汪英英,胡兆農(nóng)
(1.西北農(nóng)林科技大學(xué) 植物保護(hù)學(xué)院 農(nóng)藥研究所,陜西楊凌 712100;2.陜西省植物源農(nóng)藥研究與開(kāi)發(fā)重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100)
杠柳新苷P和E對(duì)粘蟲(chóng)和小地老虎中腸3種解毒酶的影響
汪英英1,2,胡兆農(nóng)1,2
(1.西北農(nóng)林科技大學(xué) 植物保護(hù)學(xué)院 農(nóng)藥研究所,陜西楊凌712100;2.陜西省植物源農(nóng)藥研究與開(kāi)發(fā)重點(diǎn)實(shí)驗(yàn)室,陜西楊凌712100)
摘要為進(jìn)一步探討杠柳新苷類(lèi)化合物在昆蟲(chóng)體內(nèi)的代謝機(jī)制。比較研究高活性杠柳新苷P(Periploca sepium P,PSP)和無(wú)殺蟲(chóng)活性的杠柳新苷E(Periploca sepium E,PSE)對(duì)6齡粘蟲(chóng)幼蟲(chóng)(Mythimna separata)與小地老虎幼蟲(chóng)(Agrotis ypsilon)中腸3種代謝酶[羧酸酯酶(CarE)、谷胱甘肽-S-轉(zhuǎn)移酶(GST)、細(xì)胞色素P450-O-脫甲基酶]活性的影響。結(jié)果表明:藥后8 h,PSP和PSE使粘蟲(chóng)幼蟲(chóng)GST活性增加,但PSP上升趨勢(shì)比PSE更高。而2種化合物對(duì)試蟲(chóng)CarE活性均無(wú)明顯影響。藥后12 h,PSP和PSE使粘蟲(chóng)中腸細(xì)胞色素P450-O-脫甲基酶酶比活力顯著下降,而小地老虎中該酶活性無(wú)明顯變化。因此,可推測(cè)GST可能參與昆蟲(chóng)對(duì)杠柳毒素的解毒作用,而細(xì)胞色素P450-O-脫甲基酶活性被杠柳毒素抑制可能是造成粘蟲(chóng)中毒的機(jī)制之一。關(guān)鍵詞杠柳新苷;粘蟲(chóng);小地老虎;中腸;解毒酶
杠柳作為中國(guó)民間流傳的一種土農(nóng)藥,其根皮提取物已被研究證實(shí)可作為控制一些鱗翅目害蟲(chóng)的殺蟲(chóng)劑,包括小菜蛾、菜粉蝶、粘蟲(chóng)等[1-3]。近期,西北農(nóng)林科技大學(xué)植物保護(hù)學(xué)院農(nóng)藥研究所報(bào)道杠柳根皮中一些具有殺蟲(chóng)活性的孕糖苷骨架化合物,如杠柳新苷P(PSP)、杠柳新苷T、杠柳新苷NW等[4-7]。通過(guò)對(duì)這一系列化合物的生物決定,結(jié)果表明,PSP對(duì)3齡粘蟲(chóng)幼蟲(chóng)48 h的半數(shù)致死濃度(LC50)為110 mg/L,但對(duì)小地老虎無(wú)活性。杠柳新苷E(PSE)是除1個(gè)取代基不同外與PSP具相同分子結(jié)構(gòu)的化合物(圖1)[8],對(duì)粘蟲(chóng)和小地老虎均無(wú)作用。而昆蟲(chóng)中腸作為分泌消化酶和其他酶類(lèi)的主要部位,起著消化食物和吸收養(yǎng)分的重要作用,也是病原微生物、農(nóng)藥和各種毒素的作用靶標(biāo)。同時(shí)昆蟲(chóng)中腸也是其體內(nèi)主要的解毒部位,其中酯酶、細(xì)胞色素P450和谷胱甘肽-S-轉(zhuǎn)移酶(GSTs)作為昆蟲(chóng)參與各種內(nèi)源和外源化合物代謝的重要解毒酶,與植物外源化合物的降解和清除有關(guān),尤其是昆蟲(chóng)體內(nèi)的農(nóng)藥代謝,這些解毒酶發(fā)揮著極其重要的作用[9-11]。
外源性化學(xué)物質(zhì)引起昆蟲(chóng)解毒酶活性變化可能會(huì)造成昆蟲(chóng)代謝紊亂,并影響其正常的生理生化過(guò)程[12]。目前,關(guān)于杠柳新苷類(lèi)化合物對(duì)昆蟲(chóng)代謝酶系的影響報(bào)道較少,為進(jìn)一步探討杠柳新苷類(lèi)化合物在昆蟲(chóng)體內(nèi)的代謝機(jī)制,本試驗(yàn)通過(guò)對(duì)比研究具有殺蟲(chóng)活性的化合物PSP和不具有殺蟲(chóng)活性的化合物PSE對(duì)粘蟲(chóng)和小地老虎幼蟲(chóng)中腸羧酸酯酶(CarE)、谷胱甘肽-S-轉(zhuǎn)移酶(GST)和細(xì)胞色素P450-O-脫甲基酶3種解毒酶活性的影響,以期初步明確杠柳新苷類(lèi)化合物在昆蟲(chóng)體內(nèi)的代謝機(jī)制,為進(jìn)一步研究其作用機(jī)制奠定基礎(chǔ)。
杠柳新苷P Periplocoside P: R= H
1材料與方法
1.1供試?yán)ハx(chóng)
粘蟲(chóng)(Mythimnaseparate)和小地老虎(Agrotisypsilon) 6齡幼蟲(chóng),由西北農(nóng)林科技大學(xué)植物保護(hù)學(xué)院農(nóng)藥研究所提供。常規(guī)方法飼養(yǎng),養(yǎng)蟲(chóng)室內(nèi)溫度為22~25 ℃、相對(duì)濕度為70%~80%,分別以小麥、甘藍(lán)葉飼喂粘蟲(chóng)和小地老虎幼蟲(chóng)。試驗(yàn)時(shí)挑取整齊一致的6齡試蟲(chóng)。
1.2主要儀器及試劑
TGL-16G-A型高速冷凍離心機(jī)(上海安亭科學(xué)儀器廠),DY89-Ⅰ型電動(dòng)玻璃勻漿機(jī)(寧波新芝生物科技股份有限公司),MK3型酶標(biāo)儀(美國(guó)熱電上海儀器有限公司),756MC型紫外-可見(jiàn)分光光度計(jì)(上海菁華科技儀器有限公司),420A型電熱恒溫水箱(北京科偉永鑫實(shí)驗(yàn)儀器設(shè)備廠),杠柳新苷P和E(純度>95%),由西北農(nóng)林科技大學(xué)植物保護(hù)學(xué)院農(nóng)藥研究所自行制備提供。
毒扁豆堿、1-氯-2,4-二硝基苯(CDNB)、谷胱甘肽(GSH)、NADPH、對(duì)硝基茴香醚(p-NA)均購(gòu)自SIGMA公司。
EDTA、苯甲基硫酰氟(PMSF)、丙基硫氧嘧啶(PTU)、α-醋酸萘酯、α-萘酚、十二烷基磺酸鈉(SDS)、堅(jiān)牢藍(lán)B、蛋白質(zhì)定量試劑盒均為國(guó)產(chǎn)生化試劑。
1.3試蟲(chóng)處理
采用載毒葉片飼喂法,挑選生長(zhǎng)發(fā)育一致的6齡粘蟲(chóng)和小地老虎于24孔板中,每孔放置1頭,饑餓24 h,分處理藥劑組和溶劑對(duì)照組。處理組分別點(diǎn)涂1 μL含2 g/L PSP或2 g/L PSE丙酮溶液于小麥和甘藍(lán)葉片(約0.5 cm × 0.5 cm)上,小麥葉片飼喂粘蟲(chóng),甘藍(lán)葉片飼喂小地老虎,待丙酮揮發(fā)后,將小麥葉片放入24孔板中,每頭試蟲(chóng)1張葉片。對(duì)照組試蟲(chóng),飼喂點(diǎn)涂1 μL丙酮的葉片。分別取取食后2、4、8、12、24和48 h的藥劑處理試蟲(chóng)及對(duì)照試蟲(chóng)各10頭,用于酶液制備。每處理重復(fù)3 次。
1.4酶液制備
各供試試蟲(chóng)在冰袋上迅速解剖,用預(yù)冷的0.15 mol/L NaCl溶液沖去體液,截取中腸,去除胃食膜供試。GST活性測(cè)定酶液制備:將供試的中腸組織于預(yù)冷的玻璃勻漿器中,加入少量預(yù)冷的0.1 mol/L pH 8.0磷酸緩沖液(含有φ=15%甘油,2 mmol/L EDTA),冰上勻漿,10 000×g,4 ℃冷凍離心20 min。CarE活性測(cè)定酶液制備:將供試的中腸組織在0.04 mol/L磷酸鈉緩沖液(pH 7.0)冰上勻漿,12 000×g,4 ℃冷凍離心15 min。細(xì)胞色素P450-O-脫甲基酶活性測(cè)定酶液制備:將供試的中腸于0.1 mol/L pH 7.5磷酸鈉緩沖液(φ=10% 甘油,1 mmol/L PMSF,1 mmol/L PTU,1 mmol/L EDTA)冰上勻漿,10 000 ×g,4 ℃冷凍離心20 min。所有上清液置于離心管中,立即用作相關(guān)檢測(cè)。
1.5酶活性測(cè)定
參照Booth等[13]的方法測(cè)定GST活性。CDNB為底物,反應(yīng)體系包括:酶液、CDNB和GSH,室溫下測(cè)定340 nm時(shí)反應(yīng)5 min 內(nèi)變化。消光系數(shù)為9.5 L/(mmol·cm)。
參照Asperen[14]的方法測(cè)定CarE活性。該反應(yīng)體系包括:酶液、α-醋酸萘酯(含0.3 mmol/L毒扁豆堿)和顯色液,顯色30 min后,于595 nm比色。根據(jù)制作的標(biāo)準(zhǔn)曲線和酶液的蛋白質(zhì)質(zhì)量分?jǐn)?shù),以每分鐘水解生成的α-萘酚的量nmol/(mg·min)作為CarE酶比活力。
參照Hansen等[15]的方法測(cè)定細(xì)胞色素P450-O-脫甲基酶活性。反應(yīng)體系包括:酶液、對(duì)硝基苯甲醚、NADPH及磷酸鈉緩沖液。振搖30 min后,加鹽酸終止反應(yīng),然后用CHCl3萃取產(chǎn)物硝基苯酚,3 000 ×g離心15 min。用NaOH反萃取氯仿餾分,405 nm下測(cè)定NaOH餾分的吸光度。
1.6蛋白質(zhì)質(zhì)量分?jǐn)?shù)的測(cè)定
蛋白質(zhì)質(zhì)量分?jǐn)?shù)的測(cè)定參照Bradford[16]的方法,使用牛血清蛋白作為標(biāo)準(zhǔn)蛋白。
1.7數(shù)據(jù)統(tǒng)計(jì)與分析
采用SPSS 17.0(SPSS Inc., Chicago, IL)對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析。獨(dú)立樣本t-test法進(jìn)行顯著性差異分析,P<0.05水平為差異顯著。
2結(jié)果與分析
2.1杠柳新苷P和E對(duì)粘蟲(chóng)幼蟲(chóng)中腸和小地老虎幼蟲(chóng)中腸GST活性的影響
圖2為杠柳新苷P(PSP)和E(PSE)對(duì)6齡粘蟲(chóng)幼蟲(chóng)和6齡小地老虎幼蟲(chóng)中腸GST酶比活性的影響。粘蟲(chóng)取食杠柳新苷P和E處理葉片8 h 后,中腸GST酶比活力開(kāi)始逐漸增加。在PSP處理粘蟲(chóng)幼蟲(chóng)12、24和48 h后,中腸GST酶比活力處理組與對(duì)照組差異顯著,處理組比對(duì)照組增加17.95%,29.19%和36.90%。PSE處理粘蟲(chóng)幼蟲(chóng)24和48 h后,中腸GST酶比活力處理組與對(duì)照組差異顯著,處理組比對(duì)照組增加14.24%和20.61%(圖2-A)。由圖2-B可知,PSP和PSE對(duì)小地老虎中腸GST酶比活力均無(wú)顯著影響。PSP處理小地老虎幼蟲(chóng)中腸GST酶比活力僅在2 h增加7.96%,隨后各時(shí)間點(diǎn)處理組與對(duì)照組酶比活力無(wú)顯著差異。由此可知PSP對(duì)粘蟲(chóng)中腸GST酶比活力的影響比PSE影響較大,進(jìn)一步說(shuō)明粘蟲(chóng)幼蟲(chóng)對(duì)PSP表現(xiàn)的更為敏感。
2.2杠柳新苷P和E對(duì)粘蟲(chóng)幼蟲(chóng)和小地老虎幼蟲(chóng)中腸CarE活性的影響
由圖3可知,杠柳新苷P和E處理6齡粘蟲(chóng)幼蟲(chóng)和小地老虎幼蟲(chóng)后,與對(duì)照相比,僅處理48 h后,粘蟲(chóng)幼蟲(chóng)中腸CarE酶比活力相應(yīng)增加12.16% 和9.55%,與對(duì)照組存在顯著差異 (圖3-A)。由圖3-B可知,2種化合物處理小地老虎幼蟲(chóng)后,中腸CarE酶比活力與對(duì)照組無(wú)顯著差異。
不同小寫(xiě)字母表示差異顯著(P<0.05),不同大寫(xiě)字母表示差異極顯著(P<0.01)。下同
Different lowercase letters show significant difference(P<0.05),different uppercase letters show extremely significant difference(P<0.01).The same as below
圖2杠柳新苷P和E處理6齡粘蟲(chóng)幼蟲(chóng)(A)和小地老虎幼蟲(chóng)(B)在不同時(shí)間點(diǎn)其中腸GST酶比活力
Fig.2GST specific activity of 6th instar larvae ofM.separata(A) andA.ypsilon(B) after treatment with PSP and PSE for different times
圖3 杠柳新苷P和E處理6齡粘蟲(chóng)幼蟲(chóng)(A)和小地老虎幼蟲(chóng)(B)在不同時(shí)間點(diǎn)其中腸CarE酶比活力
2.3杠柳新苷P和E對(duì)粘蟲(chóng)幼蟲(chóng)和小地老虎幼蟲(chóng)中腸細(xì)胞色素P450-O-脫甲基酶活性的影響
由圖4可知,杠柳新苷P處理粘蟲(chóng)幼蟲(chóng)8 h后,中腸細(xì)胞色素P450-O-脫甲基酶酶比活力表現(xiàn)出抑制作用。在12、24和48 h的抑制率相應(yīng)為28.41%,40.51%和34.57%。杠柳新苷E在2~8 h 對(duì)粘蟲(chóng)中腸細(xì)胞色素P450-O-脫甲基酶酶比活力的影響無(wú)顯著差異,但在12、24和48 h處理組與對(duì)照組之間的抑制率存在顯著差異,相應(yīng)為13.90%,31.04%和24.45%?;钚曰衔颬SP相比PSE表現(xiàn)出對(duì)粘蟲(chóng)中腸細(xì)胞色素P450-O-脫甲基酶更強(qiáng)的抑制作用(圖4-A)。然而,2種化合物對(duì)小地老虎中腸細(xì)胞色素P450-O-脫甲基酶均無(wú)顯著影響(圖4-B)。
圖4 杠柳新苷P和E處理6齡粘蟲(chóng)(A)和小地老虎(B)幼蟲(chóng)不同時(shí)間點(diǎn)其
3討 論
昆蟲(chóng)中腸的解毒系統(tǒng)主要包含色素P450、谷胱甘肽-S-轉(zhuǎn)移酶、酯酶等,當(dāng)有害物質(zhì)進(jìn)入昆蟲(chóng)消化系統(tǒng)后,解毒酶會(huì)將其進(jìn)行降解或清除,這必定會(huì)引起解毒酶活性的增加或降低[17]。粘蟲(chóng)攝取杠柳新苷類(lèi)化合物后,GST酶比活力在8 h后,尤其是24 h和48 h后顯著增加,但是小地老虎中腸GST酶比活力無(wú)明顯變化。GSTs是內(nèi)源和異生物質(zhì)解毒中心部位,包括對(duì)藥物、除草劑、殺蟲(chóng)劑等[18]。杠柳新苷類(lèi)化合物作為異生物質(zhì)進(jìn)入粘蟲(chóng)體內(nèi),引起GST酶比活力增加,可能引起昆蟲(chóng)的應(yīng)激反應(yīng),通過(guò)增加酶活性來(lái)進(jìn)一步降解有害物質(zhì)。在麥長(zhǎng)管蚜(Sitobionavenae)中也發(fā)現(xiàn),吲哚生物堿能引起GSTs活性增加,推測(cè)GSTs參與對(duì)植物次生代謝物的解毒[19]。另外,GSTs活性增加也可作為昆蟲(chóng)解毒代謝的敏感指示[20]。杠柳新苷類(lèi)化合物處理粘蟲(chóng)8 h后,細(xì)胞色素P450-O-脫甲基酶的酶比活力受到明顯抑制,這可能與化合物的殺蟲(chóng)活性有關(guān)。細(xì)胞色素P450s參與解毒或有害物的活化,是藥物或殺蟲(chóng)劑代謝、抗性、選擇性和適應(yīng)性的決定因素[21-23],酶比活力受到抑制,導(dǎo)致昆蟲(chóng)代謝受阻,抑制昆蟲(chóng)的正常生理生化反應(yīng),因此加速對(duì)昆蟲(chóng)的毒性。小地老虎中腸細(xì)胞色素P450-O-脫甲基酶對(duì)化合物不敏感,沒(méi)有引起酶比活力的變化。杠柳新苷類(lèi)化合物對(duì)粘蟲(chóng)和小地老虎CarE活性均無(wú)明顯作用,CarE能水解大部分的羧酸酯類(lèi),可將化學(xué)合成殺蟲(chóng)劑降解為低毒化合物[24-26],說(shuō)明化合物對(duì)羧酸酯酶的水解作用無(wú)影響。這可能與杠柳新苷化合物的結(jié)構(gòu)有關(guān),即不含有酯基結(jié)構(gòu)。Khan等[27]研究表明斑蝥素對(duì)CarE活性也無(wú)明顯作用。
通過(guò)對(duì)昆蟲(chóng)3種解毒酶活性的測(cè)定,推測(cè)中腸細(xì)胞色素P450活性的抑制可能與杠柳新苷P的中毒機(jī)制有關(guān),而谷胱甘肽-S-轉(zhuǎn)移酶參與對(duì)杠柳化合物的解毒機(jī)制。杠柳新苷P和E化學(xué)結(jié)構(gòu)相似,只有1個(gè)取代基不同,這可能影響到化合物與靶標(biāo)位點(diǎn)結(jié)合的緊密性。但杠柳新苷P如何影響昆蟲(chóng)的生理生化過(guò)程還不清楚。
參考文獻(xiàn)Reference:
[1]朱九生,喬雄梧,王靜,等.杠柳的不同溶劑提取分離物對(duì)小菜蛾幼蟲(chóng)的拒食和毒殺作用[J].農(nóng)藥學(xué)學(xué)報(bào),2004(2):48-52.
ZHU J SH,QIAO X W,WANG J,etal.Study on antifeedant and insecticidal activities of extracts and fractions fromPeriplocasepiumBunge againstPlutellaxylostella(L.)[J].ChineseJournalofPesticideScience,2004(2):48-52(in Chinese with English abstract).
[2]史清華,馬養(yǎng)民,秦虎強(qiáng).杠柳根皮化學(xué)成分生物活性的研究[J].西南林學(xué)院學(xué)報(bào),2008,28(2):38-41.
SHI Q H,MA Y M,QIN H Q.Chemical composition and bioactivity of root bark fromPeriplocasepium[J].JournalofSouthwestForestryCollege,2008,28(2):38-41(in Chinese with English abstract).
LI Y, ZHANG J W,YANG H,etal.Studies on insecticidal constituents fromPeriplocasepiumBunge[J].ActaAgriculturaeBoreali-occidentalisSinica,2006,15(5):90-94(in Chinese with English abstract).
[4]趙彥超,師寶君,胡兆農(nóng).杠柳毒素NW的殺蟲(chóng)活性[J].應(yīng)用昆蟲(chóng)學(xué)報(bào),2010,45(6):950-952.
ZHAO Y CH,SHI B J,HU ZH N.The insecticidal activity of periplocoside NW[J].ChineseBulletinofEntomology,2008,45(6):950-952(in Chinese with English abstract).
[5]何玲,趙娟,師寶君,等.杠柳殺蟲(chóng)組分F3-28對(duì)東方粘蟲(chóng)和小地老虎幼蟲(chóng)中腸消化酶活性的影響[J].昆蟲(chóng)學(xué)報(bào),2010,53(11):1248-1255.
HE L,ZHAO J,SHI B J,etal.Effects of insecticidal fraction F3-28 fromPeriplocasepiumon the activities of digestive enzymes in the midgut of larvae ofMythimnaseparataandAgrotisypsilon(Lepidoptera:Noctuidae)[J].ActaEntomologicaSinica,2010,53(11):1248-1255(in Chinese with English abstract).
[6]師寶君,高履桐,姬志勤,等.杠柳殺蟲(chóng)活性成分的分離[J].農(nóng)藥學(xué)學(xué)報(bào),2012,14(1):103-106.
SHI B J,GAO L T,JI ZH Q,etal.Isolation of the insecticidal ingredients fromPeriplocasepium[J].ChineseJournalofPesticideScience,2012,14(1):103-106(in Chinese with English abstract).
[7]SHI B J,ZHANG J W,GAO L T,etal.A new pregnane glycoside from the root barks ofPeriplocasepium[J].ChemistryofNaturalCompounds,2014,49(6):1043-1047.
[8]ITOKAWA H,XU J P,TAKEYA K.Studies on chemical constituents of antitumor fraction fromPeriplocasepium.IV.Structures of new pregnane glycosides,periplocosides D,E,L,and M[J].Chemical&PharmaceuticalBulletin,1988,36(6):2084-2089.
[9]GORDON H T.Nutritional factors in insect resistance to chemicals[J].AnnualReviewofEntomology,2003,6(3):27-54.
[10]YANG X M,MARGOLIES D C,ZHU K Y,etal.Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the twospotted spider mite(Acari:Tetranychidae)[J].JournalofEconomicEntomology,2009,94(2):381-387.
[11]YANG S Y,WU H H,XIE J C,etal.Depressed performance and detoxification enzyme activities ofHelicoverpaarmigerafed with conventional cotton foliage subjected to methyl jasmonate exposure[J].EntomologiaExperimentalisetApplicata,2013,147(2):186-195.
[12]馬燕,劉瑞瑞,馬志卿,等.斑蝥素對(duì)粘蟲(chóng)幾種代謝酶及多酚氧化酶的影響[J].昆蟲(chóng)學(xué)報(bào),2010,53(8):870-875.
MA Y,LIU R R,MA ZH Q,etal.Effects of cantharidin on four metabolizing enzymes and PPO inMythinnaseparata(Walker)(Lepidoptera:Noctuidae)[J].ActaEntomologicaSinica,2010,53(8):870-875(in Chinese with English abstract).
[13]BOOTH G M,CONNOR J,METCALF R A,etal.A comparative study of the effects of selective inhibitors on esterase isozymes from the mosquitoAnophelespunctipennis[J].ComparativeBiochemistry&PhysiologyBComparativeBiochemistry,1973,44(4):1185-1195.
[14]ASPEREN K V.A study of housefly esterases by means of a sensitive colorimetric method[J].JournalofInsectPhysiology,1962,8(62):401-414.
[15]HANSEN L G,HODGSON E.Biochemical characteristics of insect microsomes.N- and O-demethylation[J].BiochemicalBiochemicalPharmacology,1971,20(7):1569-1578.
[16]BRADFORD M M.A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].AnalyticalBiochemistry,1976,72(1/2):248-254.
[17]SCHULER M A.The role of cytochrome P450 monooxygenasas in plant-insect interaction[J].PlantPhysiology,1996,112(4):1411-1419.
[18]HUANG Y F,XU Z B,LIN X Y,etal.Structure and expression of glutathione S-transferase genes from the midgut of the common cutworm,Spodopteralitura(Noctuidae) and their response to xenobiotic compounds and bacteria[J].JournalofInsectPhysiology,2011,57(7):1033-1044.
[19]CAI Q N,HAN Y,CAO Y Z,etal.Detoxification of gramine by the cereal aphidSitobionavenae[J].JournalofChemicalEcology,2009,35(3):320-325.
[20]曹揮,王有年,劉素琪,等.地膚提取物對(duì)山楂葉螨體內(nèi)幾種酶活性的影響[J].林業(yè)科學(xué),2007,43(2):68-72.
CAO H,WANG Y N,LIU S Q,etal.Effects of the chloroform extracts ofKochiascopariato several enzyme systems inTetranychusviennensis[J].ScientiaSilvaeSinicae,2007,43(2):68-72(in Chinese with English abstract).
[21]FEYEREISEN R.Insect cytochrome P450 enzymes[J].AnnualReviewofEntomology,1999,44(1):507-533.
[22]GONZALEZ F J,KIMURA S.Role of gene knockout mice in understanding the mechanisms of hemical toxicity and carcinogenesis[J].CancerLetters,1999,143(2):199-204.
[23]WERCK-REICHHART D,HEHN H,DIDIERJEAN L.Cytochromes P450 for engineering herbicide toleranc[J].TrendsinPlantScience,2000(5):116-123.
[24]KETTERMAN A J,JAYAWARDANE K G,HEMINGWAY J.Purification and characterization of a carboxylesterase involved in insecticide resistance from the mosquitoCulexquinquefasciatus[J].BiochemicalJournal,1992,287(2):355-360.
[25]WHEELOCK C E,SHAN G,OTTEA J.Overview of carboxylesterases and their role in the metabolism of insecticides[J].JournalofPesticideScience,2005,30(2):75-83.
[26]GAO J R,YOON K S,FRISBIE R K,etal.Esterase-mediated malathion resistance in the human head louse,Pediculuscapitis(Anoplura:Pediculidae)[J].PesticideBiochemistry&Physiology,2006,85(1):28-37.
[27]KHAN R A,RASHID M,WANG D,etal.Toxicology and biochemical basis of cantharidin effects onHelicoverpaarmigera(Hub.)(Lepidoptera:Noctuidae)[J].PakistanJournalofZoology,2013,45(3):769-777.
Received 2015-04-25Returned2015-05-11
First authorWANG Yingying, female, master student.Research area: pesticide toxicology.E-mail: wang553135575@163.com
(責(zé)任編輯:史亞歌Responsible editor:SHI Yage)
Effects of Periplocoside P and E fromPeriplocasepiumon Activities of Three Detoxification Enzymes in Midgut ofMythimnaseparatandAgrotisypsilon(Lepidoptera:Noctuidae)
WANG Yingying1,2and HU Zhaonong1,2
(1.Institute of Pesticide Science,College of Plant Protection,Northwest A & F University, Yangling Shaanxi712100, China;2.Key Laboratory of Botanical Pesticide R & D of Shaanxi Province, Yangling Shaanxi712100, China)
AbstractPeriplocosides on detoxification enzymes in midgut of larvar has not been reported.In order to reveal the insecticidal activity and the effect of periplocosides on activities of detoxification enzymes in midgut of larvar.We investigated the effects of strong insecticidal periplocoside P (PSP) and periplocoside E (PSE) which had no insecticidal activity on the activities of three metabolism enzymes in midgut of 6th instar larvae of Mythimna separata and Agrotis ypsilon, including carboxylesterase (CarE), glutathione S-transferase (GST) and O-demethylase of cytochrome P450.GST activity could be increased by PSP and PSE when M.separata larvae were administrated orally with both compounds after 8 h, but PSP showed higher rise trend of GST than PSE.Both compounds showed no obvious effect on CarE activity of the tested insects.The activity of O-demethylase of cytochrome P450 on M.separata was significantly declined by PSP and PSE after 12 h, whereas had no obvious changes on A.ypsilon.The cytochrome P450 in the midgut may be relevant to the intoxication mechanism of PSP against M.separata, whereas GST may be involved in detoxification of periplocosides in insects.
Key wordsPeriploca sepium;Mythimna separata; Agrotis ypsilon;Midgut; Detoxicifition enzymes
收稿日期:2015-04-25修回日期:2015-05-11
基金項(xiàng)目:國(guó)家自然科學(xué)基金(31171868);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(QN2011058)。
通信作者:胡兆農(nóng),男,博士,教授,博士生導(dǎo)師,主要從事農(nóng)藥毒理學(xué)研究。 E-mail: huzhaonong@nwsuaf.edu.cn
中圖分類(lèi)號(hào)S481+.1
文獻(xiàn)標(biāo)志碼A
文章編號(hào)1004-1389(2016)06-0939-06
Foundation itemThe National Natural Science Foundation of China(No.31171868); Special Funds of Scientific Research Expenses for Universities under the Chinese Central Government(No.QN2011058). HU Zhaonong, male, Ph.D,professor, doctoral supervisor.Research area: pesticide toxicology.E-mail: huzhaonong@nwsuaf.edu.cn
網(wǎng)絡(luò)出版日期:2016-06-01
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1220.S.20160601.0920.042.html
第一作者:汪英英,女,碩士研究生,從事農(nóng)藥毒理學(xué)研究。E-mail: wang553135575@163.com