• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Catalytic kinetics of dimethyl ether one-step synthesis over CeO2–CaO–Pd/HZSM-5 catalyst in sulfur-containing syngas process☆

    2016-06-12 03:48:18RuizhiChuWenxinHouXianliangMengTingtingXuZhenyongMiaoGuoguangWuLeiBai
    Chinese Journal of Chemical Engineering 2016年12期

    Ruizhi Chu ,Wenxin Hou ,Xianliang Meng ,*,Tingting Xu ,Zhenyong Miao ,Guoguang Wu ,Lei Bai

    1 School of Chemical Engineering and Technology,China University of Mining&Technology,Xuzhou 221116,China

    2 High-Tech Research Institute of China University of Mining and Technology,Lianyungang 222000,China

    3 Department of Chemical and Biomedical Engineering,West Virginia University,Morgantown 26506,USA

    1.Introduction

    Interest in hydrogen production for fuel cell applications is steadily increasing due to environmental concerns[1,2].Among the various feed gases,DME proved to be a good alternative fuel to minimize the emissions of global warming gases and hazardous components such as SOx,NOxand particulate matter,because DME is similar in nature to liquefied petroleum gas(LPG)[3–5].

    Until now,two synthesis methods of DME have been reported:approach one is the traditional methanol synthesis followed by a dehydration step[6];approach two is DME one-step synthesis fromsyngas under hybrid catalysts in the same reactor[7–10].DME one-step synthesis from sulfur-containing syngas attains more and more attention recently due to higher conversion and lower cost in comparison to methanol dehydration[11].The key issue of DME one-step synthesis from coal-derived syngas is catalytic stability of sulfur-tolerant[12].At present,the research work is focused on the sulfur-tolerant catalyst screening according to the DEM selection,activity or carrier effect[13,14].Although there are some researches on kinetics of DME one step synthesis from sulfur-containing syngas,most researchers tend to study on the kinetics of methanol synthesis or methanol dehydration individually.Such as,Popet al.[15]studied the intrinsic kinetics of methanol dehydration to DME in fixed bed reactor over H-SAPO-34 catalyst,and the experimental data were in good agreement with hyperbolic kinetic equation derived by Lu[16].Zhang[17]studied the intrinsic kinetics of methanol dehydration to DME and the effect of operation conditions on the conversion of methanol in fixed bed reactor over catalyst MD-2.The results indicate that the intrinsic kinetic equation based on the mechanism of Langmuir–Hinshelwood dissociation adsorption was reliable.However the pre-existing single reaction kinetic model could not be fully applicable in DME one-step synthesis from the reaction system,and different forms of kinetic equations or different parameter values could be obtained under different catalysts and different operating conditions.

    Taking into account these results,the main objective of our study was to develop a sulfur-tolerant catalyst for DME one-step synthesis.After years of efforts,we have gained notable achievement in the preparation methods,modification technologies and sulfur-tolerant mechanism involving sulfur-tolerant Pd-based catalysts[14,18–20].The comparison of the stability of the synthetic catalyst and other common catalysts also has been presented in the previous literature[21].And the catalyst has good sulfur tolerance and catalytic activity.In this paper,we focused on the catalytic kinetics of DME one-step synthesis over the hybrid catalyst of CeO2–CaO–Pd/HZSM-5,and its macrokinetics model has been founded.Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism.Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method.

    2.Experimental

    2.1.Catalyst preparation

    5 g of HZSM-5(particle size 0.6–0.9 mm)was firstly impregnated into nitrate aqueous mixture solution of Ce3+and Ca2+in a 150 ml of flask at 50 °C for 2 h,the suspension was heated to 80 °C and vigorously stirred at the temperature until most of water was removed by evaporation followed by calcination in microwave oven with an indicated power 420 W for 1 h,then a series of CeO2–CaO/HZSM-5 carrier materials were obtained.Following the same process to supporting metal Pd on CeO2–CaO/HZSM-5 and then,nano-sized CeO2–CaO–Pd/HZSM-5 catalyst was obtained.

    2.2.Catalytic test

    Catalytic activity and sulfur tolerance of CeO2–CaO–Pd/HZSM-5 and kinetic experiments were carried out in gas phase in a fixed-bed microreactor,using a reaction tube with 5 mm of inner diameter.CeO2–CaO–Pd/HZSM-5 catalyst particles were loaded into the tube and the ratio of the total height of the catalyst bed with the upper and lower silica cotton and the catalyst particle size was greater than 50.The gas in the catalyst bed layer could be regarded as a flat pushing flow.The blank experiment results show that the reaction material and the silica filler have no effect on the catalytic reaction.The catalyst was heated to 220 °C under hydrogen flow at 1 °C·min-1and maintained the temperature for 2 h.Then H2+CO,N2,and H2S(volume ratio(H2+CO):N2:H2S=75:24.5:0.5)were introduced through a mass flow controller,slow step-up to desired pressure and temperature,to initiate the reaction.Reaction products exhaust through the valve after decompression,which leads to chromatographic analysis,or shorting.CO conversion(XCO,%)and product DME selectivity(SDME,%)were calculated by normalization.Specific calculation formula is as follows:

    The content of each component was expressed in mole percent.

    3.Results and Discussion

    3.1.Catalytic activity and sulfur tolerance of CeO2-CaO-Pd/HZSM-5

    As shown in Fig.1,an induction period exists at the initial stage of reaction over CeO2–CaO–Pd/HZSM-5 catalyst from sulfur-containing syngas.DME selectivity increases in the induction period and then reached to stable(after 10 h),which is consistent with the results of Ma et al.[22].Ma et al.explain that it is because of the elimination of the thin layers of reduced ceria covered on the Pd(1 1 1)active sites.It is well accepted that Pd(1 1 1)plane adjacent to ceria is the efficient active sites for methanol formation.Xue et al.[23]found the addition of Ca reduced the number of strong acid sites and enhanced the metal support interaction and increased the electronic surroundings of Pd sites,which maintained Pd in a partly oxidized(Pdδ+)state and consequently increased the activity for methanol.Naitoet al.[24]found that thin layers of additive component ceria covered on(1 1 1)plane of Pd particles could be removed by formed H2O during reaction,which was responsible for the increment of DME selectivity in the induction period.

    Fig.1.CO conversion(black)and DME selectivity(red)over CeO2–CaO–Pd/HZSM-5 for DME one-step synthesis from sulfur-containing syngas.

    It could be concluded that the CeO2–CaO–Pd/HZSM-5 catalyst is very active and stable in sulfur-containing syngas and exhibited excellent catalytic performance for DME synthesis.In order to ensure that the kinetics experimental results are not significantly influenced by induction period and catalyst deactivation,the experimental data should be read after 10 h in the catalytic reaction.

    3.2.Synthesis conditions of DME over CeO2-CaO-Pd/HZSM-5

    3.2.1.Temperature

    Fig.2 shows that CO conversion rate and DME selectivity increase with the rise of temperature,while DME selectivity decreases when the temperature is over 300°C.Conversely,methanol selectivity decreases significantly when the temperature is lower than 280°C and then stabilizes at 3%,and slight increases could be seen over 340°C.The selectivity of CO2presents no regular change under 300 °C,while it rises regularly above 300 °C.The data lead us to the conclusion that the optimal reaction temperature is 300°C.

    Fig.2.Effect of temperature on CeO2–CaO–Pd/HZSM-5 catalytic properties.Reaction condition:p=3.0 MPa,GHSV=1600 L·kg-1·h-1,n H2/n CO=2.0.

    Methanol synthesis reaction,methanol dehydration reaction and water–gas shift reaction are carried out simultaneously on the catalyst during DME one-step synthesis from syngas.In terms of thermodynamics,STD total reaction is a reversible exothermic,the equilibrium conversion should be reduced when the reaction temperature rises.However,the experimental results show that the increase of temperature is favorable to the reaction conversion rate,which contradicts thermodynamics.Since the different characteristics of three reactions,we think bifunctional catalyst which has one active center for methanol synthesis and water–gas shift reaction and the other for methanol dehydration is required for STD reaction.The spatial arrangement of the two kinds of active centers on the catalyst surface and the porous structure of the catalyst support make the reaction always kinetically controlled.Elevating temperature accelerates the movement of molecules,increases the number of activated molecules,and accelerates the reaction to direction of the DME.Thus,higher reaction temperature would improve the yield of DME in suitable temperature range.Nevertheless,the total reaction is close to thermodynamic equilibrium values[25]and DME is easy to be decomposed at high temperature.Therefore,the reaction temperature should not be higher than 300°C.

    3.2.2.Pressure

    Fig.3 indicates that CO conversion rises rapidly and reaches a maximum at 4 MPa then subsequently declines sharply with increasing pressure.The stoichiometric coefficient of direct synthesis of DME from CO and H2is reduced,consequently,elevating pressure facilitates CO conversion.However,since the number of molecules for methanol synthesis reaction reduces,quantity of generated methanol increases and excess methanol could not promptly dehydrate with the increase of pressure,which leads to reverse inhibited methanol synthesis reaction,so CO conversion reduces at high pressure.In addition,the number of molecules remains the same pre/post methanol dehydration reaction so that pressure has little effect on the reaction.DME selectivity slightly changes and reaches a higher level at 3–4 MPa just because of the effect of synergy.

    Fig.3.Effect of pressure on CeO2–CaO–Pd/HZSM-5 catalytic properties.Reaction condition:T=300 °C,GHSV=2000 L·kg-1·h-1,n H2/n CO=2.0.

    3.2.3.H2/CO mole ratio

    Fig.4.Effect of H2/CO on CeO2–CaO–Pd/HZSM-5 catalytic properties.Reaction condition:T=300 °C,p=3.0 MPa,GHSV=2000 L·kg-1·h-1.

    As exhibited in Fig.4,it can be seen that CO conversion on the catalyst improves as the H2/CO mole ratio increases.Especially,CO conversion rises up fastest when the H2/CO in 1–2 and then tends to slow.Methanol selectivity increases with the increase of H2/CO,while CO2conversion decreases.DME selectivity reaches the maximum when the H2/COis 2 and then decreases obviously.Keeping the pressure constant and increasing H2/CO are detrimental to water gas shift reaction.When the accumulated water vapor too late to translate,it is inevitable to restrain methanol synthesis reaction and the growth of CO conversion slow down.Indeed,superfluous water vapor would also inhibit the methanol dehydration reaction,which leads to reduction of DME and CO2selectivity.3.2.4.GHSV

    The reaction contact time of syngas and catalyst is shortened due to the increasing space velocity with the increase of space velocity,which reduces the selectivity of DME and CO2and the CO conversion,and increases the selectivity of methanol(Fig.5).The increasing selectivity of methanol owes to the untimely completion of methanol dehydration.From the thermodynamic point of view,increasing space velocity has little influence on water–gas shift reaction[26],and the methanol dehydration reaction and the water–gas shift reaction always maintain equilibrium.As a consequence,both the selectivity of DME and CO2fell off in the same range.

    Fig.5.Effect of GHSV on CeO2–CaO–Pd/HZSM-5 catalytic properties.Reaction condition:T=300°C,p=3.0 MPa,n H2/n CO=2.0.

    3.3.Kinetic mechanism and model

    Kinetic model of bifunctional catalyst particles CeO2–CaO–Pd/HZSM-5 is established under the conditon(240–300 °C,3–4 MPa,nH2/nCO=2:1 and space velocity 2000–6000 L·kg-1·h-1)based on the above experimental results of technological conditions.

    3.3.1.Kinetics experimental conditions

    As exhibited in Fig.6(a),CO conversion remains stable when the particle size of the catalyst is less than 0.6 mm,which implies that the effect of internal diffusion has been excluded.Fig.6(b)demonstrates the effect of external diffusion on CO conversion by changing space velocity under the loading of 0.5 g and 0.7 g,respectively.When the space velocity is less than 6 × 10-4kg·h·L-1,namely more than 1600 L·kg-1·h-1,CO conversion of the two kinds of catalysts loading are basically the same,indicating the influence of external diffusion has been eliminated.

    3.3.2.Kinetics reaction model building

    According to the actual situation,some assumptions made as follows in order to simplify the reaction kinetic equation:

    1.CO is the main raw material for the production of methanol,methanol synthesis from CO2and other side effects are ignored.Thus,the reaction system contains three reactions[27]:

    Methanol synthesis from syngas:

    2.Metal Pd is the active center of methanol synthesis and water gas shift reaction.By contrast,HZSM-5 surface is the active center of the methanol dehydration reaction.

    3.The water gas shift reaction is rapid equilibriumprocess,the reaction is always in an equilibrium state.

    4.The surface reaction of the adsorbed species is identified as the controlling step of the reaction,and the adsorption and desorption are in an equilibrium state.

    3.3.2.1.Surface reaction mechanism and rate equation of methanol synthesis.Methanol synthesis and water gas shift reaction occur mainly on Pd surface.There are chiefly two active centers on the catalyst,C1is adsorption center of CO,CO2,CHO,CH2O,CH3O and CH4O,C2is the adsorption center of H2,H and H2O.The possible mechanisms of the reaction are as follows:

    In the above process,the adsorptions are all weak adsorption except for CO,CO2,H2and H2O.Taking Formula(e)as rate controlling step for the synthesis of methanol and water gas shift reaction,the other steps are considered as equilibrium.The rate equation for the methanol synthesis reaction can be deduced.

    3.3.2.2.Surface reaction mechanism and rate equation of methanol dehydration.Methanol dehydration reaction occurs mainly on HZSM-5 surface,and primary adsorption species on the adsorption center(HX)are CH3OH,CH3+and CH3OHCH3+.The reaction mechanism proceeds according to the Langmuir–Hinshelwood type of molecules adsorption[28].

    Fig.6.Effect of(a)catalyst particle size and(b)space–time on CO transforming-rate.Reaction condition:T=300 °C,p=3.0 MPa,n H2/n CO=2:1.

    The rate controlling step for the dehydration reaction of methanol is described by Formula(k),the other steps are considered as equilibrium.The following expression is used to derive the rate equation for the dehydration of methanol based on Langmuir–Hinshelwood mechanism[28,29]:.

    Herek11andk21in Formulas(4)and(5)are reaction rate constant to be solved.Equilibrium constantsKeqm1andKeqm2are the function of temperature as follows:

    The model contains two rate constants and eight adsorption constants,and each constant could be expressed by the Arrhenius equation and the Van't Hoff equation.Twenty parameters contained in the model are to be confirmed.

    3.3.3.Kinetics experiment data

    The data in Table 1 are used to calculate partial pressure.

    Table 1Results of kinetics experiment

    3.3.4.Parameter estimation

    According to the assumption,the two independent reactions of Formulas(4)and(5)exist in the system.Taking M and DME as the key components,CO conversion is labeled asXCO.The mole fractions of Mand DME are expressed in terms ofYMandYDME,respectively.Material balance calculation of reaction layer volume element is conducted.

    Plug Eqs.(22)and(23)into Eq.(20)and Eq.(21)respectively:

    Numerical integration of the Formulas(24)and(25)are calculated by using Runge–Kutta method[30,31],which obtains the reaction rate of outlet key component.And then the parameter estimation of the model is performed with the simplex method[32].The model parameters obtained are shown in Table 2.

    Table 2Kinetic parameters for dimethyl ether synthesis

    3.3.5.Model validation

    In order to investigate the fitting ability of the model,the relative error of outlet key component concentration CO,CH3OH and DME between the experimental and calculated date is plotted in Fig.7.It could be clearly seen that the relative errors of CO and DME are all less than 5%while the relative error of methanol is less than 11%except for a few points.According to the information gathered above,we may reach the conclusion that the kinetic model could be well correlated with experimental data for DME one-step synthesis catalyzed by CeO2–CaO–Pd/HZSM-5.

    Fig.7.Mole fraction ofCO,CH3OH(M)and DME between the experimental and calculated date.

    4.Conclusions

    In the present work,the nano-sized CeO2–CaO–Pd/HZSM-5 catalyst exhibits excellent catalytic stability for the reaction of sulfur-containing syngas to dimethyl ether.The optimal technological conditions for DME one-step synthesis reaction are 240–300 °C for temperature,3–4 MPa for pressure,2000–3000 L·kg-1·h-1for space velocity and 2–3 for H2/CO mole ratio.Noble metal Pd is the active center of methanol synthesis and water gas shift reaction,while the HZSM-5 surface is the active center of the methanol dehydration reaction that has been assumed.Based on the assumptions,the optimal technological conditions were used to establish kinetic equation of hybrid catalyst of CeO2–CaO–Pd/HZSM-5.By combining the simplex method and Runge–Kutta method to investigate regression parameters,statistical tests show that the model is reliable,and the calculated values are in good agreement with the experimental data.

    Nomenclature

    A pre-exponential factor,mol·(g cat)-1·h-1·MPa-3/2,mol·(g cat)-1·h-1·MPa-1,MPa-1

    B negative value of activation energy,J·mol-1

    Ciadsorption center

    dpcatalyst particle size,mm

    Fimolar flow,mol·h-1

    K adsorption constant

    Keqmequilibrium constants

    kreaction rate constant

    ppressure,MPa

    Rmolar gas constant,J·mol-1·K-1

    Siselectivity of species i,%

    STYDMEDME space–time yield,mmol·g-1·h-1

    Ttemperature,°C

    tspace–time,kg·h·L-1

    wmass of catalyst,g

    XCOCO conversion,%

    Yimole fractions of speciesi yiconstitution of tail gas

    γ reaction rate,mol·g-1·h-1

    standard molar reaction enthalpy,kJ·mol-1

    τ reaction time,h

    Superscripts

    Mmethanol

    [1]A.V.Pattekar,M.V.Kothare,A microreactor for hydrogen production in micro fuel cell applications,J.Microelectromech.Syst.13(2005)7–18.

    [2]R.Retnamma,A.Q.Novais,C.M.Rangel,Kinetics of hydrolysis of sodium borohydride for hydrogen production in fuel cell applications:A review,Int.J.Hydrog.Energy36(2011)9772–9790.

    [3]N.Jamsran,O.Lim,A study on the autoignition characteristics of DME-LPG dual fuel in HCCI engine,Heat Transf.Eng.1–38(2016).

    [4]C.Arcoumanis,C.Bae,R.Crookes,E.Kinoshita,The potential of di-methyl ether(DME)as an alternative fuel for compression–ignition engines:A review,Fuel87(2008)1014–1030.

    [5]K.Sato,Y.Tanaka,A.Negishi,T.Kato,Dual fuel type solid oxide fuel cell using dimethyl ether and liquefied petroleum gas as fuels,J.Power Sources217(2012)37–42.

    [6]Y.Y.Zhu,S.R.Wang,X.L.Ge,Q.Liu,Z.Y.Luo,K.F.Cen,Experimental study of improved two step synthesis for DME production,Fuel Process.Technol.91(2010)424–429.

    [7]Y.Han,H.Zhang,Modeling and simulation of production process on dimethyl ether synthesized from coal-based syngas by one-step method,Chin.J.Chem.Eng.17(2009)108–112.

    [8]F.S.Ramos,A.M.D.D.Farias,L.E.P.Borges,J.L.Monteiro,M.A.Fraga,E.F.Sousa-Aguiar,L.G.Appel,Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures,Catal.Today101(2005)39–44.

    [9]A.García-Trenco,A.Martínez,The influence of zeolite surface-aluminum species on the deactivation of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis,Catal.Today227(2014)144–153.

    [10]S.Papari,M.Kazemeini,M.Fattahi,Modelling-based optimisation of the direct synthesis of dimethyl ether from syngas in a commercial slurry reactor,Chin.J.Chem.Eng.21(2013)611–621.

    [11]G.R.Moradi,S.Nosrati,F.Yaripor,Effect of the hybrid catalysts preparation method upon directsynthesis of dimethyl ether from synthesis gas,Catal.Commun.8(2007)598–606.

    [12]J.H.Flores,D.P.B.Peixoto,L.G.Appel,R.R.D.Avillez,M.I.P.D.Silva,The influence of different methanol synthesis catalysts on direct synthesis of DME from syngas,Catal.Today172(2011)218–225.

    [13]D.Feng,Y.Zuo,Steam reforming of dimethyl ether over coupled catalysts of CuO–ZnO–Al2O3–ZrO2and solid-acid catalyst,Chin.J.Chem.Eng.17(2009)64–71.

    [14]R.Z.Chu,Controllable preparation of sulfur-tolerant Pd catalysts under microwave irradiation and application of these catalysts in one-step synthesis of dimethyl ether,J.China Coal Soc.37(2012)711–712(in Chinese).

    [15]G.Pop,G.Bozga,R.Ganea,N.Natu,Methanol conversion to dimethyl ether over H-SAPO-34 catalyst,Ind.Eng.Chem.Res.48(2009)7065–7071.

    [16]W.Z.Lu,L.H.Teng,W.D.Xiao,Simulation and experiment study of dimethylether synthesis from syngas in a fluidized-bed reactor,Chem.Eng.Sci.59(2004)5455–5464.

    [17]L.Zhang,H.Zhang,W.Ying,D.Fang,Dehydration of methanol to dimethyl ether over γ-Al2O3,catalyst:Intrinsic kinetics and effectiveness factor,Can.J.Chem.Eng.91(2013)1538–1546.

    [18]R.Z.Chu,Z.C.Zhang,Y.F.Liu,X.L.Meng,Z.M.Zong,X.Y.Wei,Study on preparation and catalytic properties of Pd/γ-Al2O3catalysts in one-step synthesis of dimethyl ether,Appl.Mech.Mater.66–68(2011)1404–1409.

    [19]X.L.Meng,R.Z.Chu,B.Qin,E.W.Yue,T.T.Chen,X.Y.Wei,Influence of compound additive CeO2–MxOyon catalytic performance of Pd/γ-Al2O3catalyst for one-step synthesis of dimethyl ether,Energy Sources Part A37(2015)870–877.

    [20]R.Z.Chu,X.L.Meng,X.Y.Wei,Z.M.Zong,Z.C.Zhang,Y.F.Liu,Preparation Method of Dual Function Type Palladium Based Catalyst Under Microwave Condition,CN102389793A,2012.

    [21]R.Z.Chu,T.T.Xu,X.L.Meng,G.G.Wu,Mechanism of reaction of CeO2–CaO–Pd/HZSM5 catalyst in the syngas process in the presence of sulfur containing impurities,Prog.React.Kinet.Mech.41(2016)235–244.

    [22]Y.Ma,Q.Ge,W.Li,H.Xu,Methanol synthesis from sulfur-containing syngas over Pd/CeO2catalyst,Appl.Catal.B Environ.90(2009)99–104.

    [23]X.Li,X.W.Wang,M.Zhao,J.Y.Liu,M.C.Gong,Y.Q.Chen,Chin.J.Catal.32(2014)1739–1746.

    [24]S.Naito,T.Kasahara,T.Miyao,Transformation of methane formation sites into methanol formation ones during CORH2,reaction over Pd/CeO2in its SMSI state,Catal.Today74(2002)201–206.

    [25]H.J.Chen,C.W.Fan,C.S.Yu,Analysis,synthesis,and design of a one-step dimethyl ether production via a thermodynamic approach,Appl.Energy101(2013)449–456.

    [26]A.Basile,S.Curcio,G.Bagnato,S.Liguori,S.M.Jokar,A.Lulianelli,Water gas shift reaction in membrane reactors:Theoretical investigation by artificial neural networks model and experimental validation,Int.J.Hydrog.Energy40(2015)5897–5906.

    [27]G.R.Moradi,J.Ahmadpour,F.Yaripour,J.Wang,Equilibrium calculations for direct synthesis of dimethyl ether from syngas,Can.J.Chem.Eng.9999(2011)1–8.

    [28]S.J.Royaee,C.Falamaki,M.Sohrabi,S.S.A.Talesh,A new Langmuir–Hinshelwood mechanism for the methanol to dimethyl ether dehydration reaction over clinoptilolite–zeolite catalyst,Appl.Catal.A Gen.338(2008)114–120.

    [29]L.Tong,L.Chen,Y.Ye,Z.Qi,Kinetic studies on the dimerization of isobutene with Ni/Al2O3as a catalyst for reactive distillation process,Chin.J.Chem.Eng.23(2015)520–527.

    [30]G.Tasi,D.Barna,Analytical and numerical computation of error propagation of model parameters,J.Math.Chem.49(2011)1322–1329.

    [31]M.Poorabdollah,M.H.Beheshty,M.Vafayan,Kinetic modeling of nanoclay reinforced unsaturated polyester resin,Polym.Compos.32(2011)1265–1273.

    [32]G.Dimarco,L.Pareschi,Exponential Runge–Kutta methods for stiff kinetic equations,SIAM J.Numer.Anal.49(2010)2057–2077.

    av在线蜜桃| 最好的美女福利视频网| 久久亚洲精品不卡| 天堂√8在线中文| 国产精品一区二区三区四区久久| 嫩草影院新地址| 舔av片在线| 亚洲 国产 在线| 动漫黄色视频在线观看| 自拍偷自拍亚洲精品老妇| 欧美又色又爽又黄视频| 久久婷婷人人爽人人干人人爱| 亚洲av成人av| 亚洲国产欧洲综合997久久,| 一区二区三区免费毛片| 亚洲av免费高清在线观看| 成人性生交大片免费视频hd| 女的被弄到高潮叫床怎么办 | 欧美性猛交黑人性爽| 黄色女人牲交| 国产午夜精品久久久久久一区二区三区 | 亚洲一区二区三区色噜噜| 国产精品亚洲一级av第二区| 亚洲自拍偷在线| 制服丝袜大香蕉在线| 久久国内精品自在自线图片| 精品久久久久久成人av| 欧美日韩综合久久久久久 | 久久国产乱子免费精品| 97超视频在线观看视频| 日本爱情动作片www.在线观看 | 欧美性猛交黑人性爽| 69av精品久久久久久| 亚洲四区av| 成年免费大片在线观看| 国内精品久久久久精免费| 欧美绝顶高潮抽搐喷水| 国产精品一区二区性色av| 此物有八面人人有两片| 日韩欧美三级三区| 最近中文字幕高清免费大全6 | 非洲黑人性xxxx精品又粗又长| 老司机午夜福利在线观看视频| 观看免费一级毛片| 亚洲国产精品合色在线| 91久久精品电影网| 成人国产麻豆网| 国产三级在线视频| 欧美黑人欧美精品刺激| 精品久久久久久久末码| 久久精品国产亚洲网站| 日本三级黄在线观看| 国产激情偷乱视频一区二区| 99视频精品全部免费 在线| 国产精品久久久久久久电影| 欧美日本亚洲视频在线播放| 哪里可以看免费的av片| 久久6这里有精品| 人妻少妇偷人精品九色| 国产在视频线在精品| 在线国产一区二区在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲国产精品sss在线观看| 亚洲一级一片aⅴ在线观看| a级毛片免费高清观看在线播放| 亚洲av一区综合| 久久精品国产清高在天天线| 美女大奶头视频| 国产爱豆传媒在线观看| 亚洲 国产 在线| 一级a爱片免费观看的视频| 午夜影院日韩av| 日本免费一区二区三区高清不卡| 成人毛片a级毛片在线播放| 成人特级黄色片久久久久久久| 级片在线观看| 啦啦啦啦在线视频资源| 美女大奶头视频| 91av网一区二区| 亚洲乱码一区二区免费版| 日韩一本色道免费dvd| 精品人妻偷拍中文字幕| 亚洲中文字幕日韩| 女同久久另类99精品国产91| 国语自产精品视频在线第100页| 亚洲成av人片在线播放无| 99热精品在线国产| 看片在线看免费视频| 成人综合一区亚洲| 色5月婷婷丁香| 日本黄色视频三级网站网址| 亚洲一区二区三区色噜噜| 搡老岳熟女国产| 国产国拍精品亚洲av在线观看| 国产精品精品国产色婷婷| 99久久精品国产国产毛片| 毛片女人毛片| 精品人妻一区二区三区麻豆 | 中文字幕熟女人妻在线| 国模一区二区三区四区视频| 色av中文字幕| 亚洲,欧美,日韩| 国产精品1区2区在线观看.| 国产高清三级在线| 美女xxoo啪啪120秒动态图| 亚洲精品粉嫩美女一区| 五月伊人婷婷丁香| 日本免费一区二区三区高清不卡| 丰满的人妻完整版| 久久久久久久午夜电影| 乱系列少妇在线播放| av黄色大香蕉| av福利片在线观看| 久久人人精品亚洲av| 亚洲av成人av| 精品久久久久久久末码| 日本黄色片子视频| 国产伦精品一区二区三区四那| 网址你懂的国产日韩在线| 精品一区二区三区人妻视频| 亚洲成人精品中文字幕电影| 十八禁网站免费在线| 少妇猛男粗大的猛烈进出视频 | 中文字幕高清在线视频| 亚洲av五月六月丁香网| 久久欧美精品欧美久久欧美| 国产精品一区二区三区四区久久| 亚洲五月天丁香| 中文字幕精品亚洲无线码一区| 成年女人毛片免费观看观看9| 窝窝影院91人妻| 国产精品综合久久久久久久免费| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 国产亚洲精品久久久久久毛片| 亚洲av免费在线观看| 午夜精品久久久久久毛片777| 免费一级毛片在线播放高清视频| 一级a爱片免费观看的视频| 国产精品久久视频播放| 欧美潮喷喷水| 男人舔女人下体高潮全视频| 成人av在线播放网站| 国产精品亚洲美女久久久| 最新中文字幕久久久久| 亚洲最大成人手机在线| 亚洲中文日韩欧美视频| 国产精品av视频在线免费观看| 久久久久九九精品影院| av在线亚洲专区| 男人舔女人下体高潮全视频| 午夜精品在线福利| 中文字幕av在线有码专区| 国产精品无大码| 亚洲黑人精品在线| 国产激情偷乱视频一区二区| 久久99热这里只有精品18| 亚洲欧美日韩高清专用| 少妇熟女aⅴ在线视频| www.色视频.com| 亚洲av免费高清在线观看| 午夜日韩欧美国产| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清专用| 亚洲av五月六月丁香网| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看 | 亚洲av成人av| 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡| 国产高清有码在线观看视频| 免费观看精品视频网站| 少妇被粗大猛烈的视频| 午夜精品久久久久久毛片777| 国产精品亚洲美女久久久| 他把我摸到了高潮在线观看| 日本撒尿小便嘘嘘汇集6| 国产白丝娇喘喷水9色精品| 深夜精品福利| 精品久久久久久成人av| 婷婷精品国产亚洲av在线| av视频在线观看入口| 精品一区二区三区av网在线观看| 在线观看一区二区三区| 亚洲人与动物交配视频| 日韩,欧美,国产一区二区三区 | 亚洲性久久影院| 99久久精品热视频| 两人在一起打扑克的视频| 波野结衣二区三区在线| 我要搜黄色片| 大又大粗又爽又黄少妇毛片口| 免费看a级黄色片| 啪啪无遮挡十八禁网站| 亚洲精品456在线播放app | 人妻久久中文字幕网| 老司机深夜福利视频在线观看| 国产老妇女一区| 日日撸夜夜添| 麻豆成人午夜福利视频| 亚洲av成人精品一区久久| 变态另类成人亚洲欧美熟女| 国产主播在线观看一区二区| 欧美日韩乱码在线| 亚洲精品乱码久久久v下载方式| 国产精品98久久久久久宅男小说| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜福利片| 别揉我奶头 嗯啊视频| 国产精品久久久久久久电影| 国产91精品成人一区二区三区| 观看美女的网站| 蜜桃亚洲精品一区二区三区| 黄色日韩在线| 国产精品,欧美在线| 国产黄色小视频在线观看| 国产中年淑女户外野战色| 人人妻人人看人人澡| 亚洲美女黄片视频| 久久久久久久午夜电影| 午夜精品久久久久久毛片777| 欧美3d第一页| 国产av麻豆久久久久久久| 91午夜精品亚洲一区二区三区 | a级一级毛片免费在线观看| 一进一出抽搐gif免费好疼| 亚洲av免费在线观看| 校园人妻丝袜中文字幕| 韩国av在线不卡| 日韩欧美在线乱码| 精品久久久久久久久亚洲 | 变态另类成人亚洲欧美熟女| 亚洲av.av天堂| 中亚洲国语对白在线视频| 亚洲久久久久久中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲乱码一区二区免费版| 亚洲av一区综合| 女的被弄到高潮叫床怎么办 | 日本 欧美在线| 最近最新中文字幕大全电影3| 不卡一级毛片| 精品久久国产蜜桃| 成人av在线播放网站| 午夜免费男女啪啪视频观看 | 黄色女人牲交| 给我免费播放毛片高清在线观看| 午夜精品一区二区三区免费看| 国产乱人视频| 在线观看美女被高潮喷水网站| 成年女人毛片免费观看观看9| 永久网站在线| 亚洲七黄色美女视频| 免费观看精品视频网站| 在线免费观看的www视频| bbb黄色大片| 欧美日韩综合久久久久久 | 国产在线男女| 日韩欧美一区二区三区在线观看| 色av中文字幕| 亚洲精品日韩av片在线观看| 欧美色欧美亚洲另类二区| 99视频精品全部免费 在线| 男女之事视频高清在线观看| 啦啦啦韩国在线观看视频| 国产精品av视频在线免费观看| xxxwww97欧美| 在线观看av片永久免费下载| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| 麻豆国产97在线/欧美| 亚洲不卡免费看| 亚洲乱码一区二区免费版| 午夜爱爱视频在线播放| 一区二区三区激情视频| a级毛片免费高清观看在线播放| 精品午夜福利视频在线观看一区| 国产乱人伦免费视频| 久久久成人免费电影| 欧美激情在线99| 精品久久久久久成人av| 久久香蕉精品热| 波多野结衣高清作品| 亚洲欧美日韩高清专用| 少妇的逼水好多| 久久久久久九九精品二区国产| 国产精品一区二区三区四区久久| 日本一二三区视频观看| 九色国产91popny在线| 动漫黄色视频在线观看| 久久人人爽人人爽人人片va| 亚洲成a人片在线一区二区| 亚洲成av人片在线播放无| 国产亚洲91精品色在线| 久久国产精品人妻蜜桃| 我的女老师完整版在线观看| 极品教师在线视频| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 精品一区二区三区视频在线| 亚洲第一区二区三区不卡| 日本 欧美在线| 亚洲欧美日韩东京热| 乱人视频在线观看| 看黄色毛片网站| АⅤ资源中文在线天堂| 欧美一级a爱片免费观看看| 免费av毛片视频| 欧美另类亚洲清纯唯美| 午夜a级毛片| 两人在一起打扑克的视频| 午夜福利高清视频| 国产成人aa在线观看| 一区二区三区激情视频| 亚洲va在线va天堂va国产| 国内精品一区二区在线观看| 精品免费久久久久久久清纯| 伦精品一区二区三区| 麻豆国产97在线/欧美| 国产在线精品亚洲第一网站| 99久久精品热视频| 免费黄网站久久成人精品| 国产精品福利在线免费观看| 亚洲欧美激情综合另类| 最好的美女福利视频网| 国产中年淑女户外野战色| 1000部很黄的大片| 桃红色精品国产亚洲av| 国产一级毛片七仙女欲春2| 亚洲精华国产精华精| 国产精品一区二区三区四区免费观看 | 国产一区二区三区在线臀色熟女| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 国产精品电影一区二区三区| 国国产精品蜜臀av免费| 人人妻人人看人人澡| 琪琪午夜伦伦电影理论片6080| 联通29元200g的流量卡| 女生性感内裤真人,穿戴方法视频| 日本一本二区三区精品| 日本色播在线视频| 桃红色精品国产亚洲av| 中文字幕久久专区| 亚洲精品亚洲一区二区| 国产精品爽爽va在线观看网站| 桃色一区二区三区在线观看| 精品一区二区三区人妻视频| 少妇裸体淫交视频免费看高清| a级一级毛片免费在线观看| 少妇的逼好多水| 日韩大尺度精品在线看网址| 美女高潮喷水抽搐中文字幕| 国产成人a区在线观看| 精品乱码久久久久久99久播| 久久人妻av系列| 国产蜜桃级精品一区二区三区| 内地一区二区视频在线| 他把我摸到了高潮在线观看| av在线老鸭窝| 欧美黑人欧美精品刺激| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 赤兔流量卡办理| 欧美日韩中文字幕国产精品一区二区三区| 国产在线男女| 俄罗斯特黄特色一大片| 国产精品亚洲美女久久久| 日韩欧美免费精品| 日韩精品中文字幕看吧| 国产高清有码在线观看视频| 国产黄片美女视频| 99riav亚洲国产免费| av福利片在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情在线99| 婷婷亚洲欧美| 日韩欧美精品免费久久| 亚洲最大成人中文| 精品久久久久久久末码| 日本-黄色视频高清免费观看| 日本欧美国产在线视频| 国内精品一区二区在线观看| 国产精品久久视频播放| 999久久久精品免费观看国产| 夜夜爽天天搞| 三级男女做爰猛烈吃奶摸视频| 天天躁日日操中文字幕| 亚洲中文字幕日韩| 人妻少妇偷人精品九色| 国产av在哪里看| 成人鲁丝片一二三区免费| 97人妻精品一区二区三区麻豆| 亚洲欧美精品综合久久99| avwww免费| 久久久久久久久久久丰满 | 成人二区视频| 国产不卡一卡二| 一卡2卡三卡四卡精品乱码亚洲| 日韩中字成人| 九九爱精品视频在线观看| 亚洲美女视频黄频| 日本一本二区三区精品| 国产一区二区亚洲精品在线观看| 国产亚洲精品综合一区在线观看| 嫩草影院新地址| 精品福利观看| 中亚洲国语对白在线视频| 亚洲人成网站在线播放欧美日韩| 日本一二三区视频观看| 日韩人妻高清精品专区| 免费在线观看成人毛片| 亚洲精品成人久久久久久| 国产精品久久电影中文字幕| 99热只有精品国产| 日韩一区二区视频免费看| 久久久久久大精品| 天天一区二区日本电影三级| 在线观看午夜福利视频| 国产高清视频在线播放一区| 成年免费大片在线观看| 亚洲美女视频黄频| 成人综合一区亚洲| 极品教师在线免费播放| 国产白丝娇喘喷水9色精品| 午夜老司机福利剧场| 亚洲国产高清在线一区二区三| 三级男女做爰猛烈吃奶摸视频| 女生性感内裤真人,穿戴方法视频| 亚洲精华国产精华液的使用体验 | 少妇的逼好多水| 天堂av国产一区二区熟女人妻| 最近视频中文字幕2019在线8| 欧美+日韩+精品| 国产高清有码在线观看视频| 国产亚洲精品久久久久久毛片| 国产欧美日韩一区二区精品| 2021天堂中文幕一二区在线观| 成人鲁丝片一二三区免费| avwww免费| 国产高清三级在线| 久久久久久国产a免费观看| 久久久久免费精品人妻一区二区| 国产精品久久久久久av不卡| 三级国产精品欧美在线观看| 非洲黑人性xxxx精品又粗又长| 成人三级黄色视频| 高清在线国产一区| 色哟哟·www| 韩国av一区二区三区四区| 欧美zozozo另类| 又紧又爽又黄一区二区| 99精品久久久久人妻精品| 日韩欧美国产一区二区入口| 久久草成人影院| 国产高清激情床上av| 又黄又爽又刺激的免费视频.| 国产av不卡久久| 尾随美女入室| 午夜福利在线观看吧| 成年女人看的毛片在线观看| 在线看三级毛片| 亚洲精品成人久久久久久| 日韩欧美国产在线观看| 欧美一区二区国产精品久久精品| 老司机深夜福利视频在线观看| 精品久久久久久久末码| 日本黄色视频三级网站网址| 久久久久国内视频| 网址你懂的国产日韩在线| 日韩欧美免费精品| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看| 18禁黄网站禁片午夜丰满| 亚洲成人免费电影在线观看| 久久久久久久精品吃奶| 人人妻人人看人人澡| 亚洲内射少妇av| 精品久久久噜噜| 免费av毛片视频| 亚洲第一电影网av| 久久婷婷人人爽人人干人人爱| 精品99又大又爽又粗少妇毛片 | 男人狂女人下面高潮的视频| av在线观看视频网站免费| 精品无人区乱码1区二区| 又粗又爽又猛毛片免费看| 真人一进一出gif抽搐免费| 国产午夜福利久久久久久| 国产精华一区二区三区| 日本黄色视频三级网站网址| a在线观看视频网站| 婷婷精品国产亚洲av| 精品久久久久久久末码| 日韩,欧美,国产一区二区三区 | 中出人妻视频一区二区| 久久精品人妻少妇| 午夜激情欧美在线| 日韩欧美国产一区二区入口| 女的被弄到高潮叫床怎么办 | 亚洲性久久影院| 97热精品久久久久久| 99久久久亚洲精品蜜臀av| 老司机午夜福利在线观看视频| www.色视频.com| 国产在线男女| 亚洲精华国产精华精| 老熟妇仑乱视频hdxx| 精品日产1卡2卡| 国产亚洲91精品色在线| 亚洲最大成人中文| 久9热在线精品视频| 人人妻人人澡欧美一区二区| 久久久久久久久久久丰满 | 淫妇啪啪啪对白视频| 亚洲av日韩精品久久久久久密| 婷婷亚洲欧美| 亚洲成人久久爱视频| 男人舔女人下体高潮全视频| 国产欧美日韩精品一区二区| 狠狠狠狠99中文字幕| 色哟哟哟哟哟哟| 麻豆av噜噜一区二区三区| 热99在线观看视频| 美女被艹到高潮喷水动态| 久久久久久久精品吃奶| 日本免费一区二区三区高清不卡| 蜜桃久久精品国产亚洲av| 女生性感内裤真人,穿戴方法视频| 国产毛片a区久久久久| 午夜精品久久久久久毛片777| 婷婷色综合大香蕉| 欧美一级a爱片免费观看看| 国产伦人伦偷精品视频| 精品一区二区三区人妻视频| 特大巨黑吊av在线直播| 国产欧美日韩精品亚洲av| 天天一区二区日本电影三级| 麻豆成人午夜福利视频| 日韩精品有码人妻一区| 小蜜桃在线观看免费完整版高清| 午夜福利在线观看吧| 亚洲精品在线观看二区| 国产大屁股一区二区在线视频| 18禁在线播放成人免费| 永久网站在线| 亚洲av不卡在线观看| 欧美精品国产亚洲| 日韩精品中文字幕看吧| 午夜爱爱视频在线播放| 国产伦精品一区二区三区视频9| 色综合婷婷激情| 成人无遮挡网站| 欧美又色又爽又黄视频| 国产 一区 欧美 日韩| 欧美日韩乱码在线| 免费在线观看影片大全网站| 精品99又大又爽又粗少妇毛片 | 免费无遮挡裸体视频| 午夜爱爱视频在线播放| 九九久久精品国产亚洲av麻豆| 国产精品野战在线观看| 欧美xxxx黑人xx丫x性爽| 最好的美女福利视频网| 亚洲在线自拍视频| 丝袜美腿在线中文| 男人舔奶头视频| 老女人水多毛片| 国内毛片毛片毛片毛片毛片| 人妻夜夜爽99麻豆av| 免费黄网站久久成人精品| a级毛片a级免费在线| 国产精品久久久久久久电影| 极品教师在线视频| 色综合站精品国产| 免费av不卡在线播放| 美女 人体艺术 gogo| 免费电影在线观看免费观看| 成人一区二区视频在线观看| 免费大片18禁| 亚洲经典国产精华液单| 亚洲最大成人手机在线| 欧美色欧美亚洲另类二区| 无遮挡黄片免费观看| 啪啪无遮挡十八禁网站| 国产高清视频在线播放一区| 久久久色成人| 婷婷精品国产亚洲av在线| 亚洲久久久久久中文字幕| 亚洲av成人av| 老司机深夜福利视频在线观看| 久久午夜福利片| 国内少妇人妻偷人精品xxx网站| 国产精品伦人一区二区| 亚洲av免费在线观看| 啦啦啦韩国在线观看视频| 欧美日韩乱码在线| 国产精品1区2区在线观看.| 精品久久久久久久末码| 久久久久国产精品人妻aⅴ院| 99久久精品国产国产毛片| 亚洲中文字幕一区二区三区有码在线看| 欧美色视频一区免费| 国产真实伦视频高清在线观看 | 国产三级在线视频| 高清在线国产一区| 国国产精品蜜臀av免费| 搞女人的毛片| 99久久精品国产国产毛片| 欧美+亚洲+日韩+国产| 欧洲精品卡2卡3卡4卡5卡区| 国产精品,欧美在线| 日韩在线高清观看一区二区三区 |