孫世能,王利卿,任玉平,楊波,秦高梧
(東北大學材料各向異性與織構教育部重點實驗室,沈陽110819)
?
熱處理工藝對低溫擠壓Zn-15Al鋅合金組織及性能的影響
孫世能,王利卿,任玉平,楊波,秦高梧
(東北大學材料各向異性與織構教育部重點實驗室,沈陽110819)
摘要:采用拉伸試驗和掃描電鏡分析技術手段,研究了不同冷卻速度對200℃擠壓Zn-15Al鋅合金的微觀組織和室溫力學性能的影響.結果表明:經320℃處理1 h后,變形態(tài)細小的α( Al)相發(fā)生了粗化.經水淬后α( Al)相發(fā)生了連續(xù)析出,形成了α( Al) +η( Zn)細小的粒狀組織,使其強度稍有提高,塑性明顯降低.而經空冷后α( Al)相發(fā)生了共析分解,形成了細片層狀組織,導致其強度提高約1倍,塑性下降約80%.這意味著能夠通過熱處理工藝來調整變形態(tài)Zn-15Al鋅合金的力學性能,以滿足不同應用領域的要求.
關鍵詞:Zn-15Al鋅合金;熱處理;微觀組織;力學性能
鋅鋁合金由于具有良好耐腐蝕性能和超塑性而得到廣泛研究[1~4].由于在鋅鋁合金中具有連續(xù)析出、不連續(xù)析出、不連續(xù)粗化等組織特征,從而使其力學性能在一定范圍內可以調控[5~7].Zn -22Al鋅合金作為典型的超塑性合金,唐巍,王經濤等人[8]研究了擠壓溫度對其組織性能的影響,結果表明在200℃擠壓時具有粒狀組織,其抗拉強度為125 MPa,延伸率為200%,而在350℃擠壓時獲得層片狀組織,其抗拉強度為300 MPa,延伸率為25%.另一方面,Zn-15Al鋅合金作為熱噴涂防護材料,張陽明等人[9]研究了280℃擠壓Zn-15Al鋅合金經300℃固溶10 h后爐冷到室溫,獲得了片層狀組織,其抗拉強度為260 MPa,延伸率為25%.而本文作者[10]對低溫擠壓Zn-15Al鋅合金組織性能進行了研究,獲得細小的粒狀組織,其抗拉強度為110 MPa,延伸率為170%,遠遠低于當前熱噴涂絲材的力學性能.為了進一步改善其組織性能,以滿足不同領域的要求,本文研究了200℃擠壓Zn-15Al鋅合金后不同冷卻方式對其強度和塑性的影響,為更好地理解Zn-15Al鋅合金組織和性能的關系提供參考.
本實驗合金原料為純鋅( 99.99 %)和純鋁( 99.99 %).采用石墨坩堝,在720℃完全熔化純Al后加入純Zn,待全部熔化后降至500℃保溫10 min,然后澆注到直徑為60 mm的圓柱形水冷鐵模中.鑄錠經350℃均勻化處理5 h后水淬.最終在200℃反向擠壓成12 mm棒材,擠壓比為16.試樣在320℃保溫1 h水淬或空冷至室溫.
不同狀態(tài)的Zn-15Al鋅合金微觀組織觀察樣品經200~2000#水磨砂紙機械研磨和拋光,最終在JSM-6510型掃描電子顯微鏡上進行組織觀察.將不同狀態(tài)的Zn-15Al鋅合金按照GB/T 228.1-2010標準的要求加工成標距為25 mm,標距處直徑為5 mm的拉伸試樣,在AG-X型萬能試驗機上進行室溫拉伸實驗,應變速率為10-3·s-1,并對其斷口形貌進行觀察.
2.1力學性能
圖1表明不同狀態(tài)Zn-15Al鋅合金的工程應力-應變曲線.200℃擠壓的Zn-15Al鋅合金抗拉強度相當于冷變形純Zn的抗拉強度,但室溫延伸率達到160%以上,具有明顯的室溫超塑性.經320℃保溫1 h水淬和空冷后Zn-15Al鋅合金的抗拉強度提高,延伸率降低,但其抗拉強度隨著冷卻速率的降低而顯著提高.相比于擠壓態(tài),水淬后的抗拉強度稍有提高即從110 MPa提高到132 MPa,而塑性由170%降低至78%.空冷后其抗拉強度顯著提高,塑性明顯下降,抗拉強度增加至220 MPa,塑性降低到38%.
2.2微觀組織
圖2是Zn-15Al鋅合金擠壓前后的背散射電子形貌.擠壓前Zn-15Al鋅合金組織存在兩種形貌,粗大的初晶富鋁α相在凝固過程中通過共析轉變產生的片層狀組織以及由粗大富鋅η相基體上分布α相組成的離異共晶體(圖2a).經200℃擠壓后粗大的初晶富鋁α相尺寸從20 μm下降到1 μm,而富鋅η相也發(fā)生細化(圖2b).這種組織的形成可能是其獲得低強高塑的主要原因.
圖1 不同狀態(tài)的Zn-15Al鋅合金工程應力應變曲線Fig.1 Engineering stress-strain curves of Zn-15Al alloy with different state
在320℃保溫1 h,經不同冷卻方式獲得的Zn-15Al鋅合金,其微觀組織如圖3所示.經320℃保溫1 h后,變形態(tài)細小的粒狀α相發(fā)生了聚集長大,從1 μm增加至10 μm,但其相尺寸小于擠壓前組織中的初晶α相,其粗大的富鋅η相發(fā)生了細化且其內部的彌散分布α相消失.這是其強度相對擠壓態(tài)合金提高的一個因素.同時由于熱處理后得到的熱力學不穩(wěn)定的或亞穩(wěn)定的過飽和固溶體,在水淬后中并沒有抑制α相分解,而發(fā)生了連續(xù)析出形成了以富Zn相為基體的彌散分布低Zn含量的粒狀α相.在空冷后α相發(fā)生共析分解形成片層的低Zn含量α相和富鋅η相組成的雙相組織.這種片層組織形貌的形成可能是Zn-15Al鋅合金產生高強低塑的主要原因.
圖3 熱處理后不同冷卻速率的Zn-15Al鋅合金微觀組織Fig.3 Scanning electron microstructure of heattreated with different cooling rate Zn-15Al alloys( a)—水淬; ( b)—空冷
圖4為Zn-15Al鋅合金的斷口形貌;斷口具有明顯的韌窩,表現出韌性斷裂特征.而擠壓后經過320℃保溫1 h后合金韌窩較200℃擠壓態(tài)粗大得多并且隨著冷卻速度的降低,合金韌窩的直徑逐漸變大.因此,擠壓態(tài)合金塑性最好,320℃保溫1 h后經較慢速度冷卻的合金塑性最差.這可能是在320℃保溫1 h的過程中造成大量的微裂紋迅速傳播所致.
( 1)變形態(tài)Zn-15Al鋅合金經320℃保溫1 h后,其α( Al)相尺寸由1 μm增加到10 μm.
( 2)長大的α( Al)相經水淬后發(fā)生了連續(xù)析出,形成了細小的粒狀雙相組織,使得其強度從110 MPa提高到132 MPa,塑性從170%降低到78%.
( 3)α( Al)相經空冷后發(fā)生了共析分解,形成了α( Al) +η( Zn)細片層狀組織,導致其強度從110 MPa提高到220 MPa,塑性從170%下降到38%.
圖4 不同狀態(tài)Zn-15Al鋅合金的拉伸斷口Fig.4 Fracture morphology of Zn-15Al alloy( a)—擠壓態(tài); ( b)—水淬; ( c)—空冷
參考文獻:
[1]Kawasaki M,Ahn B,Langdon T G.Microstructural evolution in a two-phase alloy processed by high-pressure torsion[J].Acta Materialia,2010,58 ( 3) : 919-930.
[2]Demirtas M,Purcek G,Yanar H,et al.Improvement of high strain rate and room temperature superplasticity in Zn-22Al alloy by two-step equal-channel angular pressing[J].Materials Science and Engineering A,2015,620 ( 3) : 233 -240.
[3]Tanaka T,Kohzu M,Takigawa Y,et al.Low cycle fatigue behavior of Zn-22mass% Al alloy exhibiting high-strainrate superplasticity at room temperature[J].Scripta Materialia,2005,52 ( 3) : 231-236.
[4]Jun J H,Seong K D,Kim J M,et al.Strain-induced microstructural evolution and work softening behavior of Zn-15% Al alloy[J].Journal of Alloys and Compounds,2007,434-435: 311-314.
[5]Massalski T B.Binary alloy diagrams[M].Second Edition.OH 44073,USA: ASTM International,1990.240.
[6]Rastegari H,Kermanpur A,Najafizadeh A,et al.Warm deformation processing maps for the plain eutectoid steels[J].Journal of Alloys and Compounds,2015,626: 136-144.
[7]Zheng Chengsi,Li Longfei,Yang Wangyue,et al.Microstructure evolution and mechanical properties of eutectoid steel with ultrafine or fine ( ferrite + cementite) structure[J].Materials Science and Engineering A,2014,599: 16-24.
[8]唐巍.Zn-22 wt.% Al合金在雷管延期體中的可行性應用研究[D].南京:南京理工大學,2012.( Tang Wei.Feasibility study about Zn-22 wt.% Al eutectoid alloy used as delay detonator body[D].Nanjing: Nanjing University of Science and Technology,2012.)
[9]Zhang Yangming,Yang Lijing,Zeng Xuduo,et al.The mechanism of anneal-h(huán)ardening phenomenon in extruded Zn -Al alloys[J].Materials and Design,2013,50: 223-229.
[10]孫世能,王利卿,任玉平,等.擠壓比對低溫擠壓ZA15鋅合金組織和力學性能的影響[J].東北大學學報(自然科學版) (已接受) ( Sun Shineng,Wang Liqing,Ren Yuping,et al.Effect of extrusion ratio on microstructure and mechanical property of ZA15 Zn alloy extruded at lower temperature[J].Journal of Northeastern University ( Natural Science),( accepted).)
Effects of heat treatment on microstructure and mechanical property of extruded Zn-15Al Zn alloy at lower extrusion temperature
Sun Shineng,Wang Liqing,Ren Yuping,Yang Bo,Qin Gaowu
( Key Laboratory for Anisotropy and Texture of Materials ( Ministry of Education),Northeastern University,Shenyang 110819,China)
Abstract:The influences of cooling rates during heat treatment on the microstructure and mechanical properties of the extruded Zn-15Al Zn-alloy at 200℃have been investigated by tensile test and scanning electron microscopy.The results show that the fine α( Al) phase of extruded Zn-15Al Zn-alloy at 200℃occurred coarsening by heated treatment at 320℃for 1 h.The tensile strength of extruded Zn-15Al Zn-alloy increased slightly,while the elongation of extruded Zn-15Al Zn-alloy decreased significantly after water quenching,because the α( Al) phase is transformed into α( Al) +η( Zn) fine granular structure though continuous precipitation.After air cooling,the tensile strengthen were increased by about 1 times and the elongation decreased by about 80%,Owing to the α( Al) phase formed a fine lamellar structure decomposition by eutectoid transformation.It is implied that the different mechanical properties can be obtained in the extrusion Zn-15Al Zn alloy manufactured by heat treatment,and the mechanical properties can be satisfied the requirements of different applications.
Key words:Zn-15Al Zn alloy; heat treatment; microstructure; mechanical property
通訊作者:秦高梧( 1970—),男,教授,博士生導師,E-mail: qingw@ smm.neu.edu.cn.
作者簡介:孫世能( 1987—),男,博士研究生,E-mail: 83290252@163.com.
基金項目:國家自然科學基金資助項目( 51171043,51371046),教育部新世紀優(yōu)秀人才( NECT-12-0109),東北大學基本科研業(yè)務費資助項目( N130610002).東北大學優(yōu)秀博士學位論文培育項目A類.
收稿日期:2015-11-23.
doi:10.14186/j.cnki.1671-6620.2016.01.011
中圖分類號:TG 146.13
文獻標識碼:A
文章編號:1671-6620( 2016) 01-0058-03