• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      冬季水分管理和水稻覆膜栽培對(duì)川中丘陵地區(qū)冬水田CH4排放的影響

      2016-05-10 02:33:14呂世華董瑜皎土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室中國科學(xué)院南京土壤研究所南京0008四川省農(nóng)業(yè)科學(xué)院土壤肥料研究所成都600663江蘇農(nóng)藥檢定所南京0036
      生態(tài)學(xué)報(bào) 2016年4期

      張 怡,呂世華,馬 靜,徐 華,*,袁 江,董瑜皎土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室,中國科學(xué)院南京土壤研究所,南京 0008四川省農(nóng)業(yè)科學(xué)院土壤肥料研究所,成都 600663江蘇農(nóng)藥檢定所,南京 0036

      ?

      冬季水分管理和水稻覆膜栽培對(duì)川中丘陵地區(qū)冬水田CH4排放的影響

      張怡1,3,呂世華2,馬靜1,徐華1,*,袁江2,董瑜皎2
      1土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點(diǎn)實(shí)驗(yàn)室,中國科學(xué)院南京土壤研究所,南京210008
      2四川省農(nóng)業(yè)科學(xué)院土壤肥料研究所,成都610066
      3江蘇農(nóng)藥檢定所,南京210036

      摘要:采用靜態(tài)箱-氣相色譜法觀測冬季水分管理和水稻覆膜栽培對(duì)川中丘陵地區(qū)冬水田全年的CH4排放通量。試驗(yàn)設(shè)置持續(xù)淹水(CF)、冬季直接落干+稻季淹水(TF)與冬季覆膜落干+稻季覆膜(PM)3個(gè)處理。結(jié)果表明,冬季休閑期,CF、TF和PM處理CH4排放分別為16.1、1.4 g/m2和2.7 g/m2;水稻生長期,CF、TF和PM處理CH4排放分別為57.7、27.7 g/m2和13.5 g/m2。相較于CF處理,TF與PM處理分別減少其全年CH4排放60.6%和78.0%。TF與PM處理水稻生長期CH4排放峰值分別較CF處理低33.0%和56.1%。休閑期,TF、PM處理廂面與廂溝區(qū)域CH4排放與土壤溫度顯著正相關(guān)(P<0.05),與土壤氧化還原電位(土壤Eh)顯著負(fù)相關(guān)(P<0.05),而CF處理CH4排放僅與土壤溫度顯著正相關(guān)(P<0.05)。水稻生長期,CF處理CH4排放與土壤溫度顯著正相關(guān)(P<0.05),與土壤Eh顯著負(fù)相關(guān)(P<0.05),TF處理CH4排放僅與土壤Eh顯著負(fù)相關(guān)(P<0.05),PM處理廂溝CH4排放與土壤Eh顯著正相關(guān)(P<0.05)。各處理水稻生長期土壤可溶性有機(jī)碳含量(DOC)與微生物生物量碳含量(MBC)顯著高于休閑期(P<0.05)。研究結(jié)果為進(jìn)一步研究冬水田全年CH4排放規(guī)律及尋求有效的減排措施提供數(shù)據(jù)支撐和科學(xué)依據(jù)。

      關(guān)鍵詞:冬水田(常年淹水的稻田);水分管理;覆膜栽培;CH4排放

      張怡,呂世華,馬靜,徐華,袁江,董瑜皎.冬季水分管理和水稻覆膜栽培對(duì)川中丘陵地區(qū)冬水田CH4排放的影響.生態(tài)學(xué)報(bào),2016,36(4): 1095-1103.

      Zhang Y,Lü S H,Ma J,Xu H,Yuan J,Dong Y J.Effects of water management in winter and of plastic film mulching during rice cultivation on CH4emission from paddy field in a hilly region of Central Sichuan.Acta Ecologica Sinica,2016,36(4):1095-1103.

      CH4是重要的溫室氣體,對(duì)溫室效應(yīng)的貢獻(xiàn)達(dá)15%[1]。100a時(shí)間尺度上,單位質(zhì)量CH4的增溫潛勢是CO2的28倍[2]。大氣中CH4濃度已由工業(yè)革命前的約715 nL/L增至1803 nL/L[2]。稻田是大氣CH4的重要排放源,其年排放量為23 Tg[3]。我國稻田每年向大氣排放約6.9 Tg CH4,占全球稻田CH4總排放的6%—22%[4]。正確評(píng)估并設(shè)法減少稻田CH4排放量對(duì)我國溫室氣體減排有重要意義。

      冬水田是我國CH4排放量最大的一類稻田[5],其面積僅占我國稻田總面積的12%,但CH4排放卻占我國稻田CH4排放的45%[6]。由于常年淹水,冬水田土壤維持在厭氧狀態(tài),其在全年均有相當(dāng)數(shù)量的CH4排放[7]。Cai等[7]研究發(fā)現(xiàn),冬水田非水稻生長期CH4排放總量與水稻生長期相近。江長勝等[8]對(duì)川中丘陵地區(qū)冬水田觀測發(fā)現(xiàn),非水稻生長期CH4排放量占全年排放總量的23%。非水稻生長期持續(xù)淹水還大大增加后續(xù)稻季CH4排放量。研究表明[9-10],持續(xù)淹水較排水落干增加后續(xù)水稻生長期CH4排放20%—380%。由此,冬水田擁有較大的CH4減排潛力。非水稻生長季節(jié)進(jìn)行排水落干是冬水田CH4減排的有力的措施[11]。據(jù)估算[12],若將冬水田排水落干1次,則中國可減少15.6%的CH4排放。但在非水稻生長季節(jié)對(duì)全部的冬水田全部排干是不現(xiàn)實(shí)的。有很大一部分冬水田在很大程度上依賴降雨灌溉,如果在非水稻生長期排水落干,萬一遇到春季降水不足,就有可能無法耕作和種植水稻。水稻覆膜栽培是以地膜覆蓋為核心,以節(jié)水抗旱為主要目的的新型栽培方式。它可以顯著節(jié)約水稻生產(chǎn)用水,其全生育期用水量僅為傳統(tǒng)栽培的70%[13]。因此,若采用水稻覆膜栽培,即可在非水稻生長期對(duì)冬水田進(jìn)行排水落干。目前,水稻覆膜栽培技術(shù)結(jié)合非水稻生長季節(jié)水分管理對(duì)冬水田全年CH4排放的影響迄今未見報(bào)道。

      本研究通過田間原位試驗(yàn),研究非水稻生長期水分管理與水稻覆膜栽培對(duì)川中丘陵地區(qū)冬水田全年CH4的排放通量的影響,為進(jìn)一步研究稻田CH4排放規(guī)律及尋求有效的減排措施提供數(shù)據(jù)支撐和科學(xué)依據(jù)。

      1 材料與方法

      1.1試驗(yàn)設(shè)計(jì)

      田間試驗(yàn)于2012—2013年在四川省資陽市雁江區(qū)雁江鎮(zhèn)響水村(104°34'E,30°05'N)進(jìn)行。該地區(qū)平均氣溫16.8℃,平均年降水量965.8 mm。試驗(yàn)土壤為侏羅紀(jì)遂寧組母質(zhì)發(fā)育紅棕紫泥,土壤全碳含量為34.0 g/kg,全N含量為1.7 g/kg,土壤pH值為8.2。

      試驗(yàn)共設(shè)3個(gè)處理(表1),4次重復(fù),試驗(yàn)小區(qū)面積為20 m2(4 m×5 m),隨機(jī)區(qū)組設(shè)計(jì)。2012年水稻收獲后,小區(qū)內(nèi)稻茬全部移除,PM處理廂面薄膜并不立刻揭去,而是在來年翻耕泡田之前(4月20日)揭除。PM處理試驗(yàn)小區(qū)設(shè)4條廂溝,3條廂面。各廂溝長4 m、寬12.5 cm、深15 cm;各廂面長4 m、寬1.5 m。3處理冬季休閑,稻季供試水稻品種為川香8108,于4月7日育秧,5月10日移栽,9月10日收獲。水稻均采用三角稀植,即行窩距為40 cm×40 cm,每窩以三角形方式栽3苗,苗間距12 cm,移栽密度為18穴/m2。所有處理均施用600 kg/hm2的過磷酸鈣、90 kg/hm2的氯化鉀和15 kg/hm2的一水合硫酸鋅,作為基肥一次性施入。PM處理5月9日基肥施用后在廂面上均勻覆蓋0.004 mm薄膜并平鋪壓實(shí)。

      表1 試驗(yàn)處理描述Table1 Designing of the experiment

      1.2樣品采集

      CH4樣品用靜態(tài)箱采集。為準(zhǔn)確定量PM處理CH4排放,在試驗(yàn)小區(qū)內(nèi)放置2種不同規(guī)格的靜態(tài)箱,分別用于測定廂面與廂溝區(qū)域CH4排放,箱A放置于廂面正上方,包括中段箱和頂箱2部分,高分別為60 cm和70 cm,底面積均為40 cm×40 cm,中段箱頂部設(shè)有密封用水槽,用于水稻生長后期加層。箱B放置于廂溝上方,高為70 cm,底面積為40 cm×10 cm。CF與TF處理的靜態(tài)箱規(guī)格與PM處理箱A一致。非水稻生長期每隔7d采樣1次,水稻生長期每隔4—7 d采樣1次,采樣時(shí)間為8:00—12:00。采樣時(shí)將靜態(tài)箱罩在事先埋入田里的不銹鋼底座上(40 cm×40 cm×15 cm)。靜態(tài)箱密封后用兩通針將氣體導(dǎo)入18 mL預(yù)先抽真空的玻璃瓶中,每15 min采樣1次,共采樣4次。采集氣樣的同時(shí),采用氧化還原電位儀測定10 cm處土壤Eh、直尺測定水層厚度、溫度計(jì)測定箱內(nèi)氣溫及5 cm處土溫(廂溝區(qū)域并未觀測5cm處土溫)。

      分別于非水稻生長季(2012年10月26日、2013年1月11日、3月22日)與水稻生長季6月11日(分蘗期)、7月7日(孕穗期)、7月27日(灌漿期)、8月22日(成熟期)按五點(diǎn)采樣法采集表層0—10 cm土樣(PM處理僅采集廂面區(qū)域),土樣采集后置于4℃冰箱冷凍保存,在1周內(nèi)完成測定。新鮮土樣中的可溶性有機(jī)碳(DOC)用0.5 mol/L K2SO4提取,土水比1∶4,過0.45 μm濾膜,濾液用總有機(jī)碳分析儀(TOC儀)測定;采用氯仿熏蒸-K2SO4提取方法測定土樣中微生物生物量碳(MBC)。用0.5 mol/L K2SO4分別提取熏蒸前后提取新鮮土樣中總有機(jī)碳,土水比1∶4,采用總有機(jī)碳分析儀(TOC儀)測定。以熏蒸土壤與不熏蒸土樣提取的總有機(jī)碳的差值乘以轉(zhuǎn)換系數(shù)Kc(2.63),計(jì)算土壤MBC。水稻收獲時(shí),按試驗(yàn)小區(qū)分別收割、脫粒、晾曬、適當(dāng)篩除秕粒后稱量,計(jì)算水稻產(chǎn)量。

      1.3樣品分析

      樣品CH4濃度用帶FID檢測器的氣相色譜(島津GC-12A)測定,柱溫80℃,檢測器溫度200℃。氮?dú)鉃檩d氣,流速40 mL/min;氫氣為燃?xì)猓魉?5 mL/min;空氣為助燃?xì)?,流?50 mL/min。CH4標(biāo)準(zhǔn)氣體由中國計(jì)量科學(xué)研究院提供。

      1.4計(jì)算方法

      根據(jù)CH4濃度與時(shí)間關(guān)系曲線分別計(jì)算CH4排放通量。CH4排放通量計(jì)算公式如下[11]:

      式中,F(xiàn)為CH4的排放通量(mg m-2h-1);ρ為標(biāo)準(zhǔn)狀態(tài)下CH4密度(0.714 kg/m3);V為采樣箱內(nèi)有效體積(m3);A為采樣箱所覆蓋的土壤面積(m2);dc/dt為單位時(shí)間內(nèi)采樣箱內(nèi)CH4濃度變化(μL L-1h-1);T為采樣箱內(nèi)溫度(K)。

      對(duì)于PM處理,通過箱B測得的氣體排放通量(FB)為廂溝氣體排放通量,通過箱A測得的氣體排放通量(FA)為廂面氣體排放通量,PM處理的氣體排放通量為廂面及廂溝的氣體排放通量與對(duì)應(yīng)區(qū)域面積的加權(quán)平均,即:

      式中,SA、SB和S分別為試驗(yàn)小區(qū)內(nèi)廂面區(qū)域、廂溝區(qū)域和小區(qū)面積。

      CH4排放通量用4個(gè)重復(fù)的每次觀測平均值及標(biāo)準(zhǔn)偏差表示。CH4的季節(jié)平均排放通量是將每次觀測值按時(shí)間間隔加權(quán)平均后再取4個(gè)重復(fù)的平均值。處理間比較以4個(gè)重復(fù)的平均值進(jìn)行方差分析及多重比較。

      2 結(jié)果與分析

      2.1不同管理方式下CH4排放特征

      如表2所示,休閑期TF、PM處理廂面與廂溝區(qū)域CH4排放與土壤溫度顯著正相關(guān)(P<0.05),與土壤Eh顯著負(fù)相關(guān),而CF處理CH4排放僅與土壤溫度顯著正相關(guān)(P<0.05),與土壤Eh無顯著相關(guān)性(P>0.05)。水稻生長期,CF、TF處理CH4排放與土壤Eh顯著負(fù)相關(guān)(P<0.05),而PM處理廂溝CH4排放與土壤Eh顯著正相關(guān)(P<0.05)。這可能是由于CF與TF處理存在有效的CH4傳輸途徑(水稻植株),其土壤Eh越低,土壤中生成的CH4越多并可有效排入大氣;而PM處理廂溝區(qū)域有水層阻礙且無有效的CH4傳輸途徑,僅在烤田期水層消失時(shí)(土壤Eh上升),其閉蓄態(tài)的CH4才得以排放。

      表2 土壤Eh和土壤溫度與CH4排放通量的相關(guān)性分析Table2 Relationships of CH4fluxes with soil Eh and soil temperature

      2.2冬季水分管理方式及覆膜栽培對(duì)冬水田CH4排放的影響

      表3顯示各處理休閑期與水稻生長期CH4平均排放用量與排放總量。稻田CH4排放主要集中在水稻生長期內(nèi),CF、TF及PM處理水稻生長期CH4排放量分別占全觀測期內(nèi)CH4排放量的78.2%、95.2%和83.3%,雖然休閑期CF處理CH4排放僅占全觀測期內(nèi)CH4排放量的21.8%,但其排放量已與PM處理全觀測期CH4排放量相當(dāng)。休閑期排水落干可顯著降低稻田CH4排放量,降幅達(dá)83.2%—91.3%(P<0.05)。冬季直接落干可減少后續(xù)稻季CH4排放52.0%,而覆膜栽培可減少水稻生長期CH4排放77.6%。全觀測期內(nèi),冬季直接落干與覆膜栽培分別減少60.6%和78.0%的CH4排放。

      表3 各處理CH4平均排放通量、排放總量及水稻產(chǎn)量Table3 Average flux and cumulative emission of CH4and rice yield in different treatments

      2.3冬季水分管理方式及覆膜栽培對(duì)水稻產(chǎn)量的影響

      表3顯示各處理水稻產(chǎn)量。2013年水稻生長期,CF、TF與PM處理水稻產(chǎn)量分別為8.5、8.5、8.3 t/hm2,三者無顯著性差異(P>0.05)。本試驗(yàn)中,PM處理產(chǎn)量略低于CF處理,這是由于考察常年淹水稻田CH4排放的試驗(yàn)需要,保證了CF與TF處理的水分灌溉。在四川地區(qū)的實(shí)際水稻生產(chǎn)中,有70%的冬水田屬于望天田[14](雨育水田,無灌溉工程設(shè)施,主要依靠天然降雨種植水稻),其產(chǎn)量受干旱影響較大。呂世華等[13]通過5a田間試驗(yàn)研究證明,在干旱嚴(yán)重的情況下,覆膜栽培可以保證水稻高產(chǎn)穩(wěn)產(chǎn)。本試驗(yàn)僅進(jìn)行了1a大田試驗(yàn),水稻覆膜栽培對(duì)水稻產(chǎn)量的影響仍需進(jìn)一步研究。

      2.4觀測期內(nèi)土壤可溶性碳(DOC)及微生物生物量碳(MBC)含量的變化

      表4顯示各處理休閑期與水稻生長期土壤可溶性碳(DOC)及微生物生物量碳(MBC)含量。同一處理,由于土壤溫度及根際分泌物的影響,其水稻生長期土壤DOC及MBC含量均明顯高于休閑期。各處理休閑期DOC含量在59.8—95.5 mg/kg之間,休閑期內(nèi)無明顯變化。水稻生長期內(nèi),CF、TF與PM處理DOC含量隨水稻生長變化明顯,呈現(xiàn)先增加后降低的趨勢。全觀測期內(nèi),CF處理土壤DOC含量均高于PM處理(增幅為10.0%—29.8%)。TF處理在休閑期土壤DOC含量低于PM處理(降幅為4.6%—19.2%),而在水稻生長期較PM處理較高(增幅為6.2%—21.4%)。

      表4 觀測期內(nèi)土壤DOC與MBC含量變化Table4 Variation of soil DOC and MBC during the observation period

      休閑期內(nèi),各處理土壤MBC含量在72.0—201.1 mg/kg。水稻生長期內(nèi),各處理土壤MBC含量在水稻拔節(jié)期達(dá)到最高值(413.0—523.9 mg/kg)。全觀測期內(nèi),PM處理的MBC含量均高于CF及TF處理(增幅為14.4%—28.5%)。在休閑期及水稻生長期內(nèi),并未觀測到各處理CH4排放與其土壤DOC及MBC含量顯著相關(guān)性關(guān)系(P>0.05)。

      3 討論

      3.1水分管理對(duì)休閑期稻田CH4排放的影響

      休閑期TF處理及PM處理廂溝與廂面區(qū)域CH4排放顯著低于CF處理。與持續(xù)淹水相比,排水落干及地膜覆蓋可抑制CH4產(chǎn)生,增加CH4氧化。CH4是產(chǎn)甲烷菌在嚴(yán)格厭氧環(huán)境下作用于產(chǎn)甲烷基質(zhì)的產(chǎn)物[11]。CF處理土壤Eh在較低的適宜CH4產(chǎn)生的范圍內(nèi)變動(dòng)(圖1),土壤DOC含量呈增加趨勢(表4),保證了產(chǎn)甲烷底物的供給[15],其CH4排放更主要的受土壤溫度的控制[16-17]。當(dāng)土壤溫度低于10℃時(shí),CF處理CH4排放不明顯(圖1),研究表明[18-19],低溫降低產(chǎn)甲烷菌活性,同時(shí)減少由溫度主導(dǎo)的氣泡迸裂的CH4傳輸。而當(dāng)土壤溫度一旦適宜產(chǎn)甲烷菌活性時(shí),便有大量的CH4排放(圖1)。對(duì)于TF與PM處理,土壤Eh是其CH4排放主要限制因素。兩處理休閑期排水落干,土壤Eh較高(圖1),影響產(chǎn)甲烷菌活性,不適于土壤CH4產(chǎn)生。同時(shí),較之于淹水,排水落干降低土壤DOC含量,產(chǎn)甲烷底物降低[20-21]。此外,TF與PM處理無水層阻礙,土壤通氣性增加,土壤中一些還原性物質(zhì)被轉(zhuǎn)化為氧化態(tài)。Inubushi等[22]研究發(fā)現(xiàn)稻田土壤MBC含量與土壤CH4氧化能力顯著正相關(guān),本研究中PM處理土壤MBC含量均高于CF處理,PM處理土壤氧化CH4能力得以增強(qiáng)。

      3.2休閑期水分管理對(duì)后續(xù)稻季稻田CH4排放的影響

      各處理水稻移栽初期CH4排放差異較大(圖1)。CF處理水稻移栽后立即就觀測到CH4的排放,而TF與PM處理廂面及廂溝區(qū)域在水稻移栽一段時(shí)間后才觀測到CH4排放,且CH4排放通量上升緩慢。這與休閑期水分管理密切相關(guān)。Xu等[23]研究指出,冬季土壤水分含量越低,其水稻生長期CH4產(chǎn)生率越低。Kang等[9]采用DNDC模型得出,水稻生長期稻田CH4排放與休閑期土壤水分含量呈明顯正相關(guān)。休閑期排水落干提高土壤氧化能力(Eh),在限制CH4產(chǎn)生的同時(shí)減少土壤中產(chǎn)甲烷菌數(shù)量[11],且其產(chǎn)甲烷菌數(shù)量與活性需要經(jīng)過相當(dāng)長時(shí)間的厭氧培養(yǎng)才能得以恢復(fù)[24]。

      整個(gè)水稻生長期,休閑期落干處理較淹水處理減少CH4排放52.0%。這與前人研究結(jié)果[9,23]一致。Cai等[7]通過6a田間試驗(yàn)研究得出,休閑期排水落干可減少后續(xù)稻季CH4排放33%—48%。Xu等[25]研究發(fā)現(xiàn),休閑期排水落干減緩水稻生長期CH4排放,減少水稻生長期CH4排放天數(shù)。從而進(jìn)一步減少水稻生長期CH4排放。

      3.3覆膜栽培對(duì)水稻生長期稻田CH4排放的影響

      相較于CF處理,PM處理CH4排放減少77.6%,其中,廂面及廂溝區(qū)域分別減少70%和99%。若單考慮廂面區(qū)域CH4排放,會(huì)導(dǎo)致過高的估計(jì)PM處理CH4排放量。

      對(duì)于PM處理廂面區(qū)域而言,廂溝水位保持在廂面下3—12 cm(烤田期除外),這樣使廂面區(qū)域處于水分不飽和狀態(tài),廂面區(qū)域土壤Eh總體高于-200 mV(圖1),同時(shí)由于土壤水分含量較低,廂面土壤DOC含量明顯低于CF處理,在一定程度上抑制廂面區(qū)域土壤CH4產(chǎn)生量[26-27]。此外,廂面區(qū)域無水層,其土壤通氣性明顯好于淹水土壤,研究表明[28],地膜覆蓋有利于O2向根際的輸送,PM處理土壤MBC含量均高于CF處理可能意味著PM處理中好氧微生物生物量的增加,從而促進(jìn)CH4在土壤中的氧化[22]。薄膜也會(huì)直接阻隔土壤與大氣的氣體交換,延遲并減少CH4排放[29]。對(duì)于PM處理廂溝區(qū)域而言,雖然非烤田期其土壤Eh較低,但廂溝區(qū)域并未種植水稻,而水稻的根際分泌物是重要的產(chǎn)甲烷基質(zhì)且其通氣組織是最主要的CH4傳輸途徑,廂溝區(qū)域產(chǎn)甲烷底物有限且不能有效傳輸厭氧環(huán)境下產(chǎn)生的CH4,所以廂溝區(qū)域CH4排放不明顯。

      覆膜高產(chǎn)技術(shù)目前在四川省內(nèi)推廣面積達(dá)70000 hm2[13],以本實(shí)驗(yàn)觀測所得的CH4排放通量進(jìn)行初步估算,該技術(shù)可減少全年CH4排放40.3 Gg。而四川省冬水田總面積約350000 hm2[14],若水稻覆膜節(jié)水高產(chǎn)技術(shù)可在四川省冬水田全部應(yīng)用,則可減少約0.2 Tg的四川省冬水田全年CH4排放。同時(shí),考察減排措施對(duì)土壤性狀及水稻產(chǎn)量的影響也是評(píng)估減排措施的一項(xiàng)重要指標(biāo)。盡管卜玉山等[30]與Li等[31]的研究指出覆膜的增溫保濕作用加速土壤有機(jī)質(zhì)礦化,長期耕種可能會(huì)導(dǎo)致地力衰竭,但Fan等[32]的研究也表明,長期覆膜對(duì)土壤肥力無明顯影響。本研究表明,水稻覆膜節(jié)水高產(chǎn)技術(shù)對(duì)水稻產(chǎn)量無明顯影響,此外,隨著全球氣候變化異常,我國春旱日益嚴(yán)重,呂世華等[13]通過5a的田間試驗(yàn)表明,水稻覆膜節(jié)水高產(chǎn)技術(shù)可有效解決因干旱造成的糧食減產(chǎn)問題。綜合來看,對(duì)于常年淹水稻田而言,覆膜栽培是值得推薦的CH4減排技術(shù)。

      參考文獻(xiàn)(References):

      [1]Hansen J E,Lacis A A.Sun and dust versus greenhouse gases:An assessment of their relative roles in global climate change.Nature,1990,346 (6286):713-719.

      [2]Ciais P,Sabine C,Bala G,Bopp L,Brovkin V,Canadell J,Chhabra A,DeFries R,Galloway J,Heimann M,Jones C,Quéré C L,Myneni R B,Piao S,Thornton P.Carbon and other biogeochemical cycles//Stocker T F,Qin D,Plattner G K,Tignor M,Allen S K,Boschung J,Nauels A,Xia Y,Bex V,Midgley P M,eds.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.United Kingdom and New York,NY,USA,Cambridge:Cambridge University Press,2013.

      [3]Hagen S C,Li C,Salas W,Ingraham P,Li J,Beach R,F(xiàn)rolking S.Methane Emissions From Global Paddy Rice Agriculture-a New Estimate Based on DNDC Model Simulations.AGU Fall Meeting Abstracts,2012,1:0147.

      [4]Zhang W,Yu Y Q,Huang Y,Li T T,Wang P.Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050.Global Change Biology,2011,17(12):3511-3523.

      [5]李香蘭,徐華,李小平,蔡祖聰.水分管理影響稻田甲烷排放研究進(jìn)展.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(2):221-227.

      [6]蔡祖聰.中國稻田甲烷排放研究進(jìn)展.土壤,1999,(5):266-269.

      [7]Cai Z C,Tsuruta H,Gao M,Xu H,Wei C F.Options for mitigating methane emission from a permanently flooded rice field.Global Change Biology,2003,9(1):37-45.

      [8]江長勝,王躍思,鄭循華,朱波,黃耀.耕作制度對(duì)川中丘陵區(qū)冬灌田CH4和N2O排放的影響.環(huán)境科學(xué),2006,27(2):207-213.

      [9]Kang G D,Cai Z C,F(xiàn)eng X Z.Importance of water regime during the non-rice growing period in winter in regional variation of CH4emissions from rice fields during following rice growing period in China.Nutrient Cycling in Agroecosystems,2002,64(1/2):95-100.

      [10]徐華,蔡祖聰,李小平.冬作季節(jié)土壤水分狀況對(duì)稻田CH4排放的影響.農(nóng)村生態(tài)環(huán)境,1999,15(4):20-23.

      [11]蔡祖聰,徐華,馬靜.稻田生態(tài)系統(tǒng)CH4和N2O排放.合肥:中國科學(xué)技術(shù)大學(xué)出版社,2009:348-349.

      [12]Yan X Y,Akiyama H,Yagi K,Akimoto H.Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines.Global Biogeochemical Cycles,2009,23(2):20-23,DOI:10.1029/2008GB003299.

      [13]呂世華,曾祥忠,任光俊,張福鎖.水稻覆膜節(jié)水綜合高產(chǎn)技術(shù).四川農(nóng)業(yè)科技,2009,(2):23-24.

      [14]陳桂權(quán).四川冬水田的歷史變遷.古今農(nóng)業(yè),2014,(1):1-16.

      [15]Lu Y H,Wassmann R,Neue H U,Huang C Y.Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil.Soil Science Society of America Journal,2000,64(6):2011-2017.

      [16]Wassmann R,Neue H U,Bueno C,Lantin R S,Alberto M,Buendia L V,Bronson K,Papen B H,Rennenberg H.Methane production capacities of different rice soils derived from inherent and exogenous substrates.Plant and Soil,1998,203(2):227-237.

      [17]Tokida T,Adachi M,Cheng W G,Nakajima Y,F(xiàn)umoto T,Matsushima M,Nakamura H,Okada M,Sameshima R,Hasegawa T.Methane and soil CO2production from current-season photosynthates in a rice paddy exposed to elevated CO2concentration and soil temperature.Global Change Biology,2011,17(11):3327-3337.

      [18]Tokida T,Cheng W G,Adachi M,Matsunami T,Nakamura H,Okada M,Hasegawa T.The contribution of entrapped gas bubbles to the soil methane pool and their role in methane emission from rice paddy soil in free-air[CO2]enrichment and soil warming experiments.Plant and Soil,2013,364(1/2):131-143.

      [19]Schütz H,Seiler W,Conrad R.Influence of soil temperature on methane emission from rice paddy fields.Biogeochemistry,1990,11(2):77-95.

      [20]Zhan M,Cao C G,Wang J P,Jiang Y,Cai M L,Yue L X,Shahrear A.Dynamics of methane emission,active soil organic carbon and theirrelationships in wetland integrated rice-duck systems in Southern China.Nutrient Cycling in Agroecosystems,2011,89(1):1-13.

      [21]Naser H M,Nagata O,Tamura S,Hatano R.Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido,Japan.Soil Science and Plant Nutrition,2007,53(1):95-101.

      [22]Inubushi K,Cheng W,Mizuno T,Lou Y,Hasegawa T,Sakai H,Kobayashi K.Microbial biomass carbon and methane oxidation influenced by rice cultivars and elevated CO2in a Japanese paddy soil.European Journal of Soil Science,2011,62(1):69-73.

      [23]Xu H,Cai Z C,Tsuruta H.Soil moisture between rice-growing seasons affects methane emission,production,and oxidation.Soil Science Society of America Journal,2003,67(4):1147-1157.

      [24]Xu H,Cai Z C,Jia Z J,Tsuruta H.Effect of land management in winter crop season on CH4emission during the following flooded and rice-growing period.//Wassmann R,Lantin R S,Neue H U,eds.Methane Emissions from Major Rice Ecosystems in Asia.Netherlands:Springer,2001:327-332.

      [25]Xu H,Cai Z C,Jia Z J.Effect of soil water contents in the non-rice growth season on CH4emission during the following rice-growing period.Nutrient Cycling in Agroecosystems,2002,64(1/2):101-110.

      [26]Trolldenier G.Methanogenesis during rice growth as related to the water regime between crop seasons.Biology and Fertility of Soils,1995,19(1): 84-86.

      [27]Kalbitz K,Solinger S,Park J H,Michalzik B,Matzner E.Controls on the dynamics of dissolved organic matter in soils:a review.Soil Science,2000,165(4):277-304.

      [28]李永山,吳良?xì)g,路興花,趙利梅,范巧蘭.丘陵山區(qū)覆膜旱作稻田土壤硝態(tài)氮和銨態(tài)氮?jiǎng)討B(tài)變化規(guī)律探討.科技通報(bào),2007,23(2): 207-210.

      [29]陶麗佳,王鳳新,顧小小.覆膜滴灌對(duì)溫室氣體產(chǎn)生及排放的影響研究進(jìn)展.中國農(nóng)學(xué)通報(bào),2013,29(3):17-23.

      [30]卜玉山,苗果園,周乃健,邵海林,王建程.地膜和秸稈覆蓋土壤肥力效應(yīng)分析與比較.中國農(nóng)業(yè)科學(xué),2006,39(5):1069-1075.

      [31]Li Y S,Wu L H,Zhao L M,Lu X H,F(xiàn)an Q L,Zhang F S.Influence of continuous plastic film mulching on yield,water use efficiency and soil properties of rice fields under non-flooding condition.Soil and Tillage Research,2007,93(2):370-378.

      [32]Fan M S,Lu S H,Jiang R F,Six J,Zhang F S.Long-term non-flooded mulching cultivation influences rice productivity and soil organic carbon.Soil Use and Management,2012,28(4):544-550.

      Effects of water management in winter and of plastic film mulching during rice cultivation on CH4emission from paddy field in a hilly region of Central Sichuan

      ZHANG Yi1,3,LüShihua2,MA Jing1,XU Hua1,*,YUAN Jiang2,DONG Yujiao2
      1 State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China
      2 Institute of Soil Fertilizer,Sichuan Agriculture Sciences Academy,Chengdu 610066,China
      3 Jiangsu Institute for the Control of Agrochemicals,Nanjing 210036,China

      Abstract:Methane(CH4)is one of the most important greenhouse gases and plays an important role in atmospheric chemistry.Rice fields have been identified as an important source of atmospheric CH4.Because permanently flooded paddy fields create the most favorable situation for CH4production and emit CH4all year round,they are thought to contribute the greatest amounts of CH4.Draining the permanently flooded paddy fields in the fallow season is supposed to be a good option for mitigating CH4emission.However,those paddy fields distributed in the hilly area of southwest China face the problem of water shortage.This means that transplanting rice in the following year would be hindered,if the fields were drained in thebook=1096,ebook=208previous fallow season.In recent years,a new technology involving improved plastic film mulching for rice cultivation has been developed.It is an alternative to permanently flooded rice cultivation technology,which promises to save water,and in addition,would allow drainage in the fallow season without impeding the next rice transplanting session.The effects of water management in winter and of plastic film mulching during rice cultivation on CH4emission throughout the year were explored using winter paddy fields in the hilly region of Central Sichuan.A field experiment was carried out using the static chambergas chromatograph method to monitor CH4emissions in the paddy fields.Three treatments were designed:Treatment CF (continuous flooding all year round),Treatment TF(drained in winter and flooded during the rice growing season),and Treatment PM(drained and mulched in winter and mulched during the rice growing season).The results showed that methane emission for Treatments CF,TF,and PM was 16.1 g/m2,1.4 g/m2,and 2.7 g/m2,respectively,during the winter fallow season and 57.7 g/m2,27.7 g/m2,and 13.5 g/m2,respectively,during the rice-growing season.Compared with Treatment CF,Treatments TF and PM reduced the annual CH4emission by 60.6%and 78.0%,respectively,and lowered the CH4flux peak during the rice-growing season by 33.0%and 56.1%,respectively.During the fallow season,in Treatments TF and PM,CH4emission from ridge and ditch areas was significantly correlated with soil temperature(P<0.05),but negatively with soil redox potential(soil Eh)(P<0.05).However,CH4emission was positively correlated with soil temperature in Treatment CF(P<0.05).During the rice-growing season,in Treatment CF,CH4emission was significantly and positively related to soil temperature(P<0.05),and negatively to soil Eh(P<0.05).In Treatment TF,CH4emission was only negatively related to soil Eh(P<0.05),and in Treatment PM,CH4emission from the ditches was significantly and positively related to soil Eh(P<0.05).The soil dissolved organic carbon(DOC)and soil microbial biomass carbon(MBC)contents were much higher during the rice-growing season than during the fallow season(P<0.05).The findings may provide important data and a scientific basis for further study of the process of CH4emission from permanently flooded paddy fields throughout a year and to explore effective mitigation options for CH4emission in more detail.

      Key Words:winter flooded paddies;winter water management;plastic film mulching cultivation;CH4emission

      *通訊作者

      Corresponding author.E-mail:hxu@issas.ac.cn

      收稿日期:2014-05-30;網(wǎng)絡(luò)出版日期:2015-07-09

      基金項(xiàng)目:國家自然科學(xué)基金(41271259);科技部國際科技合作項(xiàng)目(2012DFG90290);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201103039);中國香港特別行政區(qū)嘉道理農(nóng)場暨植物園資助

      DOI:10.5846/stxb201405301111

      阳谷县| 额尔古纳市| 阳东县| 航空| 泰和县| 同江市| 高要市| 新巴尔虎左旗| 苍溪县| 辛集市| 赤峰市| 南开区| 天镇县| 定州市| 宣汉县| 古田县| 贡山| 灵石县| 民勤县| 辛集市| 台北县| 精河县| 曲阳县| 苏尼特右旗| 新兴县| 金昌市| 绵竹市| 衡南县| 濉溪县| 顺平县| 林甸县| 竹北市| 汽车| 天长市| 榕江县| 颍上县| 长寿区| 稷山县| 永靖县| 丰都县| 侯马市|