• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      干旱脅迫對(duì)拉薩半干旱河谷主要喬木樹種幼樹耗水及光合特性的影響

      2016-05-04 01:31:40辛福梅楊小林趙墾田羅桑卓瑪
      關(guān)鍵詞:干旱脅迫光合特性

      辛福梅, 楊小林, 趙墾田*, 羅桑卓瑪

      (1.西藏大學(xué)農(nóng)牧學(xué)院,西藏 林芝 860000;2.北京林業(yè)大學(xué)林學(xué)院,北京 100083)

      ?

      干旱脅迫對(duì)拉薩半干旱河谷主要喬木樹種幼樹耗水及光合特性的影響

      辛福梅1,2, 楊小林1, 趙墾田1*, 羅桑卓瑪1

      (1.西藏大學(xué)農(nóng)牧學(xué)院,西藏 林芝 860000;2.北京林業(yè)大學(xué)林學(xué)院,北京 100083)

      摘要在拉薩半干旱河谷以三年生藏川楊、銀白楊、左旋柳和榆樹為研究對(duì)象,通過盆栽控制試驗(yàn),采用盆栽苗木稱量法和Li-6400光合測(cè)定法,研究在輕度、中度和重度干旱脅迫(土壤含水量分別為田間持水量的70%~75%、50%~55%和30%~35%)條件下4個(gè)樹種的蒸騰耗水特性和水分利用效率。結(jié)果表明:1)正常供水時(shí),藏川楊、銀白楊、左旋柳和榆樹白天耗水量分別為1 096.5、1 363.8、915.1、702.9 g/m2,藏川楊和左旋柳白天耗水量顯著低于銀白楊;輕度干旱時(shí)左旋柳和榆樹的全天總耗水量和白天總耗水量均有明顯增加,其中左旋柳的增幅分別達(dá)到38.1%和40.8%,榆樹的增幅分別為30.1%和28.7%,其余2個(gè)樹種均有不同程度的下降;中度干旱時(shí)4種苗木耗水量均有下降;重度干旱時(shí)耗水量最小。2)正常供水時(shí),銀白楊和左旋柳的耗水速率日變化為雙峰曲線,峰值均出現(xiàn)在12:00—14:00和16:00—18:00,藏川楊和榆樹為單峰曲線,峰值出現(xiàn)在12:00—14:00;輕度干旱時(shí),銀白楊為雙峰曲線,第1峰值出現(xiàn)在12:00—14:00,其余3個(gè)樹種為單峰曲線;中度和重度干旱時(shí)各樹種耗水速率均表現(xiàn)為單峰曲線。3)隨干旱加劇,藏川楊和銀白楊的凈光合速率和蒸騰速率均逐步下降;左旋柳的凈光合速率和蒸騰速率均在輕度干旱時(shí)最大,在其余3個(gè)水分條件下隨干旱加劇,其凈光合速率和蒸騰速率逐漸下降;榆樹的凈光合速率和蒸騰速率相對(duì)較低,最大值均出現(xiàn)在輕度干旱下,重度干旱時(shí)其值顯著小于其余處理。4)藏川楊在中度和重度干旱時(shí)水分利用效率高于正常供水和輕度干旱;銀白楊在各干旱脅迫下水分利用效率均相對(duì)較低;隨干旱加劇,左旋柳的水分利用效率逐漸增加;榆樹在重度干旱時(shí)水分利用效率顯著高于其余3個(gè)處理。綜上所述,4個(gè)樹種均能耐受一定程度的水分虧缺,屬耐旱較強(qiáng)的樹種,綜合各因素,其耐旱性排序?yàn)橛軜?藏川楊>左旋柳>銀白楊。

      關(guān)鍵詞拉薩半干旱河谷; 干旱脅迫; 喬木樹種; 耗水; 光合特性

      Effect of drought stress on characteristics of water consumption and photosynthesis for main arbor species in semi-arid valley of Lhasa.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(2):199-208

      XIN Fumei1,2, YANG Xiaolin1, ZHAO Kentian1*, Luosangzhuoma1

      (1.CollegeofAgriculturalandAnimalHusbandry,TibetUniversity,Linzhi860000,Xizang,China; 2.CollegeofForestry,BeijingForestryUniversity,Beijing100083,China)

      Summary Water is a main limiting factor in arid and semi-arid areas, so the core technical problem for afforestation is how to ensure and maintain basic water demand for normal growth and development of trees. Investigation on the actual transpiration water consumption of main afforestation tree species can provide important guidance and theoretical basis for density control, water use, forest stability, woodland water balance and environmental capacity estimation of water resources of artificial vegetation.

      In this paper, four arbor speciesPopulusszechuanicavar.tibetica,Populusalba,Salixparaplesiavar.subintegraandUlmuspumilaof three years old were selected in semi-arid valley of Lhasa, water consumptions of which were measured by pot seedling weight method, and net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) of them were investigated by Li-6400 photosynthetic system measuring method under different drought stresses. The stress treatments included normal water supply (90%-95% of field moisture capacity, CK), light drought stress (70%-75% of field moisture capacity, LS), moderate drought stress (50%-55% of field moisture capacity, MS) and heavy drought stress (30%-35% of field moisture capacity, HS) on potted experiments.

      The results showed that: 1) Under the normal water supply, the day water consumptions ofP.szechuanicavar.tibetica,P.alba,S.paraplesiavar.subintegraandU.pumilaseedlings were 1 096.5, 1 363.8, 915.1 and 702.9 g/m2, respectively. The water consumption of native trees (P.szechuanicavar.tibeticaandS.paraplesiavar.subintegra) was significantly lower than that ofP.alba. Under the light drought stress, the day-and-night and day water consumptions ofS.paraplesiavar.subintegraandU.pumilaincreased significantly compared to the control, wherein, the former increasing by 38.1% and 40.8%, and the latter increasing by 30.1% and 28.7%, respectively; and the remaining two species declined at different degrees. The water consumption of the four kinds of seedlings declined under the moderate drought stress, and it was minimal under the heavy drought stress. For example, the day-and-night water consumption ofP.szechuanicavar.tibeticaandP.albaunder the heavy drought stress was only 25.0% and 19.3% under the normal supply. 2) Under the normal water supply, the diurnal variation of water consumption rate (WCR) ofP.szechuanicavar.tibeticaandS.paraplesiavar.subintegrawas bimodal curve, with the two peaks at 12:00—14:00 and 16:00—18:00; the other two species was a single peak curve, with the peak at 12:00—14:00. Under the light drought stress, the WCR diurnal variation ofP.albawas bimodal curve, the first peak of which was at 12:00—14:00, and the remaining three species were observed a single peak, the peak ofP.szechuanicavar.tibeticain which was at 12:00—14:00, and the other two species were at 14:00—16:00. Under the moderate drought stress, the WCR diurnal variation of all tree species showed a single peak curve, the peak ofP.szechuanicavar.tibeticaandP.albain which was at 12:00—14:00, and the other two species appeared at 14:00—16:00. The curves of all species were single peak under the heavy drought stress, all peaks of which appeared at 14:00—16:00. 3) The Pn and Tr ofP.szechuanicavar.tibeticaandP.albadeclined gradually with the increase of drought stress. The Pn and Tr ofS.paraplesiavar.subintegrawere largest under the light drought stress, while they decreased gradually with the increase of drought stress. The Pn and Tr ofU.pumilawere relatively low, and the maximum values were observed under the moderate drought stress, and its Pn and Tr were significantly lower than any other treatment under the heavy drought stress. 4) The WUE ofP.szechuanicavar.tibeticaunder the moderate and heavy drought stresses was higher than the other two stress conditions. The WUE ofP.albawas relatively low under the each drought stress. The WUE ofS.paraplesiavar.subintegrabecame higher with the increase of drought stress. Under the heavy drought stress, the WUE ofU.pumilawas significantly higher than any other treatment.

      In conclusion, all the four species can tolerate water deficit to a certain degree, and the order of drought tolerance isU.pumila>P.szechuanicavar.tibetica>S.paraplesiavar.subintegra>P.alba.

      Key wordssemi-arid valley of Lhasa; drought stress; arbor species; water consumption; photosynthetic characteristics

      水分是植物生長(zhǎng)的重要環(huán)境因子,在陸地生態(tài)系統(tǒng)中,干旱與半干旱生態(tài)系統(tǒng)大約覆蓋了地球表面的50%[1]。水分影響著植物形態(tài)、生理生化代謝及地理分布范圍,植物對(duì)土壤水分脅迫的響應(yīng)包含著極其復(fù)雜的變化,并形成了遭受遺傳性制約的適應(yīng)機(jī)制[2-4]。隨著全球氣候與環(huán)境變化,以及降水季節(jié)和地域分布極不均勻,水資源短缺日趨明顯,土壤有效含水量逐年減少[5]。由于水分是干旱半干旱地區(qū)最主要的限制因子,所以造林要解決的中心技術(shù)問題就是如何保證和維持林木正常生長(zhǎng)發(fā)育的基本水分需求[6]。研究主要造林樹種的實(shí)際蒸騰耗水量,對(duì)于人工植被的密度調(diào)控、水分利用、林分穩(wěn)定以及林地水量平衡和水資源環(huán)境容量估測(cè)具有重要的指導(dǎo)作用和理論意義[7]。

      隨著西藏高原國(guó)家生態(tài)安全屏障保護(hù)與建設(shè)規(guī)劃等項(xiàng)目的實(shí)施,拉薩半干旱河谷植被恢復(fù)和重建越來越受到人們的普遍關(guān)注,也已成為西藏生態(tài)文明建設(shè)中面臨的迫切任務(wù)之一。盡管國(guó)內(nèi)外對(duì)林木耗水性已有相當(dāng)多的研究[8-14],但在西藏這種特殊環(huán)境下有關(guān)樹木的耗水性研究還未見報(bào)道。本研究選擇拉薩半干旱河谷地帶4個(gè)主要造林樹種(藏川楊、銀白楊、左旋柳、榆樹)為研究對(duì)象,通過盆栽控制試驗(yàn),研究其在拉薩半干旱河谷特定環(huán)境條件下的蒸騰耗水特性和水分利用效率,以期了解各樹種的蒸騰耗水規(guī)律,正確選擇耐旱樹種,科學(xué)制定苗期水分管理措施,確保造林成功。

      1材料與方法

      1.1研究區(qū)概況

      試驗(yàn)在西藏自治區(qū)林業(yè)廳林木科學(xué)研究院內(nèi)完成。該研究院地處拉薩市堆龍德慶縣柳梧鄉(xiāng)桑達(dá)村,為典型的拉薩半干旱河谷地帶。拉薩半干旱河谷地處雅魯藏布江支流拉薩河,喜馬拉雅山北側(cè),受下沉氣流影響,全年多晴朗天氣,冬無嚴(yán)寒,夏無酷暑,屬高原季風(fēng)半干旱氣候;河谷內(nèi)氣候溫暖、干燥,年均氣溫7.4 ℃,日溫差大,最熱月6月平均氣溫為18.7 ℃,最冷月1月平均氣溫為1.0 ℃,多年極端最高氣溫為29.6 ℃,極端最低氣溫為-16.5 ℃,分別出現(xiàn)在6月和1月;干濕季明顯,冬季干燥少雨,降水主要集中在濕季,僅6、7、8月降水量就占到全年降水總量的88.3%,多夜雨,夜雨率達(dá)到80%左右,是西藏雨季夜雨最多的地區(qū)之一;平均相對(duì)濕度30%~50%,降水量200~500 mm,干燥度1.5~10,干濕指數(shù)3~7,10 ℃以上積溫2 177 ℃,無霜期133 d,全年日照時(shí)數(shù)3 000 h以上;該地區(qū)植被類型主要為亞高山灌叢和草甸植被以及河谷人工林群落[15]。

      1.2試驗(yàn)材料及設(shè)計(jì)

      選取該地區(qū)主要造林喬木樹種三年生幼樹藏川楊(Populusszechuanicavar.tibetica)、銀白楊(Populusalba)、左旋柳(Salixparaplesiavar.subintegra)、榆樹(Ulmuspumila),生長(zhǎng)勢(shì)良好、形態(tài)特征相近。所用土壤為拉薩河谷典型灌叢草原土,土壤田間持水量為19.41%,體積質(zhì)量為1.23 g/cm3。栽植用花盆盆口直徑為30 cm,高25 cm,每盆裝入灌叢草原土14 kg,每個(gè)花盆栽植苗木1株。試驗(yàn)于2013年6月在西藏自治區(qū)林業(yè)廳林木科學(xué)研究院內(nèi)進(jìn)行,苗木栽植后經(jīng)過2個(gè)月緩苗期,于8月10日開始干旱脅迫,8月15日開始稱量花盆,測(cè)定苗木耗水特性,9月18日結(jié)束實(shí)驗(yàn),期間選擇5個(gè)不連續(xù)的典型晴天,于上午9:00—11:00測(cè)定苗木光合特性。試驗(yàn)共設(shè)4組處理。CK:正常充分供水,土壤含水量為田間持水量的90%~95%;LS:輕度干旱脅迫,為田間持水量的70%~75%;MS:中度干旱脅迫,為田間持水量的50%~55%;HS:重度干旱脅迫,為田間持水量的30%~35%。每組設(shè)5次重復(fù)[16-17]。

      試驗(yàn)時(shí)用保鮮膜覆蓋花盆的上表面以防止土壤水分蒸發(fā),同時(shí)密封花盆底部以防止水分滲漏和花盆內(nèi)土壤流失。

      1.3測(cè)定內(nèi)容及方法

      1.3.1耗水特性

      每天8:00和20:00用精密天平(量程為30 kg,精度為1×10-4g)稱花盆質(zhì)量以計(jì)算各樹種苗木每天的耗水量。20:00稱完后通過注射器在保鮮膜上扎孔注水以保證花盆內(nèi)土壤含水量在設(shè)定范圍內(nèi)。耗水日變化測(cè)定為每天8:00—20:00,每隔2 h測(cè)定1次。用剪紙稱量法(硫酸紙法)測(cè)定葉面積,計(jì)算耗水量。

      1.3.2光合特性

      從4組處理的各重復(fù)中選取5~6片功能葉,采用Li-6400XT便攜式光合作用測(cè)定儀測(cè)定其凈光合速率和蒸騰速率。各處理的水分利用效率=凈光合速率/蒸騰速率。由于部分左旋柳、榆樹葉片不能充滿葉室,光合測(cè)定完成后,用Microtek Phantom 3500掃描儀掃描處理葉片,通過UTHSCSA圖像分析系統(tǒng)確定葉面積,重新?lián)Q算凈光合速率、蒸騰速率和水分利用效率。

      1.4數(shù)據(jù)分析

      用Excel 2003軟件進(jìn)行數(shù)據(jù)處理和作圖,用SPSS 10.0軟件進(jìn)行方差分析。

      2結(jié)果與分析

      2.1各樹種幼苗耗水特性對(duì)干旱脅迫的響應(yīng)

      2.1.1耗水量的變化

      林木耗水主要包括自身蒸騰和土壤蒸發(fā)2部分,在本研究中盆栽苗木土壤均采用保鮮膜密封,因此,苗木蒸騰耗水是其向外界散失水分的唯一途徑。由表1可以看出,在不同土壤水分條件下,4個(gè)樹種苗木的全天總耗水量和白天總耗水量存在差異。總體上,正常供水時(shí)銀白楊的全天總耗水量和白天總耗水量均最大;輕度干旱時(shí)左旋柳和榆樹的全天總耗水量和白天總耗水量均有明顯增加,其中左旋柳的增幅分別達(dá)到38.1%和40.8%,榆樹的增幅分別為30.1%和28.7%,其余2個(gè)樹種均有不同程度的下降;中度干旱時(shí)4種苗木的耗水量均下降,但各樹種下降幅度不同,4種苗木的全天總耗水量與各樹種耗水量最大值相比分別下降了67.1%(藏川楊)、46.0%(銀白楊)、29.9%(左旋柳)、16.5%(榆樹);重度干旱時(shí)耗水量最小,藏川楊和銀白楊的全天總耗水量?jī)H為正常供水時(shí)的25.0%和19.3%。從表1中還可以看出:正常供水時(shí)4個(gè)樹種的各耗水量相差較大,榆樹的耗水量最?。惠p度干旱時(shí)銀白楊和左旋柳耗水量相差不大,而藏川楊的全天總耗水量最??;中度干旱時(shí)除藏川楊外其余3個(gè)樹種耗水量較為接近;重度干旱時(shí)4個(gè)樹種耗水量相差不大。說明不同樹種在不同水分條件下對(duì)水分的利用方式不同,如藏川楊從輕度干旱脅迫開始就大幅度降低耗水量以減小對(duì)水分的消耗;中度干旱時(shí)銀白楊和左旋柳耗水明顯降低。從表1中各樹種白天總耗水量占全天總耗水量的比例可知,苗木耗水主要產(chǎn)生在白天,白天的耗水規(guī)律是該地區(qū)苗木耗水規(guī)律研究的主要內(nèi)容。

      表1 不同干旱脅迫下4種苗木的日均耗水量

      CK:正常供水,土壤含水量為田間持水量的90%~95%;LS:輕度干旱,土壤含水量為田間持水量的70%~75%;MS:中度干旱,土壤含水量為田間持水量的50%~55%;HS:重度干旱,土壤含水量為田間持水量的30%~35%。同列數(shù)據(jù)后的不同小寫字母表示在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義(Fisher最小顯著差異法);n=3.

      CK: Normal water supply (90%-95% of field moisture capacity); LS: Light drought stress (70%-75% of field moisture capacity); MS: Moderate drought stress (50%-55% of field moisture capacity); HS: Heavy drought stress (30%-35% of field moisture capacity). The values followed by different lowercase letters in the same column are statistically significantly different at the 0.05 probability level, as determined by Fisher’s least significant difference test;n=3.

      2.1.2耗水速率的日變化

      從圖1可以看出,不同樹種在相同水分條件下和同一樹種在不同水分條件下的耗水速率變化不同。在正常供水條件下,銀白楊和左旋柳的耗水速率日變化為明顯的雙峰曲線,兩者峰值均出現(xiàn)在12:00—14:00和16:00—18:00,銀白楊在16:00—18:00達(dá)到第1峰值,左旋柳的第1峰值出現(xiàn)在12:00—14:00,銀白楊和左旋柳的第2峰值與第1峰值相比,分別降低了3%和40%;藏川楊為典型的單峰曲線,峰值出現(xiàn)在12:00—14:00;榆樹也為峰值出現(xiàn)在12:00—14:00的單峰曲線,但是在14:00—18:00的整個(gè)時(shí)間段內(nèi)其耗水基本保持不變。在輕度干旱脅迫下,銀白楊表現(xiàn)為雙峰曲線,其第1峰值出現(xiàn)在12:00—14:00,第2峰值與第1峰值相比,降低了近60%;其余3個(gè)樹種在輕度干旱時(shí)表現(xiàn)為單峰曲線,但峰值出現(xiàn)的時(shí)間不同,藏川楊出現(xiàn)在12:00—14:00,左旋柳和榆樹出現(xiàn)在14:00—16:00。中度干旱時(shí)各樹種耗水速率均表現(xiàn)為單峰曲線,銀白楊和藏川楊的峰值出現(xiàn)在12:00—14:00,左旋柳和榆樹出現(xiàn)在14:00—16:00,峰值最大的是銀白楊,藏川楊的峰值僅為銀白楊的54.2%。重度干旱脅迫時(shí)各樹種的耗水速率也均為單峰曲線,但4個(gè)樹種的峰值均出現(xiàn)在14:00—16:00。

      各處理符號(hào)表示的含義詳見表1注。Please see footnote of Table 1 for details of each treatment.圖1 不同干旱脅迫下4種苗木耗水速率的日變化Fig.1 Daily variation of water consumption rates of four kinds of seedlings under different drought stresses

      圖2顯示,各苗木白天平均耗水速率的變化趨勢(shì)與最大耗水速率的變化基本一致,且同一樹種在不同干旱脅迫條件下和不同樹種在同一干旱脅迫下耗水速率差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。正常供水時(shí)銀白楊的耗水速率顯著高于其他3個(gè)樹種,輕度干旱時(shí),銀白楊和左旋柳的耗水速率顯著高于其他2個(gè)樹種,榆樹在正常供水和輕度干旱時(shí)耗水速率較小。隨著苗木受干旱脅迫程度的加劇,藏川楊和銀白楊的白天平均耗水速率均呈現(xiàn)下降趨勢(shì),兩者在各干旱脅迫處理間均差異有統(tǒng)計(jì)學(xué)意義(P<0.05),藏川楊在重度干旱時(shí)其白天平均耗水速率僅為正常供水時(shí)的21.8%。左旋柳在各干旱脅迫處理間差異也有統(tǒng)計(jì)學(xué)意義(P<0.05),但其白天平均耗水速率的最大值出現(xiàn)在輕度干旱時(shí),正常供水時(shí)平均耗水速率下降了近40.8%,重度干旱時(shí)其大小僅為輕度干旱時(shí)的25.5%。

      各處理符號(hào)表示的含義詳見表1注。短?hào)派系牟煌懽帜副硎驹谕桓珊得{迫條件下不同樹種之間在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義,不同大寫字母表示同一樹種在不同干旱脅迫之間在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義。Please see footnote of Table 1 for details of each treatment. Different lowercase letters above bars indicate statistically significant differences among tree species under the same drought stress, and the different capital letters indicate statistically significant differences among different drought stresses on the same tree species at the 0.05 probability level, respectively.圖2 不同干旱脅迫下4種苗木白天平均耗水速率Fig.2 Average daily water consumption rates of four kinds of seedlings under different drought stresses

      2.2各樹種幼苗光合特性對(duì)干旱脅迫的響應(yīng)

      2.2.1凈光合速率的變化

      圖3顯示,在同一干旱脅迫條件的不同樹種之間以及同一樹種的不同干旱脅迫之間各苗木的凈光合速率不同。正常供水時(shí)銀白楊的凈光合速率與其余3個(gè)樹種間差異有統(tǒng)計(jì)學(xué)意義(P<0.05),達(dá)到最大值。在輕度干旱條件下銀白楊的凈光合速率仍然最大,顯著大于其余3個(gè)樹種(P<0.05),而左旋柳、藏川楊和榆樹之間的差異無統(tǒng)計(jì)學(xué)意義(P>0.05),與銀白楊相比,藏川楊的凈光合速率下降了近44.5%。在中度和重度干旱時(shí)左旋柳的凈光合速率均最大,中度干旱時(shí)其余3個(gè)樹種的凈光合速率相差不大,均與銀白楊之間差異有統(tǒng)計(jì)學(xué)意義(P<0.05),重度干旱時(shí),銀白楊的凈光合速率最小。另外,在不同干旱脅迫下藏川楊的凈光合速率差異有統(tǒng)計(jì)學(xué)意義(P<0.05),重度干旱時(shí)約為正常供水時(shí)的1/3。銀白楊在正常供水和輕度干旱時(shí)凈光合速率差異不大,中度干旱時(shí)凈光合速率急劇下降,約為正常供水時(shí)的52%,而重度干旱時(shí)僅為正常供水時(shí)的6.9%。左旋柳在輕度干旱時(shí)凈光合速率達(dá)到最大值,在正常供水和中度干旱脅迫下凈光合速率均有所下降,重度干旱時(shí)其凈光合速率約為輕度干旱時(shí)的42.5%。榆樹在輕度干旱時(shí)凈光合速率最大,與正常供水和中度干旱脅迫時(shí)差異有統(tǒng)計(jì)學(xué)意義(P<0.05),在重度干旱脅迫下其凈光合速率顯著小于其他3個(gè)水分條件,僅為最大值的1/3。

      各處理符號(hào)表示的含義詳見表1注。短?hào)派系牟煌懽帜副硎驹谕桓珊得{迫條件下不同樹種之間在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義,不同大寫字母表示同一樹種在不同干旱脅迫之間在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義。Please see footnote of Table 1 for details of each treatment. Different lowercase letters above bars indicate statistically significant differences among tree species under the same drought stress, and the different capital letters indicate statistically significant differences among different drought stresses on the same tree species at the 0.05 probability level, respectively.圖3 不同干旱脅迫下4種苗木凈光合速率的變化Fig.3 Changes of net photosynthetic rates of four kinds of seedlings under different drought stresses

      2.2.2蒸騰速率的變化

      各處理符號(hào)表示的含義詳見表1注。短?hào)派系牟煌懽帜副硎驹谕桓珊得{迫條件下不同樹種之間在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義,不同大寫字母表示同一樹種在不同干旱脅迫之間在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義。Please see footnote of Table 1 for details of each treatment. Different lowercase letters above bars indicate statistically significant differences among tree species under the same drought stress, and the different capital letters indicate statistically significant differences among different drought stresses on the same tree species at the 0.05 probability level, respectively.圖4 不同干旱脅迫下4種苗木蒸騰速率的變化Fig.4 Changes of transpiration rates of four kinds of seedlings under different drought stresses

      從圖4可以看出,不同樹種在同一干旱脅迫下和同一樹種在不同干旱脅迫下其蒸騰速率的變化不盡相同。正常供水時(shí)銀白楊的蒸騰速率顯著高于其余3個(gè)樹種(P<0.05),藏川楊和左旋柳之間差異不大,但兩者均顯著高于榆樹,榆樹在正常供水時(shí)蒸騰速率約為銀白楊的1/3。在輕度干旱脅迫下銀白楊的蒸騰速率仍顯著高于其余3個(gè)樹種(P<0.05),左旋柳的次之,約為最大值的78.1%,藏川楊略高于榆樹,兩者差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。中度干旱時(shí)藏川楊的蒸騰速率最小,銀白楊和左旋柳的蒸騰速率間差異無統(tǒng)計(jì)學(xué)意義(P>0.05),榆樹與其余3個(gè)樹種之間的差異未達(dá)統(tǒng)計(jì)學(xué)上的顯著水平(P>0.05)。重度干旱時(shí)銀白楊的蒸騰速率最小,與銀白楊比較,其余3個(gè)樹種的蒸騰速率略有提高,且相互間差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。從圖4還可知:隨著干旱脅迫程度的加劇,藏川楊的蒸騰速率逐漸下降,部分處理間差異有統(tǒng)計(jì)學(xué)意義(P<0.05),重度干旱時(shí)蒸騰速率最小,僅為最大值的27.7%;銀白楊在正常供水和輕度干旱脅迫下蒸騰速率差異無統(tǒng)計(jì)學(xué)意義(P>0.05),從中度干旱開始蒸騰速率急劇下降,重度干旱時(shí)約為其最大蒸騰速率的1/10;左旋柳在輕度干旱時(shí)蒸騰速率最大,其余3個(gè)處理隨干旱脅迫加劇,蒸騰速率逐漸下降;榆樹的蒸騰速率相對(duì)較低,最大值出現(xiàn)在輕度干旱脅迫下,正常供水和中度與輕度干旱之間差異有統(tǒng)計(jì)學(xué)意義(P<0.05),在重度干旱脅迫下其蒸騰速率顯著小于其余處理,與輕度干旱相比,下降了近70.8%。

      2.2.3水分利用效率的變化

      各處理符號(hào)表示的含義詳見表1注。短?hào)派系牟煌懽帜副硎驹谕桓珊得{迫條件下不同樹種之間在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義,不同大寫字母表示同一樹種在不同干旱脅迫之間在P<0.05水平差異有統(tǒng)計(jì)學(xué)意義。Please see footnote of Table 1 for details of each treatment. Different lowercase letters above bars indicate statistically significant differences among tree species under the same drought stress, and the different capital letters indicate statistically significant differences among different drought stresses on the same tree species at the 0.05 probability level, respectively.圖5 不同干旱脅迫下4種苗木水分利用效率的變化Fig.5 Changes of water use efficiency of four kinds of seedlings under different drought stresses

      由圖5可知:在正常供水時(shí)榆樹的水分利用效率最高,為2.90 μmol/mmol,藏川楊有所下降,銀白楊和左旋柳之間差異無統(tǒng)計(jì)學(xué)意義(P>0.05),約為榆樹的75%;輕度干旱時(shí)藏川楊和榆樹之間相差不大,但兩者均高于銀白楊和左旋柳,且差異有統(tǒng)計(jì)學(xué)意義(P<0.05);在中度干旱脅迫下藏川楊、左旋柳和榆樹的水分利用效率之間無顯著差異,均在3 μmol/mmol左右,而銀白楊的水分利用效率顯著低于其余3個(gè)樹種(P<0.05);重度干旱時(shí)左旋柳的水分利用效率最大,而銀白楊的最小。就各樹種而言,藏川楊在中度和重度干旱時(shí)水分利用效率高于正常供水和輕度干旱,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);銀白楊在各個(gè)干旱脅迫條件下水分利用效率均相對(duì)較低,重度干旱時(shí)最?。浑S著干旱脅迫的加劇,左旋柳的水分利用效率有逐漸增加的趨勢(shì),重度干旱與正常供水相比,增幅達(dá)到43.6%;榆樹在重度干旱時(shí)水分利用效率高于其余3個(gè)處理,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。

      3討論與結(jié)論

      在進(jìn)行抗旱節(jié)水樹種篩選時(shí)耗水量經(jīng)常作為重要的評(píng)價(jià)指標(biāo),能很好地反映樹種之間耗水能力差異[18-20]。邱權(quán)等[21]對(duì)速生樹種尾巨桉和竹柳幼苗耗水特性的研究結(jié)果顯示,其盆栽苗木白天單株耗水量為795.7和1 074 g/m2;王瑞輝等[22]對(duì)北京15種園林樹木耗水性的研究結(jié)果顯示,秋季耗水量最大的榆葉梅日耗水量達(dá)到1 696 g/m2,最小的黃櫨僅為345 g/m2。本研究表明,在正常供水時(shí),藏川楊、銀白楊、左旋柳和榆樹的白天耗水量分別為1 096.5、1 363.8、915.1和702.9 g/m2。結(jié)合拉薩氣候特點(diǎn),本研究認(rèn)為拉薩半干旱河谷主要造林樹種耗水量相對(duì)較低,作為鄉(xiāng)土樹種的藏川楊和左旋柳白天耗水量顯著低于銀白楊。拉薩河谷苗木的耗水主要產(chǎn)生在白天。土壤水分是植物生長(zhǎng)的重要限制因子,大量研究表明在不同土壤水分條件下植物耗水特性存在明顯差異[23-24]。在本研究中隨著土壤水分含量的下降,各樹種的耗水量變化不同:輕度干旱時(shí)左旋柳和榆樹的全天總耗水量和白天總耗水量均有明顯增加,其余2個(gè)樹種均有不同程度的下降;中度干旱時(shí)4種苗木的耗水量均下降,但各樹種下降幅度不同,全天總耗水量與各樹種耗水量最大值相比分別下降了67.1%(藏川楊)、46.0%(銀白楊)、29.9%(左旋柳)、16.5%(榆樹);重度干旱時(shí)耗水量最小,藏川楊和銀白楊的全天總耗水量?jī)H為正常供水時(shí)的25.0%和19.3%。

      耗水速率反映了植物調(diào)節(jié)自身水分損耗能力和在不同環(huán)境中的實(shí)際耗水特征,用耗水速率來比較樹種耗水的特點(diǎn)和大小更具有可行性[25]。在本次選取的4個(gè)樹種中,正常供水時(shí)銀白楊的耗水速率顯著高于其他3個(gè)樹種;輕度干旱時(shí),銀白楊和左旋柳的耗水速率顯著高于其他2個(gè)樹種;相比較而言,榆樹在正常供水和輕度干旱時(shí)耗水速率較小。由此可見,干旱地區(qū)的鄉(xiāng)土樹種有其節(jié)水性能方面的潛力,但引種的耐旱樹種同樣表現(xiàn)較好。由于時(shí)差及光照強(qiáng)度的影響,在拉薩半干旱地區(qū)部分樹種耗水速率的日變化峰值出現(xiàn)在14:00—16:00,甚至16:00—18:00。在正常供水條件下,銀白楊和左旋柳的耗水速率日變化為明顯的雙峰曲線,藏川楊和榆樹為典型的單峰曲線;輕度干旱時(shí),銀白楊表現(xiàn)為雙峰曲線,其余3個(gè)樹種表現(xiàn)為單峰曲線;中度和重度干旱時(shí)各樹種耗水速率均表現(xiàn)為單峰曲線。

      光合作用是植物體內(nèi)非常重要的代謝過程,植物通過光合作用為生長(zhǎng)提供同化物和能量。許多研究表明,植物在干旱脅迫狀態(tài)下光合速率會(huì)隨之降低,降低的幅度取決于干旱脅迫的程度和植物的耐旱能力[26]。本研究4個(gè)樹種的凈光合速率和蒸騰速率表現(xiàn)出近似的變化趨勢(shì)。隨著干旱脅迫程度的加劇,藏川楊和銀白楊的凈光合速率和蒸騰速率均逐步下降,在重度干旱時(shí)達(dá)到最小。左旋柳的凈光合速率和蒸騰速率均在輕度干旱時(shí)最大,其余3個(gè)處理隨干旱脅迫加劇,凈光合速率和蒸騰速率逐漸下降。榆樹的凈光合速率和蒸騰速率相對(duì)較低,最大值均出現(xiàn)在輕度干旱脅迫下,在重度干旱脅迫下其值顯著小于其余處理。結(jié)合影響林木耗水的氣孔和非氣孔因素[27-28],其原因可能是植物為了減小水分喪失,減小氣孔張度,從而降低了胞間CO2的濃度,最終使得蒸騰速率和凈光合速率下降。

      水分利用效率是評(píng)價(jià)植物對(duì)環(huán)境適應(yīng)的綜合性生理生態(tài)指標(biāo),也是確定植物體生長(zhǎng)發(fā)育所需水分供應(yīng)的重要指標(biāo)之一[29-30]。本研究藏川楊在中度和重度干旱時(shí)水分利用效率高于正常供水和輕度干旱。銀白楊在各個(gè)水分脅迫條件下水分利用效率均相對(duì)較低,重度干旱時(shí)最小。隨著干旱脅迫的加劇,左旋柳的水分利用效率有逐漸增加的趨勢(shì),重度干旱與正常供水相比,增幅達(dá)到43.6%。榆樹在重度干旱時(shí)水分利用效率顯著高于其余3個(gè)處理。

      綜合以上結(jié)果,藏川楊、銀白楊、左旋柳、榆樹的耗水量相對(duì)較低,均能耐受一定程度的水分虧缺,屬于耐旱能力較強(qiáng)的樹種。結(jié)合耗水量、耗水速率及水分利用效率等因素,4個(gè)樹種的耐旱性排序?yàn)橛軜?藏川楊>左旋柳>銀白楊。其中,銀白楊的耐旱性最小,藏川楊對(duì)干旱的敏感程度較高,能夠在干旱脅迫較輕時(shí)就降低耗水量以應(yīng)對(duì)干旱,而輕度干旱脅迫更有利于左旋柳的生長(zhǎng),適應(yīng)性較好的榆樹在拉薩半干旱河谷仍表現(xiàn)出較強(qiáng)的耐旱性。

      參考文獻(xiàn)(References):

      [1]BAILEY R G.EcosystemGeographywithSeparateMapsoftheOceansandContinentsat1∶8 000 000. New York, USA: Springer-Verlag, 1996:3.

      [2]REMORINI D, MASSAI R. Comparison of water status indicators for young peach trees.IrrigationScience, 2003,22(1):39-46.

      [3]FERNANDEZ R J, REYNOLDS J F. Potential growth and drought tolerance of eight desert grasses: Lack of a trade-off?Oecologic, 2000,123:90-98.

      [4]EGERT M, TEVINI M. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Alliumsschoenoprasum).EnvironmentalandExperimentalBotany, 2002,48:43-49.

      [5]MAESTRE F T, VALLADARES F, REYNOLDS J F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments.JournalofEcology, 2005,93(4):748-757.

      [6]劉敏.青海黃土高寒區(qū)主要生態(tài)樹種耗水特性研究.北京:北京林業(yè)大學(xué),2009:1.

      LIU M. Study on water consumption of main ecosystem tree species in high cold region on Loess Plateaus of Qinghai. Beijing: Beijing Forestry University, 2009:1. (in Chinese with English abstract)

      [7]賀康寧,田陽,張光燦.刺槐日蒸騰過程的Penman-Monteith方程模擬.生態(tài)學(xué)報(bào),2003,23(2):251-258.

      HE K N, TIAN Y, ZHANG G C. Modeling of the daily transpiration variation in locust forest by Penman-Monteith equation.ActaEcologicaSinica, 2003,23(2):251-258. (in Chinese with English abstract)

      [8]周平,李吉躍,招禮軍.北方主要造林樹種苗木蒸騰耗水特性研究.北京林業(yè)大學(xué)學(xué)報(bào),2002,24(5/6):50-55.

      ZHOU P, LI J Y, ZHAO L J. Characteristics of seedlings water consumption by transpiration of main afforestation tree species in north China.JournalofBeijingForestryUniversity, 2002,24(5/6):50-55. (in Chinese with English abstract)

      [9]馬履一,王華田,林平.北京地區(qū)幾個(gè)造林樹種耗水性比較研究.北京林業(yè)大學(xué)學(xué)報(bào),2003,25(2):1-7.

      MA L Y, WANG H T, LIN P. Comparison of water consumption of some afforestation species in Beijing area.JournalofBeijingForestryUniversity, 2003,25(2):1-7. (in Chinese with English abstract)

      [10]王華田,馬履一,孫鵬森.油松、側(cè)柏深秋邊材木質(zhì)部液流變化規(guī)律的研究.林業(yè)科學(xué),2002,38(5):31-37.

      WANG H T, MA L Y, SUN P S. Sap flow fluctuations ofPinustabulaeformisandPlatycladusorientalisin late autumn.ScientiaSilvaeSinicae, 2002,38(5):31-37. (in Chinese with English abstract)

      [11]李吉躍,周平,招禮軍.干旱脅迫對(duì)苗木蒸騰耗水的影響.生態(tài)學(xué)報(bào),2002,22(9):1380-1386.

      LI J Y, ZHOU P, ZHAO L J. Influence of drought stress on transpiring water-consumption of seedlings.ActaEcologicaSinica, 2002,22(9):1380-1386. (in Chinese with English abstract)

      [12]趙平,饒興權(quán),馬玲,等.基于樹干液流測(cè)定值進(jìn)行尺度擴(kuò)展的馬占相思林段蒸騰和冠層氣孔導(dǎo)度.植物生態(tài)學(xué)報(bào),2006,30(4):655-665.

      ZHAO P, RAO X Q, MA L,etal. Sap flow-scaled stand transpiration and canopy stomatal conductance in anAcaciamangiumforest.JournalofPlantEcology, 2006,30(4):655-665. (in Chinese with English abstract)

      [14]GIORIO P, GIORIO G. Sap flow of several olive trees estimated with the heat pulse technique by continuous monitoring of a single gauge.EnviromentalandExperimentalBotany, 2003,49:9-20.

      [15]中國(guó)科學(xué)院青藏高原綜合科學(xué)考察隊(duì).西藏植被.北京:科學(xué)出版社,1988:90-309.

      Institute of Tibetan Plateau Comprehensive Scientific Expedition.VegetationinTibet. Beijing: Science Press, 1988:90-309. (in Chinese)

      [16]吳敏,張文輝,周建云,等.干旱脅迫對(duì)栓皮櫟幼苗細(xì)根的生長(zhǎng)與生理生化指標(biāo)的影響.生態(tài)學(xué)報(bào),2014,34(15):4223-4233.

      WU M, ZHANG W H, ZHOU J Y,etal. Effects of drought stress on growth, physiological and biochemical parameters in fine roots ofQuercusvariabilisBl. seedlings.ActaEcologicaSinica, 2014,34(15):4223-4233. (in Chinese with English abstract)

      [17]羅桑卓瑪,辛福梅,楊小林,等.干旱脅迫對(duì)香柏幼苗生長(zhǎng)和生理指標(biāo)的影響.西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,43(5):1-8.

      Luosangzhuoma, XIN F M, YANG X L,etal. Effect of drought stress on growth and physiological indicators ofSabinapingiivar.wilsoniiseedlings.JournalofNorthwestA&FUniversity(NaturalScienceEdition), 2014,43(5):1-8. (in Chinese with English abstract)

      [18]胡紅玲,張健,萬雪琴,等.巨桉與5種木本植物幼樹的耗水特性及水分利用效率的比較.生態(tài)學(xué)報(bào),2012,32(12):3873-3882.

      HU H L, ZHANG J, WAN X Q,etal. The water consumption and water use efficiency of the seedlings ofEucalyptusgrandisand other five tree species in Sichuan Province.ActaEcologicaSinica, 2012,32(12):3873-3882. (in Chinese with English abstract)

      [19]段愛國(guó),張建國(guó),何彩云,等.干旱脅迫下金沙江干熱河谷主要造林樹種盆植苗的蒸騰耗水特性.林業(yè)科學(xué)研究,2008,21(4):436-445.

      DUAN A G, ZHANG J G, HE C Y,etal. Studies on transpiration of seedlings of the main tree species under the condition of drought stress in the dry-hot river valleys of the Jinsha River.ForestResearch, 2008,21(4):436-445. (in Chinese with English abstract)

      [20]朱妍,李吉躍,史劍波.北京6個(gè)綠化樹種盆栽蒸騰耗水量的比較研究.北京林業(yè)大學(xué)學(xué)報(bào),2006,28(1):65-70.

      ZHU Y, LI J Y, SHI J B. Comparison of transpiration of six potted afforestation species in Beijing.JournalofBeijingForestryUniversity, 2006,28(1):65-70. (in Chinese with English abstract)

      [21]邱權(quán),潘昕,李吉躍,等.速生樹種尾巨桉和竹柳幼苗耗水特性和水分利用效率.生態(tài)學(xué)報(bào),2014,34(6):1401-1410.

      QIU Q, PAN X, LI J Y,etal. Water consumption characteristics and water use efficiency ofEuclyptusurophylla×Eucalyptusgrandisand bamboo-willow seedlings.ActaEcologicaSinica, 2014,34(6):1401-1410. (in Chinese with English abstract)

      [22]王瑞輝,馬履一.北京15種園林樹木耗水性的比較研究.中南林業(yè)科技大學(xué)學(xué)報(bào),2009,29(4):16-20.

      WANG R H, MA L Y. Comparative research of water consumption from 15 garden tree species in Beijing.JournalofCentralSouthUniversityofForestry&Technology, 2009,29(4):16-20. (in Chinese with English abstract)

      [23]林雯,何茜,蘇艷,等.干旱脅迫對(duì)歐洲云杉水分生理特征的影響.西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,42(6):69-77.

      LIN W, HE Q, SU Y,etal. Effects of drought stress on water physiological characteristics ofPiceaabies.JournalofNorthwestA&FUniversity(NaturalScienceEdition), 2014,42(6):69-77. (in Chinese with English abstract)

      [24]單長(zhǎng)卷,郝文芳,梁宗鎖,等.不同土壤干旱程度對(duì)刺槐幼苗水分生理和生長(zhǎng)指標(biāo)的影響.西北農(nóng)業(yè)學(xué)報(bào),2005,14(2):44-49.

      SHAN C J, HAO W F, LIANG Z S,etal. Effect of different droughty soil on water physiology and growth index of locust seedling.ActaAgriculturaeBoreali-OccidentalisSinica, 2005,14(2):44-49. (in Chinese with English abstract)

      [25]招禮軍.我國(guó)北方主要造林樹種耗水特性及抗旱造林技術(shù)研究.北京:北京林業(yè)大學(xué),2003:52-54.

      ZHAO L J. Studies on water consumption characteristics of main plantation tree species and technology of drought resistance for afforestation in northern China. Beijing: Beijing Forestry University, 2003:52-54. (in Chinese with English abstract)

      [26]王強(qiáng),陳存根,錢紅格,等.水分脅迫對(duì)6種苗木光合生理特性的影響.水土保持通報(bào),2009,29(2):144-149.

      WANG Q, CHEN C G, QIAN H G,etal. Effects of water stress on photosynthetic characteristics of six sorts of seedlings.BulletinofSoilandWaterConservation, 2009,29(2):144-149. (in Chinese with English abstract)

      [27]張勁松,孟平,尹昌君.杜仲蒸騰強(qiáng)度和氣孔行為的初步研究.林業(yè)科學(xué),2002,38(2):34-37.

      ZHANG J S, MENG P, YIN C J. A preliminary study on leaf transpiration and stomatal conductance ofEucommiaulmoides.ScientiaSilvaeSinicae, 2002,38(2):34-37. (in Chinese with English abstract)

      [28]阮成江,李代瓊.黃土丘陵區(qū)沙棘林幾個(gè)水分生理生態(tài)特征研究.林業(yè)科學(xué)研究,2002,15(1):47-53.

      RUAN C J, LI D Q. Study on several hydrological and ecological characteristics ofHippophaerhamnoidesin the loess hilly region.ForestResearch, 2002,15(1):47-53. (in Chinese with English abstract)

      [29]曹生奎,馮起,司建華,等.植物葉片水分利用效率研究綜述.生態(tài)學(xué)報(bào),2009,29(7):3882-3892.

      CAO S K, FENG Q, SI J H,etal. Summary on the plant water use efficiency at leaf level.ActaEcologicaSinica, 2009,29(7):3882-3892. (in Chinese with English abstract)

      [30]SURABHI G K, REDDY K R, SINGH S K. Photosynthesis, fluorescence, shoot biomass and seed weight responses of three cowpea (Vignaunguiculata(L.) Walp.) cultivars with contrasting sensitivity to UV-B radiation.EnvironmentalandExperimentalBotany, 2009,66(2):160-171.

      中圖分類號(hào)S 718.43

      文獻(xiàn)標(biāo)志碼A

      收稿日期(Received):2015-05-25;接受日期(Accepted):2015-10-13;網(wǎng)絡(luò)出版日期(Published online):2016-03-20

      *通信作者(

      Corresponding author):趙墾田(http://orcid.org/0000-0003-3686-3812),E-mail:451152995@qq.com

      基金項(xiàng)目:國(guó)家“十二五”科技支撐計(jì)劃(2013BAC04B01);國(guó)家自然科學(xué)基金(31460192).

      第一作者聯(lián)系方式:辛福梅(http://orcid.org/0000-0001-6470-5200),E-mail:xzxinfumei@163.com

      URL:http://www.cnki.net/kcms/detail/33.1247.S.20160321.1425.022.html

      猜你喜歡
      干旱脅迫光合特性
      重慶市常見園林植物光合和生理生態(tài)特性
      硝普鈉浸種對(duì)干旱脅迫下玉米種子萌發(fā)及幼苗生長(zhǎng)的影響
      一氧化氮參與水楊酸對(duì)玉米幼苗根系抗旱性的調(diào)控
      一氧化氮參與水楊酸對(duì)玉米幼苗根系抗旱性的調(diào)控
      荔枝花芽分化期間光合特性與碳氮物質(zhì)變化
      5個(gè)引種美國(guó)紅楓品種的光合特性比較
      4種砧木對(duì)甜櫻桃葉片光合特性的影響
      干旱脅迫對(duì)扁豆生長(zhǎng)與生理特性的影響
      不同水分條件下硫肥對(duì)玉米幼苗葉片光合特性的影響
      安圖縣水稻高光效新型栽培技術(shù)示范推廣總結(jié)
      泰顺县| 安陆市| 绥化市| 贵德县| 禄丰县| 武鸣县| 鄯善县| 中牟县| 广东省| 江西省| 桦川县| 白沙| 开江县| 雷波县| 肇州县| 铁岭市| 仪陇县| 上犹县| 屯门区| 霍山县| 苗栗县| 尼木县| 来凤县| 广宁县| 平山县| 都昌县| 平邑县| 翁牛特旗| 从江县| 高阳县| 驻马店市| 邯郸市| 教育| 武乡县| 灵丘县| 江山市| 通化县| 三原县| 当雄县| 盈江县| 蓝山县|