徐敏麗 白莉雅 王建英 崔緒奎 張果平
摘 要:開展綿羊多羔性狀主效基因的研究,對于揭示綿羊高繁殖力的分子機制和利用分子標記輔助選擇迅速提高綿羊的繁殖性能有重要意義。GDF9屬于TGFβ超家族成員,它主要由卵母細胞分泌,對卵泡的生長和分化、卵母細胞的減數分裂、成熟和胚胎的發(fā)育起重要的調節(jié)作用。因此,可以將GDF9基因作為綿羊繁殖性狀的候選基因來研究。本文就GDF9基因、蛋白結構及其表達、生物學作用以及對綿羊繁殖力的影響等方面的研究進行總結回顧,并對其應用前景進行展望。
關鍵詞:綿羊;多羔;GDF9
中圖分類號:S826:Q754文獻標識號:A文章編號:1001-4942(2016)05-0148-06
Abstract To reveal the molecular mechanism of high sheep fecundity and improve sheep reproduction performance by marker-assisted selection, it is necessary to carry out the researches on major genes affecting sheep fecundity. As a member of TGFβ super family, GDF9 is secreted by oocyte, and plays an important role in the growth and differentiation of follicle, meiosis and maturation of oocyte, as well as embryo development. Thus GDF9 gene is considered as the candidate gene of sheep fecundity. The researches on gene structure, protein structure, expression, biological function and effects on sheep fecundity of GDF9 were summarized in this article, then its application prospect was anticipated.
Key words Sheep; Fecundity; GDF9
綿羊的繁殖性狀與經濟效益密切相關,繁殖力的高低直接影響生產成本。綿羊產羔數性狀遺傳力很低,只有0.1左右,如果僅靠簡單的雜交育種和自然選擇,每個世代僅可提高約2%的產羔數,效率很低。另外羔羊生長速度與窩產仔數有關,加上幾乎所有動物的繁殖性狀與生長速度呈負相關關系,因而影響應用常規(guī)育種方法進行選擇的效果和可操作性。分子標記輔助選擇(Marker-assisted selection, MAS)能夠通過影響選擇時間、選擇強度以及準確性而極大地提高這類低遺傳力性狀的選擇功效,而找到影響產羔數的主效基因或與其連鎖的分子遺傳標記是實現分子標記輔助選擇的先決條件。開展綿羊多羔性狀主效基因的研究,不僅可以從遺傳上闡明綿羊高繁殖力的分子機制,為通過分子標記輔助選擇全面提高綿羊的繁殖性能提供可能,而且可以通過基因聚合、轉基因等手段為多胎綿羊品種培育提供遺傳材料,這對我國乃至全世界養(yǎng)羊業(yè)將具有十分重要的理論意義。
生長分化因子9(Growth differentiation factor 9, GDF9)基因是公認的綿羊多羔性狀主效基因之一,它的研究工作對于揭示綿羊繁殖機理和利用分子標記輔助選擇提高羊群的繁殖性能和生產效益有著重要意義。GDF9屬于轉化生長因子β (Transforming growth factor beta,TGFβ) 超家族成員,它是由卵母細胞分泌的一種生長因子,通過旁分泌方式對卵泡的生長和分化起重要調節(jié)作用[1]。GDF9基因表達水平和多態(tài)性與綿羊的繁殖力密切相關。本文就GDF9基因、蛋白結構及其表達、作用通路、生理功能、基因表達水平和多態(tài)性對綿羊繁殖力的影響等方面的研究進行總結回顧,并對其應用前景進行展望。
1 GDF9基因、蛋白結構及表達
綿羊GDF9基因位于5號染色體上,CDS全長約2.5 kb,可編碼453個氨基酸。外顯子1長397 bp,外顯子2長965 bp,兩個外顯子由長1 125 bp的內含子分隔開。不同物種間GDF9基因結構非常相似,均含有2個外顯子和1個內含子,其同源性也較高,綿羊與人、小鼠的GDF9氨基酸序列一致性分別為77%和66%[2],這為研究不同物種GDF9基因提供了有利條件。
GDF9主要在卵巢的卵母細胞中表達,其在人類和各種動物體內表達的時間與定位有所不同,可能與物種間差異有關,如綿羊、牛、負鼠、倉鼠GDF9表達始于原始卵泡階段,而小鼠、大鼠和人GDF9表達始于初級卵泡階段[3]。除原始卵泡階段,GDF9的表達貫穿于綿羊卵泡發(fā)育的始終,直至排卵后仍有表達,其表達時間和方式與其參與卵泡形成的啟動和維持功能是吻合的[2],除卵母細胞外,GDF9在哺乳動物卵巢[4]、睪丸[5~7]、垂體、子宮和骨髓[4]中亦有表達。
GDF9蛋白結構不同于大多數TGFβ超家族生長因子,它的羧基末端(C-末端)只有6個半胱氨酸(Cys),而不是TGFβ超家族保守的7或9個Cys,其中位于C-末端參與成熟蛋白二硫鍵形成的Cys被絲氨酸(Ser)替換,這表明GDF9單體可能是由非共價健連接形成的二聚體[8]。
2 GDF9的作用通路及生理功能
和TGFβ超家族其它成員一樣,GDF9也能通過與單次跨膜的絲/蘇氨酸激酶活性受體Ⅰ(Activin receptor-like kinase 5, ALK5) 、受體Ⅱ(BMP type Ⅱ receptor , BMPRⅡ)結合激活經典的Smad2/3信號通路來實施生物學應答。此外,GDF9還能以不依賴Smads的方式參與細胞功能的調節(jié)[9]。
在卵泡發(fā)育過程中,除了下丘腦-垂體-性腺軸間的內分泌調節(jié)外,GDF9在調節(jié)卵泡的生長分化[10,11]、促進顆粒細胞增殖、抑制顆粒細胞[12,13]和卵泡膜細胞[14]分化、誘導卵丘擴展[15]、影響卵巢類固醇激素[13,16,17]、蛋白酶和細胞因子[15]的合成、維持穩(wěn)定的發(fā)育卵泡內微環(huán)境中起著不可或缺的作用。敲除GDF9的小鼠由于卵泡生成的初級卵泡階段受阻從而導致雌性不育[16],在大鼠體內給予GDF9能促進原始卵泡和初級卵泡發(fā)育成小竇卵泡[10]。
GDF9還參與綿羊卵母細胞的減數分裂、成熟和胚胎發(fā)育的調控。研究發(fā)現,GDF9基因轉錄從母羊妊娠后56天開始出現,94天達最高水平,后逐漸降低。而56~75天胎齡時,卵原細胞開始進入第一次減數分裂前期的細線期或偶線期,成為初級卵母細胞[18]。在綿羊卵母細胞的發(fā)育過程中,GDF9最高表達量出現在GV期卵母細胞,在隨后的MⅡ期卵母細胞、2細胞期、4細胞期、8細胞期、16細胞期、桑椹胚中表達量逐步下降,囊胚中檢測不到其表達[19]。
卵泡的發(fā)育和卵母細胞的逐步成熟是同步的。GDF9可通過調節(jié)卵泡的發(fā)育、卵丘擴張中關鍵酶的活性和顆粒細胞形態(tài)、數量、排列的變化影響卵母細胞的生長發(fā)育和成熟[15]。GDF9缺失可使卵泡中顆粒細胞Kit配體和抑制素-α的表達上調,間接影響小鼠卵母細胞的生長和成熟[14]。添加GDF9能夠提高牛[17]和豬[20]的卵母細胞成熟率。
此外,GDF9還能提高綿羊[21]、牛[17]、豬[20]和小鼠[22]等的胚胎質量和發(fā)育能力。重組的人GDF9能夠提高牛的卵母細胞成熟率、卵裂率和克隆胚胎的囊胚形成率[17]。在豬卵母細胞體外成熟培養(yǎng)過程中,添加GDF9能顯著提高其囊胚形成率[20]。在促卵泡素(Follicle- stimulating hormone,FSH)和表皮生長因子(Epidermal growth factor,EGF)存在下,外源的GDF9能顯著提高小鼠卵母細胞的囊胚形成率和內細胞團(Inner cell mass,ICM)細胞數量,15天的成活胚胎數亦有所提高[22]。
GDF9基因與FSH、骨形態(tài)形成蛋白(Bone morphogenetic protein, BMP15)等激素或生長因子在動物卵泡發(fā)育中起著協(xié)同效應。在未分化的顆粒細胞中,GDF9可降低FSH的生物學效應,調節(jié)顆粒細胞的生長,抑制顆粒細胞過早黃素化[12]。GDF9通過一種內在的前列腺素E2配基受體信號途徑來改變排卵前被FSH/LH激活的顆粒細胞的分化狀態(tài),促進顆粒細胞合成孕酮[23]。GDF9和BMP15發(fā)揮的功能因物種而異,它們一起發(fā)揮的作用與獨自所起的作用不盡相同[24]。Sugiura等[25]認為BMP15對GDF9發(fā)揮作用起放大效應。
除卵母細胞外,GDF9在其它性腺組織和非性腺組織中的表達暗示其可能具有更廣泛的生物學效應。隨著研究的不斷深入,更多GDF9的新功能將被揭示出來,這將為我們合理有效地利用它服務于生產提供很大的便利。
3 GDF9基因對綿羊繁殖力的影響
3.1 GDF9基因表達水平對綿羊繁殖力的影響
綿羊的排卵率對GDF9的劑量變化很敏感[26]。Crawford 等[27]認為裸卵(Denuded oocytes, DO)中GDF9與BMP15基因表達水平的比值可能可以解釋物種間繁殖率的差異。研究發(fā)現,高產的湖羊群體中竇狀卵泡的GDF9基因表達量顯著高于低產的湖羊群體[28],至于何種因子引起GDF9表達變化進而影響湖羊的繁殖力尚不清楚。
3.2 GDF9基因多態(tài)性對綿羊繁殖力的影響
對綿羊GDF9基因多態(tài)性的研究較多,已檢測到的突變有15個(表1),有8個突變位點影響一些綿羊品種的排卵率或產羔數,其中有3個突變位點(Fec GH、Fec TT、Fec GV)的突變雜合子排卵率高于野生型,而突變純合子是不育的。這可能是通過影響GDF9成熟蛋白的形成[29]、GDF9形成二聚體的能力[30]以及GDF9與ALK5[31,32]、BMPRⅡ[33]的結合來實現的。
在有的綿羊品種中,GDF9多態(tài)性與其它多羔性狀基因多態(tài)性同時存在,已發(fā)現Belclare/Cambridge、Lacaune、小尾寒羊和Garole四個綿羊品種都同時存在多羔性狀基因BMPRIB 和GDF9的多態(tài)性[34]。
4 GDF9基因在綿羊業(yè)上的應用前景
4.1 超排藥物的替代品
為充分發(fā)揮優(yōu)良母羊的繁殖潛力,畜牧生產上常進行超數排卵處理。對促性腺激素不依賴階段的卵泡進行超排是影響超排效果好壞的關鍵。隨著對GDF9和BMP15作用機理的認識和體外重組技術的成熟,可從臨床上對兩個發(fā)育階段的卵泡進行人為干預,減少促性腺激素的用量,使促排卵方案更加合理[50]。
4.2 在綿羊育種中的應用和注意事項
對影響綿羊繁殖力的GDF9基因突變進行分子標記輔助選擇,或人為導入GDF9突變均可提高綿羊排卵率和產羔數。但由于有不少BMP15或GDF9突變純合子是不育的,所以在利用這些突變時需要對育種計劃進行仔細設計[51]。
在利用雜合子優(yōu)勢積累高產基因型提高母羊繁殖力時,對群體的突變基因頻率需加以適度控制,突變基因的平衡效率在0.11和0.23之間是已報道的最高的多態(tài)性[52]。
在養(yǎng)羊生產上,利用雜合子優(yōu)勢進行留種時,為防止遺傳漂變,群體不要過小,否則會改變等位基因頻率,引起近交衰退[53]。
多胎性狀具有加性效應,不同多胎主效基因間互作可有增強效應。利用基因聚合育種手段同時將多個多羔性狀主效基因集中在一個品種上,其生產水平就越高,對于人類社會的貢獻就越大。所以在利用GDF9提高綿羊繁殖能力時,可考慮同時利用或導入其它多羔性狀主效基因。
雜合子優(yōu)勢的發(fā)揮還依賴于環(huán)境條件,在惡劣的環(huán)境條件下,這種優(yōu)勢體現不出來。所以在養(yǎng)羊生產中,為充分發(fā)揮其優(yōu)勢,需進行良好的飼養(yǎng)管理。另外雜合子的選擇系數與生產水平有關,在集約化生產中雜合子的選擇系數為0.068,而在惡劣條件下,野生型選擇系數為0.008左右[52]。
4.3 未來研究方向
多羔主效基因的發(fā)現為人們研究畜禽的遺傳育種工作提供了新的思路,引起了國內外科研工作者的研究熱情,綿羊GDF9基因的研究工作取得了不少進展。外源性生長因子的應用和高產GDF9基因型的定向誘導,可人為干預綿羊的繁殖力,對畜牧業(yè)的增產大有裨益,但是還有很多機制尚需進一步闡明。如GDF9通過Ser/Thr激酶受體激活Smad2/3信號通路來調控靶基因的表達,但是什么信號調控GDF9的表達尚不明確;不同綿羊品種高繁殖力性狀與GDF9基因的不同突變密切相關,這些突變是否引起蛋白空間構象變化,它們是否以及如何影響蛋白質的翻譯后修飾過程尚不明了;以及GDF9與BMP15如何發(fā)揮協(xié)同作用產生加性效應的尚不可知。今后應針對這些問題展開進一步的研究。
參 考 文 獻:
[1] Kaivo-Oja N, Bondestam J, Kmrinen M, et al. Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells [J]. J. Clin. Endocrinol. Metab., 2003, 88(2): 755-762.
[2] Bodensteiner K J, Clay C M, Moeller C L, et al. Molecular cloning of the ovine Growth/Differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries [J]. Biol. Reprod., 1999, 60(2): 381-386.
[3] Juengel J L, McNatty K P. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development [J]. Hum. Reprod. Update, 2005, 11(2): 143-160.
[4] Fitzpatrick S L, Sindoni D M, Shughrue P J, et al. Expression of growth differentiation factor-9 messenger ribonucleic acid in ovarian and nonovarian rodent and human tissues [J]. Endocrinology, 1998, 139(5): 2571-2578.
[5] Pennetier S, Uzbekova S, Perreau C, et al. Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15,and VASA in adult bovine tissues, oocytes, and preimplantation embryos [J]. Biol. Reprod., 2004, 71(4): 1359-1366.
[6] Guo Q Y, Gao Z Z, Zhao L, et al. Expression of growth differentiation factor 9 (GDF9), ALK5, and claudin-11 in adult alpaca testis [J]. Acta Histochem., 2013, 115(1): 16-21.
[7] Zhao L, He J, Guo Q, et al. Expression of growth differentiation factor 9 (GDF9) and its receptor in adult cat testis [J]. Acta Histochem., 2011, 113(8): 771-776.
[8] 高麗霞. 小尾寒羊TGF-β1和GDF9基因多態(tài)性及其與繁殖力關系的研究 [D]. 北京:中國農業(yè)科學院, 2007.
[9] Reader K L, Mottershead D G, Martin G A, et al. Signalling pathways involved in the synergistic effects of human growth differentiation factor 9 and bone morphogenetic protein 15[J]. Reprod. Fertil. Dev., 2014, 28(4): RD14099.
[10]Vitt U A, McGee E A, Hayashi M, et al. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats[J]. Endocrinology, 2000, 141(10): 3814-3820.
[11]Hreinsson J G, Scott J E, Rasmussen C, et al. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture[J]. J. Clin. Endocrinol. Metab., 2002, 87(1): 316-321.
[12]Vitt U A, Hayashi M, Klein C, et al. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles[J]. Biol. Reprod., 2000, 62(2): 370-377.
[13]Yamamoto N, Christenson L K, McAllister J M, et al. Growth differentiation factor-9 inhibits 3′5′-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells[J]. J. Clin. Endocrinol. Metab., 2002, 87(6): 2849-2856.
[14]Elvin J A, Yan C, Wang P, et al. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary[J]. Mol. Endocrinol., 1999, 13(6): 1018-1034.
[15]Elvin J A, Clark A T, Wang P, et al. Paracrine actions of growth differentiation factor-9 in the mammalian ovary[J]. Mol. Endocrinol., 1999, 13(6): 1035-1048.
[16]Dong J, Albertini D F, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis[J]. Nature, 1996, 383(6600): 531-535.
[17]Su J, Hu G, Wang Y, et al. Recombinant human growth differentiation factor-9 improves oocyte reprogramming competence and subsequent development of bovine cloned embryos[J]. Cell Reprogram., 2014, 16(4): 281-289.
[18]Mandon-Pepin B, Oustry-Vaiman A, Vigier B, et al. Expression profiles and chromosomal localization of genes controlling meiosis and follicular development in the sheep ovary[J]. Biol. Reprod., 2003, 68(3): 985-995.
[19]Bebbere D, Bogliolo L, Ariu F, et al. Expression pattern of zygote arrest 1 (ZAR1), maternal antigen that embryo requires (MATER), growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) genes in ovine oocytes and in vitro-produced preimplantation embryos[J]. Reprod. Fertil. Dev., 2008, 20(8): 908-915.
[20]彭中友, 孫俊銘, 李燕, 等. GDF9和FST調控豬卵母細胞成熟和胚胎早期發(fā)育[J]. 江蘇農業(yè)學報, 2015, 31(3): 583-589.
[21]Varnosfaderani Sh R, Ostadhosseini S, Hajian M, et al. Importance of the GDF9 signaling pathway on cumulus cell expansion and oocyte competency in sheep[J]. Theriogenology, 2013, 80(5): 470-478.
[22]Yeo C X, Gilchrist R B, Thompson J G, et al. Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice[J]. Hum. Reprod., 2008, 23(1): 67-73.
[23]Elvin J A, Yan C, Matzuk M M. Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway[J]. Proc. Natl. Acad. Sci. U. S. A., 2000, 97(18): 10288-10293.
[24]McNatty K P, Lawrence S, Groome N P, et al. Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants[J]. Reprod. Fertil. Dev., 2006, 18(4): 403-412.
[25]Sugiura K, Su Y Q, Li Q, et al. Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15[J]. Mol. Endocrinol., 2010, 24(12): 2303-2314.
[26]McNatty K P, Juengel J L, Wilson T, et al. Oocyte-derived growth factors and ovulation rate in sheep[J]. Reprod. Suppl., 2003, 61: 339-351.
[27]Crawford J L, McNatty K P. The ratio of growth differentiation factor 9: bone morphogenetic protein 15 mRNA expression is tightly co-regulated and differs between species over a wide range of ovulation rates[J]. Mol. Cell. Endocrinol., 2012, 348(1): 339-343.
[28]Xu Y, Li E, Han Y, et al. Differential expression of mRNAs encoding BMP/Smad pathway molecules in antral follicles of high- and low-fecundity Hu sheep[J]. Anim. Reprod. Sci., 2010, 120(1-4): 47-55.
[29]Souza C J, McNeilly A S, Benavides M V, et al. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes[J]. Anim. Genet., 2014, 45(5): 732-739.
[30]Hanrahan J P, Gregan S M, Mulsant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries)[J]. Biol. Reprod., 2004, 70(4): 900-909.
[31]McNatty K P, Moore L G, Hudson N L, et al. The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology[J]. Reproduction, 2004, 128(4): 379-386.
[32]Kirsch T, Sebald W, Dreyer M K. Crystal structure of the BMP2-BRIA ectodomain complex [J]. Nature Structural Biol., 2000, 7(6): 492-496.
[33]Juengel J L, Davis G H, McNatty K P. Using sheep lines with mutations in single genes to better understand ovarian function[J]. Reproduction, 2013, 146(4): R111-R123.
[34]Polley S, De S, Brahma B, et al. Polymorphism of BMPR1B, BMP15 and GDF9 fecundity genes in prolific Garole sheep[J]. Trop. Anim. Health Prod., 2010, 42(5): 985-993.
[35]朱愛文. 甘肅肉羊新品種群高繁殖力候選基因GnRHR、GDF9和BMP15多態(tài)性及其與繁殖力關系的研究[D]. 蘭州:甘肅農業(yè)大學, 2010.
[36]Javanmard A, Azadzadeh N, Esmailizadeh A K. Mutations in bone morphogenetic protein 15 and growth differentiation factor 9 genes are associated with increased litter size in fat-tailed sheep breeds[J]. Vet. Res. Commun., 2011, 35(3):157-167.
[37]Barzegari A, Atashpaz S, Ghabili K, et al. Polymorphisms in GDF9 and BMP15 associated with fertility and ovulation rate in Moghani and Ghezel sheep in Iran[J]. Reprod. Domest. Anim., 2010, 45(4): 666-669.[38]Abdoli R, Zamani P, Deljou A, et al. Association of BMPR-1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes[J]. Gene, 2013, 524(2): 296-303.
[39]Roy J, Polley S, De S, et al. Polymorphism of fecundity genes (FecB, FecX, and FecG) in the Indian Bonpala sheep[J]. Anim. Biotechnol., 2011, 22(3): 151-162.
[40]Zuo B, Qian H, Wang Z, et al. A study on BMPR-IB genes of Bayanbulak sheep[J]. Asian-Australas. J. Anim. Sci., 2013, 26(1): 36-42.
[41]暢靜桃. GDF9基因多態(tài)性及其與小尾寒羊多羔性關系的研究[D].蘭州:甘肅農業(yè)大學, 2008.
[42]楊晶. 小尾寒羊GDF9基因和BMP15基因多態(tài)性及其與高繁殖力關系的研究[D].北京:中國農業(yè)科學院, 2006.
[43]Chu M X, Yang J, Feng T, et al. GDF9 as a candidate gene for prolificacy of Small Tail Han sheep[J]. Mol. Biol. Rep., 2011, 38(8): 5199-5204.
[44]朱愛文, 馬友記, 陳國宏, 等. 甘肅肉羊新品種選育群GDF9基因外顯子2多態(tài)性及其與產羔性狀關聯分析[J]. 生物技術通報, 2011 (10): 179-184.
[45]Mullen M P, Hanrahan J P. Direct evidence on the contribution of a missense mutation in GDF9 to variation in ovulation rate of Finnsheep[J]. PLoS One, 2014, 9(4): e95251.
[46]Vage D I, Husdal M, Kent M P, et al. A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep[J]. BMC Genet., 2013, 14: 1.
[47]陶薩茹拉. 蒙古羊繁殖性狀候選基因BMP15、BMPR-IB和GDF9多態(tài)性研究[D].呼和浩特:內蒙古農業(yè)大學, 2009.
[48]Nicol L, Bishop S C, Pong-Wong R, et al. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep[J]. Reproduction, 2009, 138(6): 921-933.
[49]Silva B D, Castro E A, Souza C J, et al. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep[J]. Anim. Genet., 2011, 42(1): 89-92.
[50]張鵬, 石玉華, 陳子江. 生長分化因子-9及生長分化因子9B/骨形態(tài)發(fā)生蛋白-15與卵巢功能[J]. 生殖與避孕, 2007, 27(3): 204-208.
[51]Notter D R. Genetic aspects of reproduction in sheep[J]. Reprod. Domest. Anim., 2008, 43 (Suppl 2): 122-128.
[52]Gemmell N J, Slate J. Heterozygote advantage for fecundity[J]. PLoS One, 2006, 1(1): e125.
[53]Robertson A. Selection for heterozygotes in small populations[J]. Genetics,1962,47(9): 1291-1300.