雷利利,殷俊晨,宋金甌,羅 鵬,王 攀
(1.江蘇大學 汽車與交通工程學院,江蘇 鎮(zhèn)江 212013;2. 天津大學 內燃機燃燒學國家重點實驗室,天津300072)
Mn-Ce/γ-Al2O3催化劑對柴油機碳煙的催化燃燒性能影響
雷利利1,殷俊晨1,宋金甌2,羅 鵬1,王 攀1
(1.江蘇大學 汽車與交通工程學院,江蘇 鎮(zhèn)江 212013;2. 天津大學 內燃機燃燒學國家重點實驗室,天津300072)
為了驗證Mn-Ce/γ-Al2O3催化劑對碳煙的催化燃燒性能的影響,采用檸檬酸絡合法和溶膠-凝膠法制備了一系列不同錳、鈰摩爾比的xMnyCe/γ-Al2O3(x=4,6,8,10,y=10)催化劑,并利用X射線衍射儀、掃描電子顯微鏡、能譜儀和透射電子顯微鏡對其性能進行表征,結果表明,MnO2和CeO2的粒徑變化范圍為5~20 nm。Mn在催化劑中主要以MnO2出現,當x≥6時,有部分Mn2O3分散在催化劑表面。當x=8時,CeO2晶粒尺寸和分散性最好。通過熱重分析儀評價了催化劑對碳煙燃燒性能的影響。試驗結果表明:隨著x的增加,催化劑的T10溫度呈現先降低后升高的趨勢,8Mn10Ce/γ-Al2O3催化劑的T10溫度最低,為320.9 ℃,可以顯著降低碳煙的起燃溫度,具有最好的碳煙催化燃燒性能。
車輛工程;柴油機;Mn;Ce;碳煙;催化劑
與汽油機相比,柴油機具有良好的燃油經濟性、優(yōu)異的動力性和較低的CO2排放。但是,柴油機的顆粒物(Particulate Matter,PM)排放是汽油機的30~100倍,且PM表面吸附有致癌物質及重金屬,會嚴重危害人類健康和大氣環(huán)境[1-3],因此,對柴油機PM排放進行有效控制具有重要的研究價值及實際意義[4]。目前,降低柴油機PM排放的最主要途徑是采用顆粒物捕集(Diesel Particular Filter,DPF)措施。由于PM的起燃溫度相對較高,在600 ℃左右,而通常柴油機排氣溫度較低,在200~400 ℃[5-6]。因此,如何有效降低柴油機PM的起燃溫度,對于控制DPF再生具有重要的意義。
近年來,采用催化技術降低柴油機PM排放得到了廣泛關注。A.ALINEZHADCHAMAZKETI等[7]研究了在CeO2-ZrO2中摻雜過渡金屬、堿金屬和堿土金屬氧化物對PM催化氧化的影響,發(fā)現在緊接觸條件下,Mn-Ce-Zr和Cu-Ce-Zr分別降低了程序升溫氧化(Temperature Programmed Oxidation,TPO)峰值溫度280和270 ℃。師少飛等[8]對Ni-La/CeXZr1-XO2催化劑部分氧化甲烷和王舒捷等[9]對Ce基復合氧化物同時催化去除碳煙-NOX的研究中,可以發(fā)現CeO2具有較好的儲放氧能力和優(yōu)良的氧化還原性質。S.WAGLOEHNER等[10]在對錳的氧化物氧化碳煙的研究中,發(fā)現MnO2,Mn2O3和Mn3O4分別降低了TPO峰值溫度205,245 和255 ℃。摻雜Mn到 CeO2中形成的Ce1-XMnXO2對一些反應表現出良好的催化活性[11-14]。
綜上分析可知,CeO2具有對碳煙催化燃燒具有較好的效果,但存在熱穩(wěn)定性較差的缺點,限制了CeO2的應用。研究發(fā)現,通過摻雜負載等方式可改善其催化性能[15-16]。因此,筆者采用檸檬酸絡合法和溶膠-凝膠法制備了xMnyCe/γ-Al2O3(x=4,6,8,10,y=10)催化劑,用X射線衍射(X-ray diffraction,XRD)、掃描電子顯微鏡(Scanning Electron Microscope,SEM)、能譜儀(Energy Dispersive Spectroscopy,EDS)和透射電子顯微鏡(Transmission Electron Microscope,TEM)對催化劑粉體進行表征,以及通過熱重分析儀(Thermal Gravimetric Analyzer,TG)評價催化劑對碳煙燃燒性能的影響。
1.1 催化劑的制備
筆者采用檸檬酸和溶膠-凝膠法制備了一系列的xMn10Ce/γ-Al2O3(x=4,6,8,10)催化劑。首先,按照不同錳/鈰摩爾比稱取一定量的Ce(NO3)3·6H2O,C4H6MnO4·4H2O和γ-Al2O3,分別溶于適量的去離子水中制成溶液;加入Ce3+和Mn2+離子摩爾總量兩倍的檸檬酸后,再加入10%檸檬酸質量的聚乙二醇,80 ℃磁力攪拌,直至形成透明凝膠,110 ℃干燥24 h,自然冷卻,再研磨成粉末,最后將粉末放于馬弗爐中300 ℃焙燒1 h,后升溫至500 ℃繼續(xù)焙燒5 h,冷卻至室溫,利用球磨機研磨制成xMn10Ce/γ-Al2O3催化劑粉末。
1.2 催化劑的表征方法
XRD在德國Bruker/D8 ADVANCE型X射線衍射儀上進行測試,輻射源采用CuKα(λ=0.154 068 nm),掃描角速度為7°/min,20°~80°掃描,晶粒大小根據Scherrer公式進行計算:
式中:K為Scherrer常數;D為晶粒尺寸,nm;β為實測樣品衍射峰的半高寬度,rad;θ為衍射角,°;λ為X射線波長,nm。
TEM測試在荷蘭Philips公司的Tecnai 12的透射電鏡(TEM)上進行,點分辨率為0.24 nm;線分辨率為0.14 nm;加速電壓為120 kV。SEM和EDS測試在日本電子株式會社(JEOL)的JSM-7001F型掃描電鏡(SEM)上進行,加速電壓0.5~30 kV,放大倍數10~800 K,分辨率1.2 nm(30 kV)/3.0 nm(1 kV)。
1.3 催化劑活性評價
Degussa公司生產的Printex-U色素碳黑在950 ℃時揮發(fā)份為5%,灰份的含量低于0.02%,原生粒徑在25 nm左右,性質較為穩(wěn)定,其物化特性與柴油機PM排放物近似,故采用其作為模擬碳煙[17]。TG試驗的樣品由模擬碳煙與催化劑按照1∶10的質量比混合而成,研磨5 min達到緊密接觸后,裝樣保存以備測試性能。
采用Pyris 1熱重分析儀來評價催化劑對碳煙燃燒性能的影響,初始的進樣量約為15 mg,置于熱平衡反應室里,N2氣流為50 mL/min,O2氣流為20 mL/min,程序升溫范圍為40~750 ℃,升溫速率為10 ℃/min。
2.1 催化劑的性能表征
2.1.1 催化劑XRD表征
xMn10Ce/γ-Al2O3(x=4,6,8,10)催化劑的XRD譜圖如圖1。
圖1 xMn10Ce/γ-Al2O3催化劑XRD譜圖Fig.1 XRD spectrum of xMn10CeO/γ-Al2O3 catalysts
由圖1可見,在2θ為25.74°,5.32°,37.93°,43.53°,53.72°,57.65°,66.68°和68.36°(JCPDS:PDF 10-0173)處出現了γ-Al2O3的特征衍射峰;CeO2的特征衍射峰與純CeO2(JCPDS:PDF 34-0394)較為接近,但存在向高角度偏移現象;MnO2的特征衍射峰與純MnO2(JCPDS:PDF 65-7467)幾乎完全重合。催化劑在2θ為27.32°處存在一個較寬的衍射峰,類似于A.M.T.SILVA等研究的XRD表征結果[18],說明在催化劑中Ce的主要存在形式為α無定型結構。當x≥6時,在2θ為31.84°處出現了明顯的Mn2O3特征衍射峰,與文獻[19-20]表述相一致。隨著x值增加,2θ為31.84°處的Mn2O3特征衍強度先變強后變弱,2θ為47.58°處的CeO2特征衍射峰先變寬后變窄,強度先變弱后變強。x=8時,2θ為31.84°處的Mn2O3特征衍強度最強,說明催化劑表面游離的Mn2O3結晶度最好; 2θ為76.98°處的CeO2特征衍射峰最寬,且強度最弱,說明CeO2晶粒尺寸細小且分散性最好,運用Scherrer方程估算CeO2晶粒尺寸為26 nm。CeO2衍射峰角度的偏移現象主要因為CeO2中半徑較大的Ce4+被半徑較小的Mn4+和Mn3+所取代形成固溶體,引起的晶胞收縮所致[21],這有助于形成氧空位,從而對催化燃燒碳煙起作用。此外其表面分散的MnO2和Mn2O3有利于氧氣在催化劑表面活性解離后與碳煙反應。
2.1.2 催化劑8Mn10Ce/γ-Al2O3的SEM和EDS表征
8Mn10Ce/γ-Al2O3催化劑的SEM和EDS譜圖如圖2。
圖2 8Mn10Ce/γ-Al2O3催化劑的SEM和EDS譜圖Fig.2 SEM and EDS spectrum of 8Mn10Ce/γ-Al2O3
由圖2(a)可見,催化劑表面分布有許多不規(guī)則狀的顆粒物,這些顆粒物主要由許多細微顆粒團聚形成,主要成分是Ce,Mn氧化物。顆粒物的分散性較好,粒徑約在10~100 nm之間。催化劑表面的顆粒能與PM充分接觸,從而降低PM的起燃溫度,有利于PM催化燃燒。從圖2(b)可見,催化劑的主要成分為C,Al,O,Ce和Mn,其中C主要可能為C4H6MnO4·4H2O和檸檬酸高溫分解后,未被完全氧化的殘留物。
2.1.3 催化劑8Mn10Ce/γ-Al2O3的TEM表征
8Mn10CeO/γ-Al2O3催化劑的TEM譜圖如圖3。由圖3可見,圓圈內的顆粒物即為MnO2,Mn2O3和CeO2顆粒,在γ-Al2O3載體表面存在有粒徑大約10 nm的半球狀顆粒物。此外,大量半球狀MnO2,Mn2O3和CeO2顆粒均勻分布在γ-Al2O3載體表面,粒徑在5~20 nm不等,分散性好,在TG試驗中可以與碳煙充分接觸。圖上顏色較深的區(qū)域可能是多個催化劑活性顆粒疊加所造成的。
圖3 8Mn10Ce/γ-Al2O3催化劑TEM譜圖Fig.3 TEM spectrum of 8Mn10Ce/γ-Al2O3 catalyst
2.2 催化劑活性評價
通過對催化劑與碳煙進行TG試驗,可以考察催化劑對碳煙燃燒性能的影響。為清楚比較各催化反應的失重規(guī)律,將碳煙失重10%時的對應溫度標記為T10,碳煙的氧化速率達到峰值時的對應溫度標記為Tm。圖4為4Mn10Ce/γ-Al2O3和8Mn10Ce/γ-Al2O3催化劑作用下碳煙的熱失重曲線。
圖4 催化劑作用下的碳煙TG-DTG圖Fig.4 TG-DTG picture of soot under the effect of catalysts
由圖4可見,在T10溫度前TG曲線呈緩慢下降趨勢,DTG曲線基本保持穩(wěn)定,該過程主要是吸附水的脫除以及碳煙中部分物質受熱揮發(fā)。之后,隨著溫度的升高,碳煙開始氧化且氧化速率不斷加快,在Tm溫度時達到峰值。在高于680 ℃后,失重率基本保持不變。
表1給出了各催化劑作用下碳煙催化燃燒的T10和Tm溫度。
表1 催化劑催化燃燒碳煙的T10及Tm
由表1可見,xMn10Ce/γ-Al2O3(x=4,6,8,10)催化劑都能有效降低碳煙的起燃溫度,使碳煙起燃溫度降低至柴油機尾氣溫度范圍內。其中,8Mn10Ce/γ-Al2O3催化劑的T10溫度為320.9 ℃,較4Mn10Ce/γ-Al2O3,6Mn10Ce/γ-Al2O3和10Mn10Ce/γ-Al2O3分別降低了139.3,42.1,53.1 ℃,表明8Mn10Ce/γ-Al2O3具有較好的碳煙催化燃燒性能。
1)對于xMnyCe/γ-Al2O3催化劑而言,當x=8時,CeO2晶粒尺寸和分散性最好;Mn在催化劑中主要以MnO2出現,當x≥6時,有較多Mn2O3晶體出現。
2)8Mn10Ce/γ-Al2O3催化劑中Mn4+和Mn3+進入CeO2晶胞中形成固溶體,有效減小了CeO2晶粒尺寸,催化劑表面的氧空位及其表面分散的Mn2O3,使氧氣在催化劑表面活性解離后與碳煙反應。
3)xMn10Ce/γ-Al2O3(x=4,6,8,10)催化劑能有效降低碳煙的起燃溫度,其中,8Mn10Ce/γ-Al2O3具有較好的碳煙催化燃燒性能,可以實現在柴油機正常排溫范圍內對碳煙排放的有效脫除。
[1] HAPPONEN M, LHDE T, MESSING M E, et al. The comparison of particle oxidation and surface structure of diesel soot particles between fossil fuel and novel renewable diesel fuel[J].Fuel,2010,89(12):4008-4013.
[2] VOUITSIS E, NTZIACHRISTOS L, PISTIKOPOULOS P, et al. An investigation on the physical, chemical and ecotoxicological characteristics of particulate matter emitted from light-duty vehicles[J].EnvironmentalPollution,2009,157(8/9):2320-2327.
[3] 雷利利,蔡憶昔,王攀,等. NTP技術對柴油機顆粒物組分及熱重特性的影響[J]. 內燃機學報,2013,31(2):144-147. LEI Lili, CAI Yixi, WANG Pan, et al. Influence on component and thermo-gravimetric characteristics of diesel particulate matter by NTP technology[J].TransactionsofCSICE,2013,31(2):144-147.
[4] 蔡憶昔,王攀,林琳.含氧燃料對柴油機尾氣中顆粒理化特性的影響[J]. 內燃機工程,2009,30(1):6-9,14. CAI Yixi, WANG Pan, LIN Lin. PM physiochemical characteristic of diesel engine fueled with oxygenated fuel[J].ChineseInternalCombustionEngineEngineering,2009,30(1):6-9, 14.
[5] 何俊俊,鄭婷婷,夏文正,等. 鑭、釔、鐠、 釹的添加對Pt/CeO2消除碳煙性能影響[J]. 中國稀土學報,2015,33(4):424-432. HE Junjun, ZHENG Tingting, XIA Wenzheng, et al. Effect of lanthanum, yttrium, praseodymium, neodymium addition on activity of Pt/CeO2for soot elimination[J].JournaloftheChineseSocietyofRareEarths,2015,33(4):424-432.
[6] 閆亞洲,韓文赫,張琳,等. 摻K納米LaMnO3催化分解柴油機PM排放的研究[J]. 內燃機工程,2012,33(4):17-21. YAN Yazhou, HAN Wenhe, ZHANG Lin, et al. Study on decomposition of PM emissions from diesel engine by K-doped nano-catalyst LaMnO3[J].ChineseInternalCombustionEngineEngineering,2012,33(4):17-21.
[7] ALINEZHADCHAMAZKETI A, KHODADADI A A, MORTAZAVI Y, et al. Catalytic evaluation of promoted CeO2-ZrO2by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation[J].JournalofEnvironmentalSciences,2013,25(12):2498-2506.
[8] 師少飛, 王玉琪, 馬進成,等. Ni-La/CeXZr1-XO2催化劑制備及其甲烷部分氧化/CH4-CO2重整耦合制合成氣反應性能[J].分子催化,2013,27(6):539-547. SHI Shaofei, WANG Yuqi, MA Jincheng, et al. The preparation and performance of Ni-La/CeXZr1-XO2catalysts for coupled methane partial oxidation /CH4-CO2reforming to syngas[J].JournalofMolecularCatalysis(China),2013,27(6):539-547.
[9] 王舒捷,鄒谷初,徐堯,等. Ce基復合氧化物同時催化去除碳煙-NOX的性能研究[J]. 分子催化,2015,29(1):60-67. WANG Shujie, ZOU Guchu, XU Yao, et al. Ce-based catalysts for simultaneous removal of both diesel soot and NOX[J].JournalofMolecularCatalysis,2015,29(1):60-67.
[10] WAGLOEHNER S, NITZER-NOSKI M, KURETI S. Oxidation of soot on manganese oxide catalysts[J].ChemicalEngineeringJournal,2015,259:492-504.
[11] 林俊敏,付名利,朱文波,等.氧化碳煙的 MnOx(0.4)-CeO2催化劑表面活性物種研究[J].分子催化,2014,28(2) :165-173. LIN Junmin, FU Mingli, ZHU Wenbo, et al. An investigation of surface reactive species on MnOx(0.4)-CeO2catalyst towards soot oxidation[J].JournalofMolecularCatalysis,2014,28(2):165-173.
[12] 葉青,徐柏慶. 檸檬酸溶膠-凝膠法制備的納米Ce1-XMnXO2:織構與晶相結構[J].物理化學學報,2006,22(3):345-349. YE Qing, XU Boqing. Textural and structure characterizations of Ce1-XMnXO2prepared by citric acid sol-gel method[J].ActaPhysico-ChimicaSinica,2006,22(3):345-349.
[13] YU Danqing, LIU Yue, WU Zhongbiao. Low-temperature catalytic oxidation of toluene over mesoporous MnOX-CeO2/TiO2prepared by sol-gel method[J].CatalysisCommunications,2010,11(8):788-791.
[14] DELIMARIS D, IOANNIDES T. VOC oxidation over MnOX-CeO2catalysts prepared by a combustion method[J].AppliedCatalysisBEnvironmental,2008,84(1):303-312.
[15] SHAN Wenjuan, YANG Lihua, MA Na, et al. Catalytic activity and stability of K/CeO2catalysts for diesel soot oxidation[J].ChineseJournalofCatalysis,2012,33(6):970-976.
[16] LIU Jian, ZHAO Zhen, XU Chunming, et al. CeO2-supported vanadium oxide catalysts for soot oxidation: the roles of molecular structure and nanometer effect[J].JournalofRareEarths,2010,28(2):198-204.
[17] 明彩兵,葉代啟,梁紅,等.過渡金屬-鈰復合氧化物對碳煙的催化燃燒性能和表征[J].環(huán)境科學學報,2010,30(1):158-164. MING Caibing, YE Daiqi, LIANG Hong, et al. Catalytic combustion performance of soot over cerium-based transition metal composite oxide catalysts[J].ActaScientiaeCircumtantiae,2010,30(1):158-164.
[18] SILVA A M T,STLVA L C G,DRAZIC G,et al.Ce-doped TiO2for photocalytic degradation of chlorophenol[J].CatalysisToday,2009,144(1/2):13-18.
[19] LIU Shuang, WU Xiaodong, WENG Duan, et al. Combined promoting effects of platinum and MnOX-CeO2supported on alumina on NOX-assisted soot oxidation: Thermal stability and sulfur resistance[J].ChemicalEngineeringJournal,2012,203:25-35.
[20] WU Xiaodong, LEE H R, LIU Shuang, et al. Regeneration of sulfated MnOX-CeO2-Al2O3soot oxidation catalyst by reduction with hydrogen[J].Industrial&EngineeringChemistryResearch,2013,52:716 -721.
[21] 晏冬霞,王華,李孔齋,等.鈰鐵鋯三元復合氧化物上碳煙的催化燃燒[J]. 燃料化學學報,2011,39 (3):229-235. YAN Dongxia, WANG Hua, LI Kongzhai, et al. Catalytic combustion of soot on Ce-Fe-Zr-O ternary mixed oxide catalysts[J].JournalofFuelChemistryandTechnology,2011,39(3):229-235.
Effect of Mn-Ce/γ-Al2O3Catalysts on Catalytic Combustion Performance of Diesel Engine Soot
LEI Lili1, YIN Junchen1, SONG Jin’ou2, LUO Peng1, WANG Pan1
(1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China; 2. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, P. R. China)
In order to investigate the effect of Mn-Ce/γ-Al2O3catalysts on catalytic combustion performance of soot, a series ofxMnyCe/γ-Al2O3(x=4, 6, 8, 10,y=10) catalysts with different ratio of Mn and Ce were prepared by an acid-aided sol-gel method. The effect of metallic Mn and Ce on their microstructure and catalytic properties was investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscope (TEM) analysis. According to the analysis results, it is indicated that the diameter variation range of MnO2and CeO2is from 5 nm to 20 nm. Mn appears as MnO2in the catalyst. Some Mn2O3disperses on the catalyst surface, when the value ofxis 6 or higher. The grain size and dispersion of CeO2are the best, when the value ofxis 8. Effect of the catalysts on combustion performance of soot is analyzed by TG (thermal gravimetric analyzer). Test results show that: with the increase ofx, the temperature of the catalystT10decreases firstly and then increases;T10temperature of 8Mn10Ce/γ-Al2O3catalyst is the lowest among the catalysts, that is 320.9 ℃, which can significantly reduce the ignition temperature of soot and have the best catalytic combustion performance of soot.
vehicle engineering; diesel engines; Mn; Ce; soot; catalysts
2015-10-21;
2016-05-23
國家自然科學基金項目(51206068);江蘇省自然科學基金項目(BK2015040369);天津大學內燃機燃燒學國家重點實驗室開放基金資助項目(k15-07)
雷利利(1982—),女,江蘇鎮(zhèn)江人,講師,博士,主要從事發(fā)動機排放控制方面的研究。E-mail:yutian820817@126.com。
10.3969/j.issn.1674-0696.2016.06.33
U473;TK421.5
A
1674-0696(2016)06-163-05