蔣文燦, 陳 華, 張偉斌
(1. 中國工程物理研究院化工材料研究所,四川 綿陽 621999; 2. 中國工程物理研究院研究生部,四川 綿陽 621999)
a. crystal structure b. molecule structure
圖1 TATB晶體與分子結(jié)構(gòu)
Fig.1 Crystal and molecule structure for TATB
理論計算運用VASP軟件[26]進(jìn)行,初始晶體結(jié)構(gòu)XRD實驗數(shù)據(jù)[1],基于廣義梯度近似(GGA)的投影綴加平面波(Projector augmented wave,PAW)贗勢,引入vdW-DF2修正范德華力。截斷能設(shè)置為600 ev,k點取為2×2×2,截斷能和k點選擇保證每個原子最大受力變化不超過0.01 eV/?,結(jié)構(gòu)優(yōu)化以及狀態(tài)方程計算電子弛豫的標(biāo)準(zhǔn)為1×10-6eV/atom,原子弛豫標(biāo)準(zhǔn)1×10-5eV/atom,振動頻率通過DFPT方法[27]計算,收斂標(biāo)準(zhǔn)進(jìn)一步提高,電子弛豫標(biāo)準(zhǔn)為1×10-8eV/atom,原子最大受力不超過0.001 eV/ ?。
TATB晶體狀態(tài)方程(p-V曲線)擬合考慮兩種半經(jīng)驗狀態(tài)方程,即Vinet方程[28]和三階方程[29],狀態(tài)方程形式如下:
(1)
(2)
a. equation of state for TATB crystal
b. cell length of a axis and c axisas a function of pressure
c. the ratio of cell parameters of b axisto a axis as a function of pressure
d. cell angle for α、β and γ as a function of pressure
圖2 本文計算的TATB晶體狀態(tài)方程以及晶胞參數(shù)與Olinger和Cady[30]以及Stevens等[4]實驗數(shù)據(jù)的對比
Fig.2 Comparison of the equation of state and cell parameters for TATB determined by Olinger and Cady[30], Stevens et al[4]and calculated by this work
圖3 TATB分子二面角隨壓力變化曲線
Fig.3 Dihedral angle of TATB molecular as a function of pressure
methodpressurerange/GPaBirch?MurnaghanK0K′0VinetK0K′0DFT?D2[31]0-818.77.9--DFT?D2[22]0-2013.611.715.19.2DFT?D3(BJ)[22]0-2013.88.714.37.9MD[32]0-1011.117.2--SAPT(DFT)[33]0-1012.411.0--OlingerandCady[30]0-7.016.75.716.65.9Stevensetal.[4]0-13.217.18.117.57.6Stevensetal.[4]0-5.013.612.414.710.0thiswork0-8.517.78.117.97.8
由圖2d可見,加壓過程中TATB晶體β和γ晶胞角幾乎不變,由圖2b可見c軸晶胞參數(shù)壓縮性高于a軸,圖2c可見a軸和b軸晶胞參數(shù)壓縮率為常數(shù),這與Olinger和Candy[30]以及其他理論計算結(jié)果[22,31]相符,表明Olinger和Candy[30]提出的兩個假定是合理的。Ojede和Cagin[6]利用DFT計算結(jié)果發(fā)現(xiàn)加壓過程在1.5 GPa附近TATB晶體內(nèi)c軸方向氫鍵作用數(shù)明顯增加,本研究統(tǒng)計c軸方向相鄰層氫鍵作用數(shù)發(fā)現(xiàn)(截斷半徑2.5 ?),8.5 GPa時氫原子與相鄰層氧原子最近距離由3.040 ?變化為2.686 ?,表明氫鍵接觸數(shù)量并沒有增加。但隨著壓力進(jìn)一步增大,c軸方向氫鍵作用數(shù)可能會增多。由圖3可見0~8.5 GPa加壓過程中苯環(huán)二面角C(1)—C(2)—C(3)—C(4)由3°變?yōu)?.7°,表明壓力將會引起碳原子垂直苯環(huán)平面的扭轉(zhuǎn)(即折疊)。另外,加壓過程中氧二面角O(1)—N(2)—C(2)—C(1)由0.4°變?yōu)?.9°,而氫原子二面角H(6)—C(5)—N(5)—C(6)變化較小,由0.7°變化為1.5°,表明壓力引起氧原子平面外扭轉(zhuǎn)。在2 GPa附近二面角出現(xiàn)拐點,拐點出現(xiàn)原因有待進(jìn)一步探索。以上計算結(jié)果表明,TATB在加壓過程中出現(xiàn)了兩處微結(jié)構(gòu)變化,使TATB分子相互彎曲靠近。
3.2.1 零壓TATB晶體振動性質(zhì)
TATB晶體中含有48個原子,根據(jù)群論相關(guān)知識[34],共有144種振動模,其中72種拉曼振動模和72種紅外振動模,由于紅外光譜[7]能觀察到的振動峰較少,而拉曼實驗可以給出TATB晶體大部分振動峰[35],且低頻段普遍存在晶格振動與分子振動耦合現(xiàn)象,因此對振動頻率高于250 cm-1的拉曼振動模式進(jìn)行了分配,振動模式指認(rèn)結(jié)果見附表(附表可查閱本刊網(wǎng)站)。表2列出了與Liu等[15]分配結(jié)果出現(xiàn)差異的振動模式以及下文高壓振動性質(zhì)研究中重點關(guān)注的振動模。分析表2發(fā)現(xiàn),Q39和Q42處Liu等[15]對TATB分子指認(rèn)結(jié)果分別為C—NO2伸縮振動與NO2擺動(表2中未列出),但對TATB晶體分配結(jié)果為NO2擺動和C—NO2伸縮振動(見表2),振動形式完全相反,而本文指認(rèn)結(jié)果與Liu等[15]對Q39和Q42處TATB分子振動指認(rèn)結(jié)果一致。Q50處振動模式除Liu等[15]觀察到的NH2擺動以外,還出現(xiàn)了NO2擺動,因此振動情況更加復(fù)雜。Q65處振動模式與Liu等[15]結(jié)果完全不同,指認(rèn)結(jié)果為苯環(huán)扭動。Q70處與Liu等[15]振動分配出現(xiàn)區(qū)別,為苯環(huán)面外變形振動,而隨著振動頻率進(jìn)一步增加,Q72和Q74處苯環(huán)面外變形振動變?nèi)?,而NH2面外彎曲振動加強(qiáng)并逐漸變?yōu)橹饕駝有问剑擞嬎憬Y(jié)果與Liu等[15]不同,但與Sui等[10]紅外實驗對730 cm-1處振動分配結(jié)果相符(Q72)。Sui等[10]實驗觀察到783 cm-1附近振動主要為NO2剪切振動,Liu等[15]結(jié)果為NO2扭曲振動,而本文結(jié)果為NH2平面外彎曲振動和NO2剪切振動(Q80,Q81和Q84),與Sui等[10]實驗結(jié)果符合更好。1120 cm-1處(Q100)Sui等[10]人紅外實驗結(jié)果表明為C—NO2伸縮振動,本文指認(rèn)結(jié)果為C—NO2伸縮振動,與Sui等[10]人實驗結(jié)果相符,而Liu等[15]指認(rèn)結(jié)果為NH2和NO2振動。另外,TATB晶體內(nèi)振動耦合情況明顯,如Q88,Q89,Q91,Q94,Q95指認(rèn)結(jié)果表明,Q88和Q89在NH2擺動和NO2剪切振動基礎(chǔ)上,可能還含有C—NO2伸縮,而隨著振動頻率增加,在Q91、Q94和Q95中出現(xiàn)了明顯的C—NO2伸縮振動,而苯環(huán)伸縮振動也逐漸變得明顯,逐漸變得復(fù)雜的振動耦合使振動模分配結(jié)果與Liu等[15]以及Sui等[10]實驗對振動模式分配結(jié)果出現(xiàn)差異。如1030 cm-1處(Q94),本文分配結(jié)果為NH2擺動、NO2剪切振動以及C—NO2伸縮振動,可能還含有苯環(huán)伸縮振動,Liu等[15]結(jié)果為NH2擺動和C—NO2伸縮振動,Sui等[10]和Town等[12]均為苯環(huán)伸縮振動。更加復(fù)雜的振動模式出現(xiàn)在1086~1300 cm-1之間,主要表現(xiàn)為苯環(huán)振動與NH2和NO2振動耦合,如Q105處振動同時包含苯環(huán)伸縮振動、NH2剪切振動、NH2擺動以及C—NO2伸縮振動, Q107處振動模式指認(rèn)結(jié)果為苯環(huán)伸縮,C—NO2伸縮振動,C—NH2伸縮振動與擺動,可能還含有NO2的反對稱伸縮振動,而這種復(fù)雜振動也可能是多種基頻模發(fā)生費米共振引起[10],隨著外界壓力增加,這種復(fù)雜的振動耦合很可能引起組分變化并導(dǎo)致振動峰劈裂與合并,并在加壓和減壓過程可能表現(xiàn)為不可逆變化。另外,3000~4000 cm-1振動頻率與實驗數(shù)據(jù)[35]相差較大(見附表),最大偏差達(dá)到157 cm-1,而Liu等[15]DFT-GGA計算結(jié)果在3000~4000 cm-1之間與實驗相比也出現(xiàn)了130 cm-1左右的偏差,這種偏差可能與DFT方法有關(guān)。
表2 TATB晶體部分拉曼活性模振動頻率及其分配
Table 2 Part of Raman active vibration frequencies and their assignment in TATB crystal
modevibrationfrequency/cm-1Liu,etal[15]thisworkQ30291ringtwistringtwistQ36362ringdefromationringdefromationQ39381NO2rockC—NO2stretchQ42384C—NO2stretchNO2rockQ50522NH2rockNH2rock+NO2rockQ65700C—NO2stetchringtwistQ70711C—NO2torsionringdistortionQ72729C—NO2torsionNH2wagQ74753ringdistortion+NH2wagNH2wagQ76758C—NH2torsionringdistortion+NH2wagQ78791NH2wagNH2wagQ80794NH2twistNH2twist+NO2scissorQ81797C—NH2stretchNH2twist+NO2scissorQ84805NH2twistNH2twist+NO2scissorQ86817NH2twistNH2twistQ88849NH2rock+NO2scissorNH2rock+NO2scissor+C—NO2stretchQ89852NH2rock+NO2scissorNH2rock+NO2scissor+C—NO2stretchQ911000NH2rock+C—NO2stretchNH2rock+C—NO2stretch+NO2scissorQ941003NH2rock+C—NO2stretchNH2rock+C—NO2stretch+NO2scissorQ951087C—NO2stretchNH2rock+C—NO2stretch+NO2scissorQ1001120ringstretch+C—NH2stretchringstretch+C—NH2stretch+NH2scissorQ1071164ringstretchringstretch+C—NO2stretch+NH2rock+C—NH2stretch
3.2.2 加壓TATB晶體振動性質(zhì)
由于高壓拉曼實驗僅給出100~900 cm-1振動頻率隨壓力變化結(jié)果,又因為1000~2000 cm-1振動形式比較復(fù)雜,本文分析了290~900 cm-1加壓過程振動耦合情況,為了便于比較,使拉曼實驗[9]觀察到的振動頻率數(shù)目與理論計算結(jié)果數(shù)量一致,結(jié)果如圖4。對比發(fā)現(xiàn),250~900 cm-1頻段理論計算振動頻率與實驗數(shù)據(jù)符合較好。為了探究壓力對TATB晶體振動頻率的影響,分析了Q30、Q36、Q50、Q65和Q81處振動模式同時對250~900 cm-1頻段其他振動頻率處振動模式進(jìn)行了指認(rèn),對0~8.5 GPa加壓過程振動模式分析發(fā)現(xiàn),隨著壓力增加,除Q39,Q42,Q86,Q76和Q78以外,其余振動頻率處振動形式基本保持不變,加壓過程在290~900 cm-1之間并未發(fā)現(xiàn)振動頻率突變。對Q39和Q42振動模式分析發(fā)現(xiàn),加壓過程中在1.24 GPa時Q39由C—NO2伸縮振動變?yōu)镹O2擺動,在8.5 GPa時,Q39變?yōu)楸江h(huán)變形振動,Q42處振動模式在1.93 GPa由硝基擺動變?yōu)镃—NO2伸縮振動,之后隨著壓力增加,振動形式不變。需要注意的是,Q39和Q42處均出現(xiàn)了苯環(huán)振動,但這種振動可能由NH2伸縮振動或者NO2擺動引起,也可能在Q42處和Q39處苯環(huán)與其余振動耦合在一起。Q76處在零壓時為NH2面外擺動和面外彎曲振動與苯環(huán)面外扭曲振動,在1.42 GPa時苯環(huán)振動減弱,而在6.38 GPa時變?yōu)镹H2面外擺動和NH2面外彎曲振動,含有NO2剪切振動,但并不明顯,在8.5 GPa時NO2剪切振動變得明顯。Q78處(如圖5)在零壓時為NH2面外擺動,但在0.5 GPa時還出現(xiàn)了NH2面外彎曲振動和NO2剪切振動,但并不明顯,在1.24 GPa時NH2面外彎曲振動和NO2剪切振動變得明顯。Q86處振動模式變化比較明顯,在零壓時為NO2面外彎曲振動,在4.67 GPa時為NH2面外彎曲振動和NO2剪切振動耦合。分析以上振動模式變化情況發(fā)現(xiàn),隨著壓力增加,NH2面外彎曲振動或擺動與NO2剪切振動耦合,而對TATB分子結(jié)構(gòu)分析結(jié)果表明在加壓過程中相鄰層分子相互彎曲靠近,表明TATB這種微結(jié)構(gòu)變化導(dǎo)致了振動耦合,分子間氫鍵作用增強(qiáng)。
圖4 加壓過程中TATB晶體振動頻率的計算結(jié)果(紅色圓點)與實驗結(jié)果[9](藍(lán)色線)的對比
Fig.4 Comparison of the calculated values (the red dot) and the experimental ones[9](the blue line) for the vibrational frequencies under pressure process of TATB crystal
a. 0 GPa b. 8.5 GPa
圖5 TATB晶體0 GPa和8.5 GPa時791 cm-1處振動模指認(rèn)結(jié)果(圖中紅色代表氧原子,藍(lán)色代表氮原子,白色代表氫原子,黑色代表碳原子)
Fig.5 The identification results of the vibration mode of TATB crystal at 0 GPa and 8.5 GPa at 791 cm-1. The red ball in picture represents oxygen atom. The blue ball represents nitrogen atom. The white ball represents hydrogen atom. The black ball represents carbon atom
利用vdW-DF2研究了TATB晶體狀態(tài)方程以及振動性質(zhì),理論計算結(jié)果與實驗符合較好,表明vdW-DF2能夠較好地表征TATB晶體結(jié)構(gòu)與性質(zhì)。對狀態(tài)方程研究發(fā)現(xiàn),加壓過程中TATB出現(xiàn)了兩處微結(jié)構(gòu)變化,即苯環(huán)折疊與硝基扭轉(zhuǎn),隨著壓力增加兩者的變化程度增大,并在2GPa附近出現(xiàn)拐點。對TATB晶體部分分子內(nèi)振動模式進(jìn)行了重新分配,研究結(jié)果表明在1100~1500 cm-1波數(shù)之間TATB晶體振動尤其復(fù)雜,氨基與硝基和苯環(huán)振動耦合。結(jié)合理論擬合的TATB晶體狀態(tài)方程,研究了壓力為0~8.5 GPa,波數(shù)為290~900 cm-1,TATB晶體振動耦合情況以及分子間相互作用過程,研究發(fā)現(xiàn),隨著壓力增加,TATB相鄰層分子相互彎曲靠近,引起氨基平面外彎曲振動或擺動與硝基剪切振動耦合,表明分子間氫鍵作用增強(qiáng)。
參考文獻(xiàn):
[1] Cady H H, Larson A C. The crystal structure of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene[J].ActaCrystallographica, 1965, 18(3): 485-496.
[2] Phillips DS, Schwarz RB, Skidmore CB, et al. Some observations on the structure of TATB[C]∥Shock compression of condensed matter-1999. AIP Publishing, 2000: 707-710.
[3] Kolb J R, Rizzo H F. Growth of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) I. Anisotropic thermal expansion[J].Propellants,Explosives,Pyrotechnics, 1979, 4(1): 10-16.
[4] Stevens L L, Velisavljevic N, Hooks D E, et al. Hydrostatic compression curve for triamino-trinitrobenzene determined to 13.0 GPa with powder X-ray diffraction[J].Propellants,Explosives,Pyrotechnics, 2008, 33(4): 286-295.
[5] Manaa M R, Fried L E. Nearly equivalent inter- and intramolecular hydrogen bonding in 1,3,5-triamino-2,4,6-trinitrobenzene at high pressure[J].TheJournalofPhysicalChemistryC, 2011, 116(3): 2116-2122.
[7] Pravica M, Yulga B, Liu Z, et al. Infrared study of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure[J].PhysicalReviewB, 2007, 76(6): 64102.
[8] Pravica M, Yulga B, Tkachev S, et al. High-pressure far-and mid-infrared study of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene[J].TheJournalofPhysicalChemistryA, 2009, 113(32): 9133-9137.
[9] Davidson A J, Dias R P, Dattelbaum D M, et al. “stubborn” Triaminotrinitrobenzene: unusually high chemical stability of a molecular solid to 150 GPa[J].TheJournalofChemicalPhysics, 2011, 135(17): 174507.
[10] Sui H, Zhong F, Cheng K, et al. IR vibrational assignments for 1, 3, 5-triamine-2, 4, 6-trinitrobenzene (TATB) based on the temperature-dependent frequency shifts[J].SpectrochimicaActaPartA:MolecularandBiomolecularSpectroscopy, 2013, 114(10): 137-143.
[11] 劉紅,趙紀(jì)軍,龔自正,等. 原子與分子物理學(xué)報,2007, 24 (2), 291-297.
LIU Hong, ZHAO Ji-jun, GONG Zi-zheng, et al. Crystal structure of the TATB crystal under high pressure[J].JournalofAtomicandMolecualrPhysics, 2007, 24(2): 291-297.
[12] Towns TG. Vibrational spectrum of 1,3,5-triamino-2,4,6-trinitrobenzene[J].SpectrochimicaActaPartaMolecularSpectroscopy, 1983, 39(9): 801-804.
[13] Sorescu DC, Rice BM. Theoretical predictions of energetic molecular crystals at ambient and hydrostatic compression conditions using dispersion corrections to conventional density functionals (DFT-D)[J].TheJournalofPhysicalChemistryC, 2010, 114(14): 6734-6748.
[14] 劉紅. 含能材料的高壓行為和光譜學(xué)特性的原子模擬[D] . 四川: 西南交通大學(xué),2006.
[15] Liu H, Zhao J, Ji G, et al. Vibrational properties of molecule and crystal of TATB: a comparative density functional study[J].PhysicsLettersA, 2006, 358(1): 63-69.
[17] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J].JournalofComputationalChemistry, 2006, 27(15): 1787-1799.
[18] Lee K, Murray é D, Kong L, et al. Higher-accuracy van der waals density functional[J].PhysicalReviewB, 2010, 82(8): 81101.
[19] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J].TheJournalofChemicalPhysics, 2010, 132(15): 154104.
[20] Dion M, Rydberg H, Schr?der E, et al. Van der waals density functional for general geometries[J].PhysicalReviewLetters, 2004, 92(24): 246401.
[21] Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J].JournalofComputationalChemistry, 2011, 32(7): 1456-1465.
[22] Fedorov IA, Zhuravlev YN. Hydrostatic pressure effects on structural and electronic properties of TATB from first principles calculations[J].ChemicalPhysics, 2014, 436(7): 1-7.
[23] Shimojo F, Wu Z, Nakano A, et al. Density functional study of 1, 3, 5-trinitro-1, 3, 5-triazine molecular crystal with van der waals interactions[J].TheJournalofChemicalPhysics, 2010, 132(9): 94106.
[24] Berland K, Hyldgaard P. Analysis of van der waals density functional components: binding and corrugation of benzene and C 60 on boron nitride and graphene[J].PhysicalReviewB, 2013, 87(20): 205421.
[25] Dobson JF, Gould T. Calculation of dispersion energies[J].JPhys:CondensMatter, 2012, 24(7): 73201.
[26] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].PhysicalReviewB, 1996, 54(16): 11169.
[27] Baroni S, De gironcoli S, Dal corso A, et al. Phonons and related crystal properties from density-functional perturbation theory[J].ReviewsofModernPhysics, 2001, 73(2): 515.
[28] Vinet P, Ferrante J, Smith J, et al. A universal equation of state for solids[J].JournalofPhysicsC:SolidStatePhysics, 1986, 19(20): L467.
[29] Birch F. Finite elastic strain of cubic crystals[J].PhysicalReview, 1947, 71(11): 809.
[30] Olinger BW, Cady HH. Hydrostatic compression of explosives and detonation products to 10 GPa (100 Kbars) and their calculated shock compression: results for PETN, TATB, CO2, and H2O[R]. Los Alamos Scientific Lab., N. Mex.(USA), 1976.
[31] Budzevich M, Landerville A, Conroy M, et al. Hydrostatic and uniaxial compression studies of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene using density functional theory with van der waals correction[J].JournalofAppliedPhysics, 2010, 107(11): 113524.
[32] 金釗, 劉建, 王麗莉, 等. 物理化學(xué)學(xué)報,2014, 30 (4): 654-661.
JIN Zhao, LIU Jian, WANG Li-li, et al. Development and validation of an all-atom force field for the energetic materials TATB, RDX and HMX[J].ActaPhysico-chimicaSinica, 2014, 30(4): 654-661.
[33] Taylor DE. Intermolecular forces and molecular dynamics simulation of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using symmetry adapted perturbation theory[J].TheJournalofPhysicalChemistryA, 2013, 117(16): 3507-3520.
[34] 吳國禎. 分子振動光譜學(xué)[M]. 北京: 清華大學(xué)出版社,2001: 98-110.
[35] Mcgrane S, Shreve A. Temperature-dependent raman spectra of triaminotrinitrobenzene: anharmonic mode couplings in an energetic material[J].TheJournalofChemicalPhysics, 2003, 119(12): 5834-5841.