• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      胡椒堿生物合成機(jī)理研究進(jìn)展

      2016-05-30 07:04:05胡麗松鄔華松范睿伍寶朵郝朝運(yùn)
      熱帶作物學(xué)報(bào) 2016年5期

      胡麗松 鄔華松 范睿 伍寶朵 郝朝運(yùn)

      摘 要 以胡椒堿生物合成的前體為主線,結(jié)合模式植物生物堿生物合成的研究成果,從胡椒堿合成前體鑒定、莽草酸代謝途徑、賴氨酸代謝途徑3個(gè)方面概述了胡椒堿生物合成機(jī)理的研究進(jìn)展,并對胡椒中胡椒堿生物合成調(diào)控的研究進(jìn)行了討論,提出了提高胡椒堿合成效率及含量的初步設(shè)想。

      關(guān)鍵詞 胡椒堿;生物合成;賴氨酸代謝;莽草酸途徑

      中圖分類號 TQ464;TS201.2 文獻(xiàn)標(biāo)識碼 A

      Abstract Piperine is the main quality trait and functional substance in Piper spp. Due to its activity in promoting digestion, anti-inflammatory, decreasing blood-lipid and anti-cancer etc., more and more research was focused on the biosynthesis mechanism of piperine. In the present paper, based on the recent research progress in model plants, the biosynthesis of piperine was reviewed, mainly including the precursor identification, lysine metabolism and shikimic acid pathway. Furthermore, some suggestions for piperine biosynthesis control were discussed.

      Key words Piperine; Biosynthesis; Lysine metabolism; Shikimic acid pathway

      doi 10.3969/j.issn.1000-2561.2016.05.031

      胡椒(Piper nigrum L.)是世界上古老而著名的香料作物,素有“香料之王”的美譽(yù),用途廣泛,經(jīng)濟(jì)價(jià)值高。在醫(yī)學(xué)領(lǐng)域,胡椒被用作健胃劑、鎮(zhèn)痛劑、解毒劑等[1-4]。在食品工業(yè)中,胡椒常被用作防腐劑、保鮮劑等[5-6]。胡椒中化學(xué)成分包括胡椒堿、揮發(fā)油、酚類化合物和微量元素等,胡椒堿是其中含量最大、活性最高的生物堿[7]。胡椒堿既承載著胡椒口感熱辣和促進(jìn)食欲的兩大傳統(tǒng)功能,同時(shí)還有抗炎癥、抗抑郁、提高藥效、降血脂、抑制腫瘤等多種功能[2,7-12]。因此,胡椒堿被公認(rèn)為是胡椒的主要功能物質(zhì)以及衡量胡椒品質(zhì)高低的主要因子[7]。

      研究結(jié)果表明,胡椒堿是賴氨酸源的生物堿,同時(shí)屬于苯丙素類衍生物。苯丙素類化合物是廣泛存在植物體內(nèi)的一類苯環(huán)與3個(gè)直鏈碳連接(C6-C3基團(tuán))構(gòu)成的天然化合物,一般具有苯環(huán)結(jié)構(gòu),可根據(jù)C6-C3基團(tuán)的數(shù)目,分為苯丙素、木脂素、香豆素三大類,而每一大類又可分出多個(gè)衍生物[13-16]。在生物合成上,苯丙素類化合物多數(shù)由莽草酸通過苯丙氨酸和酪氨酸等芳香氨基酸,經(jīng)脫氨、羥基化等一系列反應(yīng)形成[17-20]。植物體內(nèi)賴氨酸源的生物堿主要包括吲哚里西啶類、喹嗪烷類、哌啶類三大類生物堿。這三類生物堿因其氮原子來源于同一個(gè)氨基酸,碳原子骨架構(gòu)成比較保守,而被稱為“True alkaloids”,在合成的初期所經(jīng)歷的賴氨酸代謝也較為保守,在模式植物中賴氨酸代謝的中間產(chǎn)物、參與催化反應(yīng)的關(guān)鍵基因等相關(guān)研究比較清楚[21-23]。

      不同作物的生物堿種類及構(gòu)成各不相同。胡椒堿屬于哌啶類生物堿,主要存在于胡椒科植物中,目前,關(guān)于胡椒中胡椒堿生物合成的機(jī)理研究仍然滯后。本研究將參考模式生物中苯丙素和賴氨酸代謝的研究成果,概述胡椒堿生物合成機(jī)制,為胡椒育種、胡椒堿生物工程利用提供參考。

      1 胡椒堿的發(fā)現(xiàn)及一般性質(zhì)

      胡椒堿為胡椒科植物特有的一種生物堿,存在于多種胡椒屬植物中,如胡椒(Piper nigrum)、蓽茇(Piper longum)、幾內(nèi)亞胡椒(Piper guineense)等植物的果實(shí)和根都發(fā)現(xiàn)含胡椒堿[21,24]。1918年,Oersted首次從胡椒果實(shí)中分離出一種具有辛辣味的黃色結(jié)晶物-胡椒堿(Piperine),分子式為C17H19NO3,結(jié)構(gòu)式見圖1[25]。

      胡椒堿是一種不溶于水的淡黃色結(jié)晶物質(zhì),熔點(diǎn)128~133 ℃,溶于乙酸、苯、乙醇和氯仿。在酸性介質(zhì)下胡椒堿可穩(wěn)定存在,但在堿性環(huán)境中,胡椒堿極不穩(wěn)定會(huì)水解為六氫嘧啶和胡椒堿酸。另外,胡椒堿對光敏感,在自然光照射條件下,胡椒堿易發(fā)生異構(gòu)化反應(yīng),生成3種同分異構(gòu)體: chavicine(異胡椒堿)、piperanine(哌嗪)和piperettine(胡椒亭)(圖1)。與胡椒堿相比,其異構(gòu)體的辛辣味相對比較微弱[26-28]。

      2 胡椒堿生物合成途徑

      2.1 胡椒堿合成前體

      為鑒定胡椒堿生物合成的前體物質(zhì),Georg G等開展了大量的工作[12,27,29-32]。1987年,胡椒酰胺輔酶A(Piperoyl-coenzyme A)通過體外化學(xué)方法成功合成,使得通過體外生物化學(xué)的方法研究胡椒堿合成機(jī)理成為可能[30]。1990年,Geisler等[29]從胡椒的根尖發(fā)現(xiàn)了能催化胡椒堿合成的胡椒堿合成酶(piperidine piperoyltransferase; EC 2.3.1.145),通過比較催化不同底物反應(yīng)生成胡椒堿的效率,確定了胡椒酰胺輔酶A與六氫吡啶(piperidine)是胡椒堿生物合成的直接前體(圖2)。因此,根據(jù)胡椒堿生物合成2個(gè)前體物質(zhì)的特征,胡椒堿又名1-胡椒酰哌啶(1-Piperyl piperidine)。胡椒堿合成前體的鑒定為胡椒堿生物合成研究奠定了重要基礎(chǔ),后續(xù)的工作主要圍繞胡椒酰胺輔酶A和六氫吡啶兩個(gè)直接前體的代謝及調(diào)控等研究展開。

      2.2 胡椒酰胺輔酶A生物合成的莽草酸途徑

      胡椒酰胺輔酶A合成起源于莽草酸途徑[30,32]。莽草酸途徑的苯丙素類(phenylpropanoids)中間產(chǎn)物是大多數(shù)植物芳香類物質(zhì)的合成前體,如反肉桂酸(trans-cinnamic acid)、咖啡酸(caffeic acid)、阿魏酸(ferulic acid)等,不同的苯丙素所衍生的芳香物質(zhì)各不相同[18-20,33]。莽草酸途徑起始于糖代謝生成的磷酸烯醇丙酮酸(phosphoenolpyruvic acid, PEP)與D-磷酸赤蘚糖(D-erythrose-4-phosphate, E4P),兩者在合成酶催化下反應(yīng)生成3-脫氧-阿拉伯庚酮糖酸-7-磷酸(3-deoxy-D-arabino-heptulosonic acid 7-phosphate, DAHP)[34-37]。DAHP通過經(jīng)去磷酸化、環(huán)化、脫水一些列酶促反應(yīng)生成脫氫奎尼酸(3-dehydroquinic acid, DHQ)、脫氫莽草酸(3-dehydroshikimic acid)、莽草酸(shikimic acid)[20,38-42]。隨后,莽草酸在激酶的催化下發(fā)生磷酸化反應(yīng),生成3-磷酸-莽草酸,3-磷酸-莽草酸與磷酸烯醇丙酮酸反應(yīng)生成5-烯醇丙酮酰莽草酸-3-磷酸(5-enlpyruvylshikimic acid 3-phosphate, EPSP),EPSP通過去磷酸反應(yīng)生成分支酸(chorismic acid)(圖3)[18-19,33,43-46]。

      分支酸的合成是莽草酸途徑的一個(gè)重要樞紐節(jié)點(diǎn),在這個(gè)節(jié)點(diǎn)上莽草酸途徑產(chǎn)生了兩條不同的分支。(1)分支酸經(jīng)鄰氨基苯甲酸合成酶催化反應(yīng)生成對羥基苯丙酮酸,從而進(jìn)入色氨酸合成途徑[47-48];(2)分支酸在變位酶的作用下生成預(yù)苯酸(Prephenic acid),進(jìn)入苯基丙氨酸、酪氨酸合成途徑,胡椒酰胺輔酶A合成的前體香豆酸來自這一支路[49]。預(yù)苯酸在轉(zhuǎn)氨酶的作用下生成前酪氨酸(arogenic acid),前酪氨酸可在脫氫酶的作用下生成酪氨酸,也可再經(jīng)脫水反應(yīng)生成苯丙氨酸(phenylalanine)[50-52]。苯基丙氨酸在苯丙氨酸氨基裂解酶的作用下脫掉氨基生成肉桂酸(cinnamic acid),肉桂酸在羥化酶的作用下生成香豆酸,此外,酪氨酸也可以通過脫氨基反應(yīng)生成香豆酸,最終進(jìn)入胡椒酰胺輔酶A合成途徑(圖4)[53-57]。

      胡椒酰胺輔酶A的合成以香豆酸(coumaric acid)為起始底物。香豆酸通過3-羥化反應(yīng)生成咖啡酸,咖啡酸被甲基化后生成阿魏酸,阿魏酸的羥基再經(jīng)氧化反應(yīng)生成松柏醇(coniferyl alcohol)[58-60]。松柏醇通過輔酶A連接、基團(tuán)修飾、環(huán)化作用后生成基本的胡椒酰胺輔酶A骨架[61-64]。胡椒酰胺輔酶A骨架再通過Claisen延伸(克萊森縮合反應(yīng))、脫水反應(yīng)后最終形成胡椒堿合成的直接前體:胡椒酰胺輔酶A(圖5)。

      2.3 六氫吡啶生物合成的賴氨酸代謝途徑

      六氫吡啶的合成起源于賴氨酸,其生物活性、代謝路徑已在模式生物中開展大量研究。首先,賴氨酸在脫羧酶的作用下生成戊撐二胺,戊撐二胺經(jīng)氧化、環(huán)化、脫水反應(yīng)生成四氫吡啶,四氫吡啶經(jīng)還原反應(yīng)最終生成六氫吡啶[21]。六氫吡啶是很多生物堿合成的前體物質(zhì),如與煙酸反應(yīng)則生成尼古丁,與乙酰乙酰輔酶A反應(yīng)則生成石榴堿,與胡椒酰胺輔酶A反應(yīng)則生成胡椒堿。這類物質(zhì)統(tǒng)稱為哌啶類生物堿[65]。

      模式植物的研究結(jié)果表明,哌啶類生物堿的合成并不是賴氨酸代謝的唯一途徑,其代謝主要有3條路徑:第一,賴氨酸在氧化酶的作用下生成ε-醛賴氨酸,然后進(jìn)入吲哚里西啶生物堿合成途徑,如苦馬豆素和流涎素的生物合成都是通過這一反應(yīng)實(shí)現(xiàn),此反應(yīng)廣泛存在于植物、動(dòng)物、微生物中[66-68]。第二,賴氨酸在脫羧酶的作用下生成戊撐二胺。戊撐二胺可以和丙酮酸鹽反應(yīng)生成氧代鷹爪豆堿,為喹嗪烷類生物堿的合成提供底物。羽扇豆寧、金雀花堿都經(jīng)由這一支路合成[69-72]。第三,戊撐二胺經(jīng)氧化、環(huán)化、脫水反應(yīng)生成四氫吡啶,四氫吡啶經(jīng)還原反應(yīng)最終生成六氫吡啶,進(jìn)入哌啶類生物堿合成途徑(圖6)[23,73-77]。

      綜上所述,胡椒堿的生物合成途徑可歸納如下:一方面,以PEP和E4P為最初反應(yīng)底物,通過莽草酸途徑合成胡椒酰胺輔酶A;另一方面,以賴氨酸為底物,經(jīng)脫羧、環(huán)化等一系列反應(yīng)生成六氫吡啶。最后,胡椒酰胺輔酶A和六氫吡啶在胡椒堿合成酶的催化下生成胡椒堿。根據(jù)文中所述,將胡椒堿生物合成途徑中已經(jīng)鑒定出的主要調(diào)控基因進(jìn)行了匯總(表1)。

      3 胡椒堿生物合成調(diào)控討論及展望

      胡椒屬于典型的熱帶作物,其種植地區(qū)大多為地處熱帶、亞熱帶地區(qū)的不發(fā)達(dá)國家,分子育種等相關(guān)研究較為滯后。胡椒的消費(fèi)國主要以發(fā)達(dá)國家為主,作為一味古老而著名的香料,發(fā)達(dá)國家在胡椒功能物質(zhì)分離、保健醫(yī)療功效等方面開展了大量研究。胡椒堿作為胡椒最主要的功能物質(zhì),在促消化、抗炎癥、抗抑郁、提高藥效、降血脂、抑制腫瘤等方面具有廣泛的作用,一直是研究的熱點(diǎn)。因此,明晰胡椒中胡椒堿生物合成機(jī)理、克隆關(guān)鍵基因,通過生物工程技術(shù)提高胡椒堿含量,既是胡椒生產(chǎn)國品質(zhì)育種的迫切需求,也是提高胡椒價(jià)值的有效途徑。

      本研究以胡椒堿生物合成的兩個(gè)直接前體為切入點(diǎn),參考模式植物莽草酸、賴氨酸代謝的研究進(jìn)展,對胡椒堿生物合成研究進(jìn)行了系統(tǒng)解析。在模式植物中,莽草酸代謝途徑的研究已很清楚,從最初的呼吸作用產(chǎn)物PEP與E4P的富集到莽草酸、分支酸、香豆酸的合成,其催化反應(yīng)的關(guān)鍵中間產(chǎn)物以及相關(guān)基因都已經(jīng)被鑒定出來[18,20,43]。因此,通過對代謝途徑中關(guān)鍵基因表達(dá)的調(diào)控,可以促進(jìn)分支酸、香豆酸等中間產(chǎn)物的合成,以保證胡椒酰胺輔酶A合成有充分的前體物質(zhì)。然而,從松柏醇到胡椒酰胺輔酶A合成需經(jīng)過哪些酶促反應(yīng),仍然不清楚。筆者根據(jù)反應(yīng)前體基團(tuán)的變化,預(yù)測了反應(yīng)類型,如claisen延伸反應(yīng),芳香族物質(zhì)環(huán)化反應(yīng)等,但這些反應(yīng)在胡椒中是否真實(shí)存在、參與反應(yīng)的基因等研究仍屬空白。由于莽草酸途徑的苯丙素類物質(zhì)是次生代謝中間產(chǎn)物,不會(huì)在細(xì)胞內(nèi)大量積累,不同物種下游的芳香物質(zhì)不同,后續(xù)的合成調(diào)控也各不相同,代謝途徑支路錯(cuò)綜復(fù)雜,因此,如何定向調(diào)節(jié)胡椒酰胺輔酶A的生物合成還需進(jìn)一步研究。鑒定松柏醇到胡椒酰胺輔酶A合成途徑的中間產(chǎn)物、克隆參與該合成途徑的關(guān)鍵基因是當(dāng)前亟需解決的重要課題。

      胡椒堿生物合成另一前體來源于賴氨酸代謝產(chǎn)生的六氫吡啶。根據(jù)賴氨酸代謝途徑的特征,可通過3種方法提高六氫吡啶的合成效率,為胡椒堿合成提供充足前體。第一,從賴氨酸代謝的源頭調(diào)控,抑制賴氨酸氧化酶,提高賴氨酸脫羧酶的活性,使賴氨酸經(jīng)脫羧反應(yīng)生成戊撐二胺,為下游胡椒堿的合成提供前體[23]。第二,控制賴氨酸脫羧產(chǎn)物戊撐二胺的下游反應(yīng)。豆科植物中戊撐二胺會(huì)選擇和丙酮酸發(fā)生反應(yīng),進(jìn)入喹嗪烷類生物堿的合成途徑[22]。而胡椒科植物中戊撐二胺則經(jīng)過氧化反應(yīng)進(jìn)入哌啶環(huán)合成途徑,為胡椒堿的合成提供底物,因此戊撐二胺下游的反應(yīng)也是調(diào)節(jié)胡椒堿合成的重要途徑[78]。第三,提高胡椒堿合成酶基因的表達(dá)水平及其酶活性,使得更多的哌啶環(huán)參與胡椒堿的合成。嘧啶環(huán)是植物體內(nèi)多種生物堿的合成前體,胡椒堿并不是它唯一的路徑,因此,克隆胡椒堿合成酶基因,通過基因工程技術(shù)超量表達(dá)該關(guān)鍵酶基因是提高胡椒堿合成水平的有效手段[79]。

      目前,胡椒堿生物合成及其調(diào)控機(jī)制,主要基于模式植物以及離體實(shí)驗(yàn)的研究成果,胡椒中胡椒堿生物合成相關(guān)的基因及中間產(chǎn)物尚未得到鑒定。因此,克隆胡椒自身胡椒堿生物合成的關(guān)鍵基因及鑒定其特異的中間產(chǎn)物是后續(xù)研究的重點(diǎn)。

      參考文獻(xiàn)

      [1] Zarai Z, Boujelbene E, Ben Salem N, et al. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum[J]. LWT-Food Science and Technology, 2013, 50(2): 634-641.

      [2] Bae G S, Kim M S, Jeong J, et al. Piperine ameliorates the severity of cerulein-induced acute pancreatitis by inhibiting the activation of mitogen activated protein kinases[J]. Biochemical and Biophysical Research Communications, 2011, 410(3): 382-388.

      [3] Mehmood M H, Gilani A H. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders[J]. Journal of Medicinal Food, 2010, 13(5): 1 086-1 096.

      [4] Dyer, Lee A, Aparna DN Palmer, eds. Piper: a model genus for studies of phytochemistry, ecology, and evolution[M]. New York: Kluwer academic/Plenum publishers, 2004.

      [5] 鄔華松, 楊建峰, 林麗云. 中國胡椒研究綜述[J]. 中國農(nóng)業(yè)科學(xué), 2009, 42(7): 2 469-2 480.

      [6] Krishnamoorthy B, Parthasarathy V A. Improvement of black pepper[J]. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2010, 5(3): 1-12.

      [7] Thiel A, Buskens C, Woehrle T, et al. Black pepper constituent piperine: Genotoxicity studies in vitro and in vivo[J]. Food and Chemical Toxicology, 2014, 66: 350-357.

      [8] Srinivasan K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects[J]. Critical Reviews in Food Science and Nutrition, 2007, 47(8): 735-748.

      [9] Najar I, Sachin B, Sharma S, et al. Modulation of P-glycoprotein ATPase activity by some phytoconstituents[J]. Phytotherapy Research, 2010, 24(3): 454-458.

      [10] Li S, Lei Y, Jia Y, et al. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells[J]. Phytomedicine, 2011, 19(1): 83-87.

      [11] Diwan V, Poudyal H, Brown L. Piperine attenuates cardiovascular, liver and metabolic changes in high carbohydrate, high fat-fed rats[J]. Cell Biochemistry and Biophysics, 2013, 67(2): 297-304.

      [12] Martha Perez Gutierrez R, Maria Neira Gonzalez A, Hoyo-Vadillo C. Alkaloids from piper: a review of its phytochemistry and pharmacology[J]. Mini Reviews in Medicinal Chemistry, 2013, 13(2): 163-193.

      [13] Gross G G. From lignins to tannins: forty years of enzyme studies on the biosynthesis of phenolic compounds[J]. Phytochemistry, 2008, 69(18): 3 018-3 031.

      [14] Haminiuk C W I, Maciel G M, Plata-Oviedo M S V, et al. Phenolic compounds in fruits - an overview[J]. International Journal of Food Science & Technology, 2012, 47(10): 2 023-2 044.

      [15] Boudet A-M. Evolution and current status of research in phenolic compounds[J]. Phytochemistry, 2007, 68(22-24): 2 722-2 735.

      [16] Proestos C, Sereli D, Komaitis M. Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS[J]. Food Chemistry, 2006, 95(1): 44-52.

      [17] Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annual Review of Plant Biology, 1989, 40(1): 347-3469.

      [18] Mir R, Jallu S, Singh T P. The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes[J]. Critical Reviews in Microbiology, 2015, 41(2): 172-189.

      [19] Juminaga D, Keasling J D. Metabolic engineering of the shikimate pathway. WO. 2013, WO 2013033652 A1[P], 2013-03-07.

      [20] Herrmann K M, Weaver L M. The shikimate pathway[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50(1): 473-503.

      [21] Szoke E, Lemberkovics E, Kursinszki L. Alkaloids derived from lysine: piperidine alkaloids[M]. Natural Products: Springer, 2013: 303-341.

      [22] Boschin G, Resta D. Alkaloids derived from lysine: quinolizidine(a focus on lupin alkaloids)[M]. Natural Products: Springer, 2013: 381-403.

      [23] Bunsupa S, Katayama K, Ikeura E, et al. Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae[J]. The Plant Cell, 2012, 24(3): 1 202-1 216.

      [24] Vasavirama K, Upender M. Piperine: a valuable alkaloid from piper species[J]. International Journal of Pharmacy & Pharmaceutical Sciences, 2014, 6(4): 34-38.

      [25] Govindarajan V, Stahl W H. Pepper-chemistry, technology, and quality evaluation[J]. Critical Reviews in Food Science & Nutrition, 1977, 9(2): 115-225.

      [26] 莫崢嶸. 胡椒堿的抗氧化活性及穩(wěn)定性研究[J]. 海南師范學(xué)院學(xué)報(bào): 自然科學(xué)版, 2006, 19(1): 52-54.

      [27] Meghwal M, Goswami T K. Piper nigrum and piperine: an update[J]. Phytotherapy Research, 2013, 27(8): 1 121-1 130.

      [28] 劉 屏. 胡椒堿藥理作用的研究進(jìn)展[J]. 中國藥物應(yīng)用與監(jiān)測, 2007, 4(3): 7-9.

      [29] Geisler J G, Gross G G. The biosynthesis of piperine in Piper nigrum[J]. Phytochemistry, 1990, 29(2): 489-492.

      [30] Semler U, Schmidtberg G, Gross G G. Synthesis of piperoyl coenzyme a thioester[J]. Z Naturforsch, 1987, 42: 1 070-1 074.

      [31] Shingate P, Dongre P, Kannur D. New method development for extraction and isolation of piperine from black pepper[J]. International Journal of Pharmaceutical Sciences & Research, 2013, 4(8): 3 165-3 170.

      [32] Muhamad Isa M. Synthesis of piperine derivatives[D]. Johor: Diss Universiti Teknologi Malaysia, 2012.

      [33] Dev A, Tapas S, Pratap S, et al. Structure and function of enzymes of shikimate pathway[J]. Current Bioinformatics, 2012, 7(4): 374-391.

      [34] Wagner T, Shumilin I A, Bauerle R, et al. Structure of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Escherichia coli: comparison of the Mn2+*2-phosphoglycolate and the Pb2+*2-Phosphoenolpyruvate complexes and implications for catalysis1[J]. Journal of Molecular Biology, 2000, 301(2): 389-399.

      [35] Ma N, Wei L, Fan Y, et al. Heterologous expression and characterization of soluble recombinant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Actinosynnema pretiosum ssp. auranticum ATCC31565 through co-expression with Chaperones in Escherichia coli[J]. Protein Expression and Purification, 2012, 82(2): 263-269.

      [36] Schoner R, Herrmann K M. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. Purification, properties, and kinetics of the tyrosine-sensitive isoenzyme from Escherichia coli[J]. Journal of Biological Chemistry, 1976, 251(18): 5 440-5 447.

      [37] Floss H G, Onderka D K, Carroll M. Stereochemistry of the 3-Deoxy-d-arabino-heptulosonate 7-Phosphate synthetase reaction and the chorismate synthetase reaction[J]. Journal of Biological Chemistry, 1972, 247(3): 736-744.

      [38] Park A, Lamb H K, Nichols C, et al. Biophysical and kinetic analysis of wild-type and site-directed mutants of the isolated and native dehydroquinate synthase domain of the AROM protein[J]. Protein Science, 2004, 13(8): 2 108-2 119.

      [39] Singh S A, Christendat D. Structure of arabidopsis dehydroquinate dehydratase-shikimate dehydrogenase and implications for metabolic channeling in the shikimate pathway[J]. Biochemistry, 2006, 45(25): 7 787-7 796.

      [40] Roszak A W, Robinson D A, Krell T, et al. The structure and mechanism of the type II dehydroquinase from streptomyces coelicolor[J]. Structure, 2002, 10(4): 493-503.

      [41] Benach J, Lee I, Edstrom W, et al. The 2.3-A crystal structure of the shikimate 5-Dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase[J]. Journal of Biological Chemistry, 2003, 278(21): 19 176-19 182.

      [42] Michel G, Roszak A W, Sauve V, et al. Structures of shikimate dehydrogenase AroE and its paralog YdiB. A common structural framework for different activities[J]. J Biol Chem, 2003, 278(21): 19 463-19 472.

      [43] Arcuri H A, Zafalon G F, Marucci E A, et al. SKPDB: a structural database of shikimate pathway enzymes[J]. BMC Bioinformatics, 2010, 11(1): 1-7.

      [44] Saidemberg D M, Passarelli A W, Rodrigues A V, et al. Shikimate kinase(EC 2.7.1.71)from Mycobacterium tuberculosis: kinetics and structural dynamics of a potential molecular target for drug development[J]. Current Medicinal Chemistry, 2011, 18(9): 1 299-1 310.

      [45] Anderson K S, Johnson K A. Kinetic and structural analysis of enzyme intermediates: lessons from EPSP synthase[J]. Chemical Reviews, 1990, 90(7): 1 131-1 149.

      [46] Dias M V B, Borges J C, Ely F, et al. Structure of chorismate synthase from Mycobacterium tuberculosis[J]. Journal of Structural Biology, 2006, 154(2): 130-143.

      [47] Koch G L E, Shaw D C, Gibson F. The purification and characterisation of chorismate mutase-prephenate dehydrogenase from Escherichia coli K12[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1971, 229(3): 795-804.

      [48] Jiang C, Yin B, Tang M, et al. Identification of a metagenome-derived prephenate dehydrogenase gene from an alkaline-polluted soil microorganism[J]. Antonie van Leeuwenhoek, 2013, 103(6): 1 209-1 219.

      [49] Friedrich B, Schlegel H G. Aromatic amino acid biosynthesis in Alcaligenes eutrophus H16[J]. Arch Microbiol, 1975, 103(1): 141-149.

      [50] Davidson B E. Chorismate Mutase-Prephenate Dehydratase from Escherichia coli[J]. Journal of Biological Chemistry, 1998, 273(1): 6 248-6 253.

      [51] Maeda H, Yoo H, Dudareva N. Prephenate aminotransferase directs plant phenylalanine biosynthesis via arogenate[J]. Nature Chemical Biology, 2011, 7(1): 19-21.

      [52] Matthieu G, Cécile G, Alexandra K, et al. Three different classes of aminotransferases evolved prephenate aminotransferase functionality in arogenate-competent microorganisms[J]. Journal of Biological Chemistry, 2014, 289(6): 3 198-3 208.

      [53] Shapiro C L, Jensen R A, Wilson K A, et al. Assay for activity of arogenate dehydratase based upon the selective oxidation of arogenate[J]. Anal Biochem, 1981, 110(1): 27-30.

      [54] Camm E L, Towers G H N. Phenylalanine ammonia lyase[J]. Phytochemistry, 1973, 12(5): 961-973.

      [55] Achnine L, Blancaflor E B, Rasmussen S, et al. Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis[J]. The Plant Cell, 2004, 16(11): 3 098-3 109.

      [56] Scott D A, Hammond P M, Brearley G M, et al. Identification by high-performance liquid chromatography of tyrosine ammonia-lyase activity in purified fractions of Phaseolus vulgaris phenylalanine ammonia-lyase[J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1992, 573(2): 309-312.

      [57] Kato M J, Furlan M. Chemistry and evolution of the piperaceae[J]. Pure & Applied Chemistry, 2007, 79(4): 529-538.

      [58] Liu X, Deng Z, Gao S, et al. A new gene coding for p-coumarate 3-hydroxylase from Ginkgo biloba[J]. Russ J Plant Physiol, 2008, 55(1): 82-92.

      [59] Do C-T, Pollet B, Thévenin J, et al. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis[J]. Planta, 2007, 226(5): 1 117-1 129.

      [60] Inoue K, Sewalt V J H, Murray Ballance G, et al. Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-Methyltransferase and caffeoyl coenzyme a 3-O-Methyltransferase in relation to lignification[J]. Plant Physiology, 1998, 117(3): 761-770.

      [61] Okwute S K, Egharevba H O. Piperine-type amides: review of the chemical and biological characteristics[J]. International Journal of Chemistry, 2013, 5(3): 99-122.

      [62] Becker-André M, Schulze-Lefert P, Hahlbrock K. Structural comparison, modes of expression, and putative cis-acting elements of the two 4-coumarate: CoA ligase genes in potato[J]. Journal of Biological Chemistry, 1991, 266(13): 8 551-8 559.

      [63] Katja S, Klaus H V, Kilian W, et al. The substrate specificity-determining amino acid code of 4-coumarate: CoA Ligase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(14): 8 601-8 606.

      [64] Ranjeva R, Boudet A M, Faggion R. Phenolic metabolism in petunia tissues. IV. Properties of p-coumarate CoA ligase isozymes[J]. Biochimie, 1976, 58(10): 1 255-1 262.

      [65] Mann J. Medicinal natural products: a biosynthetic approach[J]. Phytochemistry, 1998, 48(2): 410-410.

      [66] Michael J P. Indolizidine and quinolizidine alkaloids[J]. Natural Product Reports, 2001, 18(5): 520-542.

      [67] Heydari M, Ohshima T, Nunoura-Kominato N, et al. Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression[J]. Applied and Environmental Microbiology, 2004, 70(2): 937-942.

      [68] Gómez D, Lucas-Elío P, Sanchez-Amat A, et al. A novel type of lysine oxidase: l-lysine-ε-oxidase[J]. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2006, 1764(10): 1 577-1 585.

      [69] Bunsupa S, Yamazaki M, Saito K. Quinolizidine alkaloid biosynthesis: recent advances and future prospects[J]. Frontiers in Plant Science, 2012, 3(4): 279-286.

      [70] Schoofs G, Teichmann S, Hartmann T, et al. Lysine decarboxylase in plants and its integration in quinolizidine alkaloid biosynthesis[J]. Phytochemistry, 1983, 22(1): 65-69.

      [71] Michael J P. Indolizidine and quinolizidine alkaloids[J]. Natural Product Reports, 2008, 25(1): 139-165.

      [72] Taketo O, Masami Yokota H, Hideyuki S, et al. Molecular characterization of a novel quinolizidine alkaloid O-tigloyltransferase: cDNA cloning, catalytic activity of recombinant protein and expression analysis in lupinus plants[J]. Plant & Cell Physiology, 2005, 46(1): 233-244.

      [73] Tipping A J, McPherson M J. Cloning and molecular analysis of the pea seedling copper amine oxidase[J]. Journal of Biological Chemistry, 1995, 270(28): 16 939-16 946.

      [74] Bagni N, Creus J, Pistocchi R. Distribution of cadaverine and lysine decarboxylase activity in nicotiana glauca plants[J]. Journal of Plant Physiology, 1986, 125(1): 9-15.

      [75] Csiszar K. Lysyl oxidases: a novel multifunctional amine oxidase family[J]. Progress in Nucleic Acid Research & Molecular Biology, 2001, 70: 1-32.

      [76] Angelini R, Cona A, Federico R, et al. Plant amine oxidases “on the move”: An update[J]. Plant Physiology and Biochemistry, 2010, 48(7): 560-564.

      [77] Dragull K, Yoshida W Y, Tang C S. Piperidine alkaloids from Piper methysticum[J]. Phytochemistry, 2003, 63(2): 193-198.

      [78] OSullivan J, Unzeta M, Healy J, et al. Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do[J]. Neurotoxicology, 2004, 25(1): 303-315.

      [79] Felpin F X, Girard S, Vo-Thanh G, et al. Efficient enantiomeric synthesis of pyrrolidine and piperidine alkaloids from tobacco[J]. The Journal of Organic Chemistry, 2001, 66(19): 6 305-6 312.

      安远县| 瑞丽市| 石渠县| 宜昌市| 江西省| 贵定县| 贵南县| 车险| 翁源县| 霍林郭勒市| 车险| 民权县| 长子县| 本溪| 临泉县| 望谟县| 淮南市| 四川省| 都匀市| 孟津县| 益阳市| 镇巴县| 镇雄县| 文化| 芜湖市| 陇川县| 佳木斯市| 平遥县| 贡觉县| 泗阳县| 来凤县| 迁西县| 苍南县| 疏勒县| 类乌齐县| 高安市| 射洪县| 武冈市| 章丘市| 凌源市| 濮阳县|