZnO薄膜的結(jié)晶質(zhì)量較差.隨著薄膜厚度的增加,由于先生長(zhǎng)的薄膜可以作為后生長(zhǎng)薄膜的緩沖層,因此后生長(zhǎng)的薄膜的位錯(cuò)等晶體缺陷大大減少,所以GaZnO薄膜的晶化程度顯著提高,晶粒尺寸明顯增大.上述結(jié)果表明:薄膜厚度對(duì)GaZnO樣品的晶體質(zhì)量具有明顯的影響.

      圖4 GaZnO薄膜的半高寬和晶粒尺寸Fig. 4 The values of Δθ and t for the GaZnO thin films

      圖5 GaZnO薄膜的位錯(cuò)密度和晶格應(yīng)變Fig. 5 The values of δ and ε for the GaZnO thin films

      GaZnO薄膜樣品的位錯(cuò)密度(δ)和晶格應(yīng)變(ε)可以根據(jù)下列公式[46,47]進(jìn)行計(jì)算:

      (3)

      (4)

      不同厚度時(shí)GaZnO薄膜樣品的δ和ε數(shù)值如圖5所示,可以看到,隨著薄膜厚度的增加,δ和ε先減小后增大,它們呈現(xiàn)出相同的變化趨勢(shì),當(dāng)薄膜厚度為510nm時(shí),GaZnO樣品D2具有最小的位錯(cuò)密度δ和晶格應(yīng)變?chǔ)?,分別為1.044×1014m-2和5.887×10-4.

      GaZnO薄膜為六角纖鋅礦結(jié)構(gòu),其晶格常數(shù)可以根據(jù)(5)式確定[48]:

      (5)

      (5)式中,a和c為晶格常數(shù).對(duì)于(002)晶面,由(5)式可得:

      (6)

      對(duì)于(100)晶面,(5)式可變?yōu)椋?/p>

      (7)

      另外,GaZnO薄膜樣品的Zn-O鍵長(zhǎng)(L)由公式(8)計(jì)算[49]:

      (8)

      (8)式中,a和c為樣品的晶格常數(shù),u與a、c之間的關(guān)系為[49]:

      (9)

      圖6為不同薄膜厚度時(shí)GaZnO樣品的晶格常數(shù)a、c和Zn-O鍵長(zhǎng)L的數(shù)值,從圖6看出,薄膜厚度增大時(shí),參數(shù)a、c和L表現(xiàn)出相同的變化趨勢(shì),在實(shí)驗(yàn)研究的薄膜厚度范圍內(nèi),a、c和L的數(shù)值范圍分別為0.33424~0.33543 nm、0.52351~0.52475 nm和0.20201~0.20266 nm,相應(yīng)的c/a比范圍為1.56443~1.56629,這些結(jié)果與標(biāo)準(zhǔn)ZnO試樣(JCPDS No. 36-1451)數(shù)據(jù)(a=0.32498、c=0.52066、L=0.19778、c/a=1.60213)基本一致.Srinivasan小組[50]和Anandan等人[51]在研究鋰摻雜ZnO和釔摻雜ZnO薄膜時(shí)也有類似的報(bào)道.

      圖6 GaZnO薄膜的晶格常數(shù)和Zn-O鍵長(zhǎng)Fig. 6 The values of a, c and L for the GaZnO thin films

      3結(jié)語(yǔ)

      采用Ga2O3:ZnO高密度陶瓷靶作為濺射材料,利用射頻磁控濺射技術(shù)在玻璃基片上制備了GaZnO半導(dǎo)體薄膜,研究了薄膜厚度對(duì)GaZnO樣品生長(zhǎng)特性和微結(jié)構(gòu)性能的影響.研究結(jié)果表明:所制備的GaZnO樣品均為六角纖鋅礦型的多晶結(jié)構(gòu),并表現(xiàn)出(002)晶面的擇優(yōu)取向生長(zhǎng)特性.薄膜厚度對(duì)GaZnO樣品的(002)取向性、晶化程度和微結(jié)構(gòu)參數(shù)等具有明顯的影響,隨著薄膜厚度的增加,GaZnO樣品的(002)擇優(yōu)取向程度和晶粒尺寸表現(xiàn)為先增大后減小的變化趨勢(shì),而半高寬、位錯(cuò)密度和晶格應(yīng)變則呈現(xiàn)出先減小后增大的變化趨勢(shì).當(dāng)薄膜厚度為510 nm時(shí),GaZnO樣品的晶粒尺寸最大為97.8 nm、織構(gòu)系數(shù)TC(002)最高為2.959、半高寬最窄為0.084°、晶格應(yīng)變最小為5.887×10-4、位錯(cuò)密度最低為1.044×1014m-2,同時(shí)所制備GaZnO樣品的晶格常數(shù)和Zn-O鍵長(zhǎng)均與標(biāo)準(zhǔn)樣品相吻合.

      參考文獻(xiàn)

      [1]Kim J Y, Lee K, Coates N E, et al. Tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317 (5835): 222-225.

      [2]Tang C W. Two-layer organic photovoltaic cell [J]. Appl Phys Lett, 1986, 48 (2): 183-185.

      [3]李襄宏, 唐定國(guó). 基于1,10-鄰菲羅啉衍生物的兩親性釕配合物的合成及其光電轉(zhuǎn)化性質(zhì) [J]. 中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 28 (3): 9-13.

      [4]顧錦華,龍路,蘭椿,等.鋁摻雜氧化鋅薄膜的光學(xué)性能及其微結(jié)構(gòu)研究[J].中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,33(4):78-84.

      [5]Sio A D, Chakanga K, Sergeev O, et al. ITO-free inverted polymer solar cells with ZnO:Al cathodes and stable top anodes[J]. Sol Energy Mater Sol Cells, 2012, 98 (1): 52-56.

      [6]鐘志有,蘭椿,龍路,等.磁控濺射法制備ZnO:Ga薄膜的結(jié)晶質(zhì)量及其應(yīng)力研究[J].中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 34 (1): 66-72.

      [7]Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347 (6293): 539-541.

      [8]Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Appl Phys Lett, 1987, 51 (12): 913-915.

      [9]Zhong Z Y, Jiang Y D. Surface treatments of indium-tin oxide substrates for polymer electroluminescent devices [J]. Phys Status Solidi A, 2006, 203 (15): 3882-3892.

      [10]陳首部, 韋世良, 何翔, 等. 改性方法對(duì)氧化銦錫襯底表面形貌和化學(xué)組分的影響 [J]. 中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 28 (4): 43-46.

      [11]You Z Z, Hua G J, Lou S F. Optoelectrical characteristics of organic light-emitting devices fabricated with different cathodes [J]. Int J Electron, 2011, 98 (1): 129-135.

      [12]顧錦華, 鐘志有, 何翔, 等. 真空退火處理對(duì)光敏薄膜及聚合物太陽(yáng)電池性能的影響[J]. 中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 28 (3): 30-33.

      [13]Kim H, Horwitz J S, Kim W H, et al. Doped ZnO thin films as anode materials for organic light-emitting diodes[J]. Thin Solid Films, 2002, 420-421 (1): 539-543.

      [14]Cao H T, Sun C, Pei Z L, et al. Properties of transparent conducting ZnO:Al oxide thin films and their application for molecular organic light-emitting diodes[J]. J Mater Sci: Mater Electron, 2004, 14 (1): 169-174.

      [15]Kim H, Piqué A, Horwitz J S, et al. Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices[J]. Thin Solid Films, 2000, 377-378: 798-802.

      [16]孫奉?yuàn)? 惠述偉. 襯底溫度對(duì)射頻濺射沉積ZAO透明導(dǎo)電薄膜性能的影響 [J]. 中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2009, 28 (2): 10-13.

      [17]Kim J J, Lee J H, Ba J Y, et al. Characteristics of low-temperature-annealed ZnO-TFTs [J]. J Korean Phys Soc, 2010, 56 (1): 404-408.

      [18]Shim J H, Choi J H, Lee C M, et al. Fabrication and comparison of the properties of SnInZnO and InZnO TFTs processed by using the sol-gel method [J]. J Korean Phys Soc, 2010, 57 (6): 1847-1851.

      [19]Patel N G, Patel P D, Vaishnav V S. Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature [J]. Sensor Actuat B-Chem, 2003, 96 (1-2): 180-189.

      [20]Yi I-J, Kim J-H, Choi Y J, et al. A disposable biosensor with Prussian blue deposited electrode [J]. Microelectron Eng, 2006, 83 (4-9): 1594-1597.

      [21]Mitsubayashi K, Wakabayashi Y, Tanimoto S, et al. Optical-transparent and flexible glucose sensor with ITO electrode [J]. Biosens Bioelectron, 2003, 19 (1): 67-71.

      [22]Minami T. Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes [J]. Thin Solid Films, 2008, 516 (17): 5822-5828.

      [23]Guo J, Zheng J, Song X, et al. Synthesis and conductive properties of Ga-doped ZnO nanosheets by the hydrothermal method [J]. Mater Lett, 2013, 97 (1): 34-36.

      [24]Rao T P, Kumar M C S, Hussain N S. Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis [J]. J Alloy Compd, 2012, 541 (1): 495-504.

      [25]Reddy K T R, Reddy T B S, Forbes I, Miles R W. Highly oriented and conducting ZnO:Ga layers grown by chemical spray pyrolysis [J]. Surf Coat Technol, 2002, 151-152 (1): 110-113.

      [26]Minami T, Miyata T, Ohtani Y, et al. Effect of thickness on the stability of transparent conducting impurity-doped ZnO thin films in a high humidity environment [J]. Phys Status Solidi R, 2007, 1(1): R31-R33.

      [27]Kim H, Horwitz J S, Kim W H, et al. Doped ZnO thin films as anode materials for organic light-emitting diodes[J]. Thin Solid Films, 2002, 420-421 (1): 539-543.

      [28]Wang L, Swensen J S, Polikarpov E, et al. Highly efficient blue organic light-emitting devices with indium-free transparent anode on flexible substrates [J]. Org Electron, 2010, 11 (9): 1555-1560.

      [29]Gorrie C W, Sigdel A K, Berry J J, et al. Effect of deposition distance and temperature on electrical, optical and structural properties of radio-frequency magnetron-sputtered gallium-doped zinc oxide [J]. Thin Solid Films, 2010, 519 (1): 190-196.

      [30]Liu H, Fang L, Tian D, et al. Different magnetothermo-

      electric behavior in Al- and Ga-doped ZnO thin films [J]. J Alloy Compd, 2014, 588 (1): 370-373.

      [31]Kim Y H, Jeong J, Lee K S, et al. Effect of composition and deposition temperature on the characteristics of Ga doped ZnO thin films [J]. Appl Surf Sci, 2010, 257 (1): 109-115.

      [32]Bie X, Lu J, Wang Y, et al. Optimization of parameters for deposition of Ga-doped ZnO films by DC reactive magnetron sputtering using Taguchi method [J]. Appl Surf Sci, 2011, 257 (14): 6125-6128.

      [33]Park H-K, Kang J-W, Na S-I, et al. Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics [J]. Sol Energy Mater Sol Cells, 2009, 93 (11): 1994-2002.

      [34]Lin Y C, Yen W T, Shen C H, et al. Surface texturing of Ga-doped ZnO thin films by pulsed direct-current magnetron sputtering for photovoltaic applications [J]. J Electron Mater, 2012, 41(3): 442-450.

      [35]Tsay C-Y, Wu C-W, Lei C-M, et al. Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol-gel process [J]. Thin Solid Films, 2010, 519 (5): 1516-1520.

      [36]Tsay C-Y, Fan K-S, Lei C-M. Synthesis and characteri-

      zation of sol-gel derived gallium-doped zinc oxide thin films [J]. J Alloy Compd, 2012, 512 (1): 216-222.

      [37]Nam T, Lee C W, Kim H J, et al. Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition [J]. Appl Surf Sci, 2014, 295 (1): 260-265.

      [38]Saito K, Hiratsuka Y, Omata A, et al. Atomic layer deposition and characterization of Ga-doped ZnO thin films [J]. Superlattice Microst, 2007, 42 (1-6): 172-175.

      [39]You Z Z, Hua G J. Structural, optical and electrical characterization of ZnO:Ga thin films for organic photovoltaic applications[J]. Mater Lett, 2011, 65 (21-22): 3234-3236.

      [40]陳首部.摻錫氧化銦導(dǎo)電玻璃的表面改性及其性能研究[J].中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 33 (2): 57-62.

      [41]Raoufi D, Raoufi T. The effect of heat treatment on the physical properties of sol-gel derived ZnO thin films [J]. Appl Surf Sci, 2009, 255 (11): 5812-5817.

      [42]Zhong Z Y, Zhang T. Microstructure and optoelectronic properties of titanium-doped ZnO thin films prepared by magnetron sputtering [J]. Mater Lett, 2013, 96 (1): 237-239.

      [43]Valle G G, Hammer P, Pulcinelli S H, et al. Transparent and conductive ZnO:Al thin films prepared by sol-gel dip-coating [J]. J Eur Ceram Soc, 2004, 24 (4): 1009-1013.

      [44]Hong R, Shao J, He H, et al. ZnO:Zn phosphor thin films prepared by face-to-face annealing [J]. J Cryst Growth, 2005, 284 (3-4): 347-352.

      [45]黃濤, 李燦, 吳靜, 等. 四方形鈀納米片的控制合成 [J]. 中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版), 2013, 32 (3): 5-7.

      [46]Matheswaran P, Gokul B, Abhirami KM, et al. Thickness dependent structural and optical properties of In/Te bilayer thin films [J]. Mater Sci Semicond Process, 2012, 15 (5): 486-491.

      [47]Arivazhagan V, Parvathi M M, Rajesh S. Impact of thickness on vacuum deposited PbSe thin films [J], Vacuum, 2012, 86 (8): 1092-1096.

      [48]Zhang T, Zhong Z. Effect of working pressure on the structural, optical and electrical properties of titanium-gallium co-doped zinc oxide thin films[J]. Mater Sci-Poland, 2013, 31 (3): 454-461.

      [49]Murtaza G, Ahmad R, Rashid M S, et al. Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor [J]. Curr Appl Phys, 2014, 14 (2): 176-181.

      [50]Srinivasan G, Kumar R T R, Kumar J. Li doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and optical properties [J]. J Sol-Gel Sci Technol, 2007, 43 (2): 171-177.

      [51]Anandan S, Muthukumaran S. Influence of Yttrium on optical, structural and photoluminescence properties of ZnO nanopowders by sol-gel method [J]. Opt Mater, 2013, 35 (12): 2241-2249.

      中圖分類號(hào)TM914

      文獻(xiàn)標(biāo)識(shí)碼A

      文章編號(hào)1672-4321(2016)01-0075-06

      基金項(xiàng)目湖北省自然科學(xué)基金資助項(xiàng)目(2011CDB418); 中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(CZW14019)

      作者簡(jiǎn)介鐘志有(1965-), 男, 教授, 博士, 研究方向: 光電信息功能材料與器件, E-mail: zhongzhiyou@163.com

      收稿日期2015-11-18

      猜你喜歡
      磁控濺射微結(jié)構(gòu)
      ZnO對(duì)莫來(lái)石多孔陶瓷成相及微結(jié)構(gòu)的影響研究
      C/C復(fù)合材料表面磁控濺射ZrN薄膜
      2019高功率脈沖磁控濺射沉積薄膜技術(shù)與應(yīng)用會(huì)議將在蘭州召開(kāi)
      圓柱表面微結(jié)構(gòu)超精密車削加工技術(shù)研究
      復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
      工藝參數(shù)對(duì)直流磁控濺射法制備氧化鋁薄膜的試驗(yàn)研究
      金屬微結(jié)構(gòu)電鑄裝置設(shè)計(jì)
      用于視角偏轉(zhuǎn)的光學(xué)膜表面微結(jié)構(gòu)設(shè)計(jì)
      粘結(jié)型La0.8Sr0.2MnO3/石墨復(fù)合材料的微結(jié)構(gòu)與電輸運(yùn)性質(zhì)
      微波介質(zhì)陶瓷諧振器磁控濺射金屬化
      越西县| 黎川县| 安顺市| 南投市| 和田市| 临清市| 恩平市| 田林县| 隆安县| 新蔡县| 天等县| 钦州市| 禹州市| 吉水县| 九江市| 东山县| 齐齐哈尔市| 乌拉特中旗| 甘泉县| 堆龙德庆县| 西畴县| 陆良县| 社旗县| 南昌市| 泽州县| 科尔| 科技| 万年县| 江陵县| 台湾省| 尼玛县| 桐城市| 铜陵市| 东方市| 贵南县| 南雄市| 琼海市| 武威市| 读书| 榆社县| 永清县|