• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An update on microbiological causes of canine otitis externa in Campania Region,Italy

    2016-07-04 09:07:00LuisaDeMartinoFrancescaPaolaNoceraKarinaMallardoSandraNizzaEleonoraMasturzoFilomenaFioritoGiuseppeIovanePiergiorgioCatalanottiDepartmentofVeterinaryMedicineandAnimalProductionUniversityofNaplesFedericoIIViaDelpino8037Naples

    Luisa De Martino, Francesca Paola Nocera, Karina Mallardo, Sandra Nizza, Eleonora Masturzo,Filomena Fiorito, Giuseppe Iovane, Piergiorgio CatalanottiDepartment of Veterinary Medicine and Animal Production,University of Naples“Federico II”,Via F. Delpino ,8037 Naples,ItalyDepartment of Experimental Medicine,Second University of Naples,Via Luigi de Crecchio 7,808 Naples,Italy

    ?

    An update on microbiological causes of canine otitis externa in Campania Region,Italy

    Luisa De Martino1*, Francesca Paola Nocera1, Karina Mallardo1, Sandra Nizza1, Eleonora Masturzo1,
    Filomena Fiorito1, Giuseppe Iovane1, Piergiorgio Catalanotti21Department of Veterinary Medicine and Animal Production,University of Naples“Federico II”,Via F. Delpino 1,
    80137 Naples,Italy
    2Department of Experimental Medicine,Second University of Naples,Via Luigi de Crecchio 7,80128 Naples,Italy

    ABSTRACT

    Objective:To update the recent knowledge of the microbiological causes of canine otitis externa in Campania Region(Italy)and the antibiotic susceptibility patterns of the isolated strains.

    Methods:A total of 122 dogs were examined by otoscopy, and auricular swab samples were collected from both ears in 74 dogs presenting clinical bilateral otitis and from single ears in 48 dogs displaying clinical unilateral otitis. Cytological examination, bacteriological analysis and antimicrobial susceptibility tests were performed.

    Results:Thirty-one out of 122 dogs were positive for yeast species(25.4%, 95%confidence interval(CI): 18.2%–34.2%)with a higher prevalence of Malassezia pachydermatis(21/31 isolates, 67.7%, CI: 48.5%–82.7%), and a total of 91 out of 122 dogs were positive for bacterial species(74.6%;CI: 65.8%–81.8%)with a higher prevalence of Staphylococcus pseudintermedius(45/143 isolates, 31.5%, CI: 24.1%–39.8%). These results are the first description of Streptococcus agalactiae-associated otitis. The yeasts isolated showed high levels of susceptibility to all antifungal agents tested;on the contrary all the isolated bacterial strains were highly resistant to at least four out of ten antimicrobial classes. Both Gram-positive and Gram-negative bacteria showed high resistance to amoxicillin/clavulanate and kanamycin hence they are not recommended as initial empirical therapy for the otitis treatment.

    Conclusions:This update illustrates an increase in antibiotic resistances providing an insight into the current knowledge of the therapeutic procedures followed on canine otitis externa in Italy. It also emphasizes the importance of considering the results of the microbiological and sensitivity tests to decide on an appropriate antibiotic therapy.

    ARTICLE INFO

    Article history:

    Received 13 Oct 2015

    Receivedinrevisedform27 Oct2015

    Accepted 2 Nov 2015

    Available online 24 Mar 2016

    Keywords:

    Canine otitis externa

    Malassezia pachydermatis

    Staphylococcus pseudintermedius

    Antimicrobial resistance

    Original article http://dx.doi.org/10.1016/j.apjtb.2015.11.012

    Tel: +39 081 2536180

    Fax: +39 081 2536179

    E-mail: luisa.demartino@unina.it

    All experimental procedures involving animals were conducted in accordance to guide for use and care of animals that visit our clinic and approved by The Local Ethical Committee of The Faculty of Veterinary Medicine, University of Naples “Federico II”(authorisation reference number Prot. 2011/0123330).

    Foundation Project: Supported in part by the Second University of Naples and University of Naples“Federico II”, Fondi di Ateneo, by a fellowship from the University of Naples‘Federico II’(2012-4/STV-Project FORGIARE), and co-funded by “Compagnia San Paolo”of Turin, Italy.

    Peer review under responsibility of Hainan Medical University. The journal implements double-blind peer review practiced by specially invited international editorial board members.

    1. Introduction

    Otitis externa is the most common ear disease of dogs, being up to 20%of the dog population affected by this disease. It has a multifactorial etiology but it is predominantly a microbial infection. Clinical signs, such as exudates and frequently erythema, oedema, offensive odour and pruritus are seen. Microorganisms belonging to the normal microbial flora of the auricular area can become pathogenic when environmental and/or primary conditions determine faster expression of their virulence factors.

    Malassezia genus are commonly isolated in auricular canal of dogs and cats, having otitis externa or in cases of dermatitis disorders. The yeasts of the Malassezia genus areopportunistic microorganisms and can cause both human [1,2]and animal infections[3]. Particularly Malassezia pachydermatis(M. pachydermatis)has been reported as the predominant causative agent of canine otitis externa[4].

    Furthermore, among bacterial agents, it is known that Staphylococcus, Pseudomonas, Escherichia, and Proteus species are considered important pathogens causing otitis externa in dogs[5]. Among Gram-positive bacteria, Staphylococcus pseudintermedius,(S. pseudintermedius)a coagulase-positive staphylococcal species, is frequently associated with pyoderma, otitis externa, urinary tract infections, and opportunistically infected sites in dogs[6]. Among Gram-negative bacteria, Pseudomonas aeruginosa(P. aeruginosa)plays a major role in otitis externa also because of the increasing number of multiresistant strains[7].

    Regular treatment at home with disinfecting ear washes should become part of the pet's grooming-routine with a correct antimicrobial therapy. It has been described a high sensitivity to beta-lactams and aminoglycoside-aminocyclitols for Gram-positive bacteria, while for Gram-negative bacteria has been suggested the use of aminoglycoside-aminocyclitols, polymyxin B and enrofloxacin[8].

    In recent decades it was reported that the high frequency of multidrug-resistant of the isolated bacteria could become a high risk factor for owners and veterinary professionals. Therefore, a rational policy of antibiotic prescription in order to prevent the selection of resistant strains is needed.

    The purpose of the present study is to evaluate the presence of microorganisms involved in otitis externa in dogs from Campania Region, in southern Italy, in order to update data and to investigate the presence of multi-resistant bacterial strains[9].

    2. Materials and methods

    2.1. Samples

    One hundred and twenty-two dogs with clinical signs of otitis externa, such as local pain, pruritus, erythema, ear discharge and desquamation of the epithelium, in at least one ear, were selected tocollectauricularswabs,duringaperiodoftwoyears,andatotal of 196 culture swabs were obtained. Precisely, samples were collectedfrombothearsin74dogswithclinicalbilateralotitisand unilaterally from 48 dogs with clinical unilateral otitis. Sterile cotton-tipped applicator was used to collect samples of ear exudatesbyinsertingswabsintoearcanal,rotatingoncethrough360°and then rolling it out, and immediately transferred to Amies transport medium(Oxoid Ltd, UK)and maintained at 4°C(not longerthan24h)untilprocessing.Thesampleswerepresentedfor screening at the Microbiology Laboratory of the Department of Veterinary Medicine and Animal Production, University of Naples Federico II(Italy). The canine population studied aged from 2 months to 16 years and included 75 males and 47 females.

    Dogs were excluded from the trial if they had previously received(i)topical treatment(within 10 days),(ii)systemic treatment with an antibiotic, antifungal or nonsteroidal antiinflammatory(within 10 days),(iii)a steroidal anti-inflammatory treatment(within 14 days), or(iv)a long acting steroidal antiinflammatory drug systemically(within 60 days). Informed consent was obtained from the owners of all dogs prior to their participation in the study. All experimental procedures were approved by The Local Ethical Committee of The Faculty of Veterinary Medicine, University of Naples Federico II(authorisation reference number Prot. 2011/0123330).

    2.2. Cytological analysis

    For cytological analysis cotton-tipped swabs of ear canal exudates were streaked onto glass slides, which were then heat fixed and stained with a modified Wright's stain(Diff Quik, Dade Behring, Deerfield, IL). All stained slides were examined under a Nikon Eclipse E600 Microscopy(Nikon Instruments Inc., Melville, NY)at 40×magnification. At least 10 fields were examined, and a number of yeast cells per field(>5 yeast/field)represented excessive colonization by the organism and were considered positive(infection). A number of bacteria 25 per microscopy field(40×)were considered positive(infection)as previously described by Ginel et al.[10].

    2.3. Microbiological analysis

    Collected samples were plated on blood agar base supplemented with 5%sheep blood, selective medium used for the isolation of Gram-positive microorganisms, on mannitol-salt agar, selective medium to identify staphylococci, and on Mac-Conkey agar, selective and differential medium to grow Gramnegative bacteria, which were incubated aerobically at 37°C for 24–48 h. Sabouraud's dextrose agar with chloramphenicol was used to grow fungal flora and was kept at 30°C for 7 days, then stained with Gram stain and examined microscopically. The plates were all microbiological media from Oxoid Ltd, UK. In the case of yeasts of the genus Candida, we performed subculture on Oxoid chromogenic candida agar media to differentiate species of Candida. Further confirmation of genus and species of yeasts were obtained by biochemical identification using Remel RapID?yeast plus identification panel after pure culture growth on Emmons agar(Oxoid).

    Bacteria were identified by macroscopic observation of the colonies, Gram staining, standard laboratory methodologies (catalase, staphylocoagulase tube test, aesculin), and miniaturized biochemical tests API system(bioM′erieux SA, Marcy L'Etoile, France). The species identification by miniaturized biochemical tests was accepted when probability was>88%.βhaemolytic cocci strains were identified as group B[Streptococcus agalactiae(S. agalactiae)]or group C Streptococcus dysgalactiae(S. dysgalactiae), using a streptococcus grouping kit(Streptex, Mitsubishi Chemical Medience Corporation, Tokyo, Japan). The presence of the mecA gene was detected by growth on oxacillin-containing media(2 mg/L), agar diffusion with oxacillin disks(5 μg)and positive latex agglutination test (PBP2′Test. Oxoid Ltd, UK).

    2.4. Antimicrobial susceptibility testing

    The antimicrobial susceptibility patterns of isolated bacterial strains were determined by disk diffusion test using Mueller–Hinton agar(Oxoid Ltd, UK). The inhibitory zone diameters obtained around the antibiotic disks were measured after incubation for 24 h at 37°C and evaluated according to the Clinical and Laboratory Standards Institute[11]. An oxacillin (methicillin)susceptibility test of all isolates was performed by oxacillin disk diffusion and if assayed, the minimal inhibitory concentration was determined by standard methods.

    Ten drug classes were included in this study, using commercial disks containing the drugs(Oxoid Ltd, UK). Penicillins were represented by benzylpenicillin(penicillin G)(10 IU),ampicillin(10 μg), amoxicillin-clavulanic acid combination (20 + 10 μg), and oxacillin(1 μg). Furthermore, cephalosporins (first generation)were represented by cefadroxil(30 μg), cephalosporins(third generation)were represented by ceftriaxone(30 μg),fluoroquinolones by enrofloxacin(5 μg)and norfloxacin(10 μg), aminoglycosides by gentamicin(10 μg), kanamycin(30 μg), neomycin(30 μg)and streptomycin(10 μg), glycopeptides by vancomycin(30 μg), macrolides by erythromycin(15 μg), and polypeptides by bacitracin(0.05 μg)and colistin sulfate(10 μg). In addition, tetracyclines were assayed as doxycycline(30 μg)and tetracycline(10 μg)and lincosamides as lincomycin(2 μg). Finally, we assayed also a sulphonamide(sulfamethoxazole/trimethoprim, 50 μg). The choice of drugs depended by strains and clinical use. The strains were categorized as sensitive or resistant to the drug, intermediate susceptibility was regarded as resistant, and only the resistances are reported in the results.

    Antifungal susceptibility was performed by disc diffusion method using antimycotic sensitivity test agar. Discs used were amphotericin B(100 IU),fluconazole(10 μg), clotrimazole (10 μg), itraconazole(10 μg), miconazole(10 μg)was measured as for the instruction manual(HiMedia). ATCC strain of Candida albicans was used as control.

    2.5. Statistical analysis

    Statistical analysis of bacteriological examination results was performed by One-way ANOVA with Bonferroni post-test using GraphPad InStat Version 3.00 for Windows 95(GraphPad Software Inc., La Jolla, CA). P value of less than 0.05 was regarded as statistically significant.

    3. Results

    The screening in 196 samples performed by cytological examination showed a prevalence significantly higher(P<0.001)of bacterial compared to fungal otitis externa, both in monolateral(37/11)and bilateral infection(53/21). Furthermore, the cases of bilateral otitis(74/122)was significantly higher (P<0.001)respect to monolateral otitis(48/122)regardless of the microorganism that causes disease.

    Yeasts were detected in a total of 53 swabs samples with M. pachydermatis presenting the highest prevalence(67.74%)followed by Candida parapsilosis(12.90%), as shown in Table 1. These diseased dogs after local therapy with miconazole and prednisolone acetate, for at least 2 weeks, showed a remission of symptoms.

    Table 1 Number and percentage of isolated yeasts from dogs with otitis externa.

    Table 2 shows the number and percentage of isolated bacteria. The most frequently isolated strain was S. pseudintermedius(31.5%;95%CI: 24.1%–39.8%)followed by P. aeruginosa (16.1%;95%CI: 10.7%–23.4%), Proteus mirabilis(P. mirabilis)(6.3%;95%CI: 3.1%–12.0%), and Staphylococcus aureus (S. aureus)(4.9%;95%CI: 2.2%–10.2%). Moreover, a total of four out of forty-five S. pseudintermedius(8.9%;95%CI: 2.9%–22.1%)were positive for themecA geneas confirmed byoxacillin agarscreening test,oxacillin diffusion testand latexagglutination test. A total of 10 bacteria belonging to Streptococcaceae group were identified and an interesting case of S. agalactiae-associated otitis was observed.

    Table 2 Number and percentage of isolated bacteria from dogs with otitis externa.

    Table 3 shows the results of the antimicrobial susceptibility tests of the most frequently isolated strains from dogs with otitis externa. However, S. pseudintermedius,S. aureus and S. xylosus, which represented 85.5%of staphylococcal strains, were variously resistant to all antimicrobial classes. Furthermore, 4/45(8.9%;95%CI: 2.9%–22.1%)S. pseudintermedius, 6/7(85.7%;95%CI: 42.0%–99.2%)S. xylosus, 3/4(75.0%;95%CI: 21.9%–98.7%)Staphylococcus chromogenes, and 3/3 (100%;95%CI: 31.0%–96.8%)S. hyicus strains isolates were methicillin/oxacillin and penicillin resistant using disk diffusion tests and could be cultivated on oxacillin resistant screening agar base(data not shown). Among thirty Pseudomonas spp strains, the most frequently isolated P. aeruginosa(23 strains)presented evident multidrug resistant profiles, with over 73%resistance to penicillins(ampicillin and amoxicillin-clavulanate), over 65%to aminoglycosides(kanamycin, neomycin, streptomycin)and tetracyclines(doxycycline and tetracycline), and over 43%resistance to enrofloxacin, 100%to bacitracin and over 69%to lincomycin. Two isolates of Pseudomonas luteola and one of Pseudomonas fluorescens showed a substantial multi-resistance (data not shown). It is noteworthy that multidrug resistant P. mirabilis strains were observed.

    The most of streptococcal strains(S. mitis, S. agalactiae and Streptococcus canis)were also multi-resistant. In addition, surprisingly, the only S. agalactiae strain, generally considered uniformly susceptible to penicillins, was not susceptible to penicillin G with a minimal inhibitory concentration of 128 μg/ L, and showed simultaneous resistance to ceftriaxone, erythromycin, tetracycline, lincomycin, sulfamethoxazole/trimethoprim, other than others β-lactams tested. S. dysgalactiae strain isolated was resistant to erythromycin and tetracycline(data not shown).

    4. Discussion

    Ear disease is one of the most common conditions present in pets, and the infections can be caused by both bacterial and fungal origin. Malassezia spp are normal commensals and occasional pathogens of the skin for many veterinary species, present in up to 40%of canine otitis cases[12]. Herein, we reported a prevalence of yeast species of 25.4%with a higher prevalence of M. pachydermatis(67.74%).

    S. pseudintermedius represents the majority of all coccal microorganism isolated, whereas Gram-negative bacteria as P. aeruginosa, P. mirabilis and others, are also included among the most common isolates that may cause canine otitis externa [5,12]. In the present study, in agreement with the above mentioned findings, the most commonly identified bacteria were S. pseudintermedius, P. aeruginosa and P. mirabilis. Furthermore, most S. pseudintermedius, S. xylosus, and S. hyicus strains isolates were methicillin/oxacillin and penicillin resistant. We reported no isolation of Staphylococcus schleiferi which is considered as a potential pathogen in dogs and is often oxacillin resistant[13].

    The members of the Staphylococcus genus have a high frequency of conjugation and frequently acquire plasmids that encode antimicrobial resistance, and the production of the enzyme β-lactamase is the major mechanism by which staphylococci acquire resistance[14]. The reservoir of mecA gene is likely larger in coagulase-negative-staphylococci than in S. aureus[15], as more times reported, both in human clinical isolates[16]and in various animal species[17,18].

    Table 3 Antimicrobial susceptibility of the most frequently isolated strains from dogs with otitis externa.

    The literature reports a higher interest for coagulase-positive staphylococci, but also the coagulase-negative staphylococci, whichhavelongbeenconsideredasnonpathogenic,recentlyhave assumed an important role as pathogens because of their increasing incidence as cause of bacteremia. Interestingly, amongour isolates we identified only one strain of methicillin/oxacillinresistant Staphylococcus epidermidis resistant to 6/17 antimicrobial drugs, which represents serious evidence of emergence of multidrug-resistant strains in dog infections. A substantial multiresistance was also found in others Gram-positive bacteria isolates, as streptococci and enterococci. The only S. agalactiae strain showed a reduced susceptibility to penicillin G. There is little information on the nature of mechanism of resistance. The most likely hypothesis isthe modificationof amino acid sequence ofpenicillin-bindingprotein[19].However,S.agalactiae(group B streptococci)is an emerging pathogen in immunocompromised adults and a major cause of neonatal pneumonia, sepsis, and meningitis;it has been isolated in bovine mammary gland infections, and in companion animals. Its surface-localized penicillin-binding protein 1a, encoded by ponA, is known to be an important virulence factor in infection[20]. Traditionally,βlactams are the first-line agents against S. agalactiae and resistance is rarely reported[21,22]. Our case demonstrated that the resistances, overall to β-lactams and cephalosporins, of this strain request further studies.

    The rods involved in canine otitis externa are frequently P. aeruginosa, although P. mirabilis, or other Gram-negative bacteria such as Escherichia coli,Corynebacterium species or, infrequently, Klebsiella and Enterobacter spp., may occur. Our resultsindicatedthatinourregion,thepredominant Gram-negative bacteria were P.aeruginosa and P. mirabilisdisplaying a high rate ofresistancetoeachoftheantimicrobialstested.Themostfrequent antimicrobial classes used in small animals in veterinary medicine include penicillins, cephalosporins, macrolides, lincosamides, fusidic acid, tetracyclines, chloramphenicol, potentiated sulphonamides, aminoglycosides and fluoroquinolones. Aminoglycosides, such as gentamicin and neomycin, are routinely used for topical therapy in canine otitis mainly caused by P. aeruginosa [5,7,12,23], but our Pseudomonas spp. isolates presented multidrug resistant profiles with very high resistance to aminoglycosides, other than penicillins and tetracyclines. Our results combined with data from the literature support the premise that antimicrobials should be selected basically on bacterial culture and antimicrobial susceptibility test. Until recently, multiresistance was overall seen in Gram-positive bacteria[24,25]. However, the recent rapid international spread of multi-resistant Gram-negative bacteria[26], is much more ominous, and the optimal management of serious infections with these bacteria remains to be determined. A recent study has reported that administration of a topical bacteriophage mixture leads to lysis of P. aeruginosa in the ear without apparent toxicity and that might potentially became a convenient and effective treatment for P. aeruginosa-associated otitis in dogs[27].

    Consistent with previous reports, this study is a further confirmation that coagulase-positive species of staphylococcal strains are the most causative microorganisms of otitis externa in dogs. In particular, both S. pseudintermedius and methicillin/ oxacillin-resistant S. pseudintermedius strains represent a group of emerging pathogens to be monitored as opportunistic animal pathogens with zoonotic capabilities. In addition, to our knowledge, this is the first report of canine otitis correlated to S. agalactiae, a bacteria isolated mainly from humans and bovine sources. Surprisingly, this isolate presented a simultaneous resistance to more different classes of antibiotics other than β-lactams. Thus, our data emphasize the importance:(i)to study profiles and genetic characteristics of GBS colonizing the pet animals,(ii)to investigate the possible transmission from human to dog, and(iii)to focus on the prevention and treatment of GBS infections.

    Conflict of interest statement

    We declare that we have no conflict of interest.

    Acknowledgments

    This study was supported in part by the Second University of Naples and University of Naples“Federico II”, Fondi di Ateneo. Filomena Fiorito was supported by a fellowship from the University of Naples‘Federico II’(2012-4/STV-Project FORGIARE)and co-funded by“Compagnia San Paolo”of Turin, Italy. The authors would like to thank Salvatore Monnolo for his technical assistance.

    References

    [1]Zhang E, Tanaka T, Tsuboi R, Makimura K, Nishikawa A, Sugita T. Characterization of Malassezia microbiota in the human external auditory canal and on the sole of the foot. Microbiol Immunol 2012;56(4): 238-44.

    [2]Buommino E, De Filippis A, Parisi A, Nizza S, Martano M, Iovane G, et al. Innate immune response in human keratinocytes infected by a feline isolate of Malassezia pachydermatis. Vet Microbiol 2013;163(1–2): 90-6.

    [3]Nardoni S, Corazza M, Mancianti F. Diagnostic and clinical features of animal malasseziosis. Parassitologia 2008;50(1–2): 81-3.

    [4]Bond R. Superficial veterinary mycoses. Clin Dermatol 2010;28(2): 226-36.

    [5]Zamankhan Malayeri H, Jamshidi S, Zahraei Salehi T. Identification and antimicrobial susceptibility patterns of bacteria causing otitis externa in dogs. Vet Res Commun 2010;34: 435-44.

    [6]Rubin JE, Chirino-Trejo M. Prevalence, sites of colonization, and antimicrobial resistance among Staphylococcus pseudintermedius isolated from healthy dogs in Saskatoon, Canada. J Vet Diagn Invest 2011;23: 351-4.

    [7]Mekic S, Matanovic K,ˇSeol B. Antimicrobial susceptibility of Pseudomonas aeruginosa isolates from dogs with otitis externa. Vet Rec 2011;169(5): 125.

    [8]Petrov V, Mihaylov G, Tsachev I, Zhelev G, Marutsov P, Koev K. Otitis externa in dogs: microbiology and antimicrobial susceptibility. Rev Med Vet 2013;164(1): 18-22.

    [9]Tenover FC. Mechanism of antimicrobial resistance in bacteria. Am J Infect Control 2006;34: S3-10.

    [10]Ginel PJ, Lucena R, Rodriguez JC, Ortega J. A semiquantitative cytological evaluation of normal and pathological samples from the external ear canal of dogs and cats. Vet Dermatol 2002;13(3): 151-6.

    [11]Clinical and Laboratory Standards Institute(CLSI). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals;approved standard. 4th ed. Wayne: CLSI;2013.

    [12]Bugden DL. Identification and antibiotic susceptibility of bacterial isolates from dogs with otitis externa in Australia. Aust Vet J 2013;91(1–2): 43-6.

    [13]Cain CL, Morris DO, Rankin SC. Clinical characterization of Staphylococcus schleiferi infections and identification of risk factors for acquisition of oxacillin-resistant strains in dogs: 225 cases (2003–2009). J Am Vet Med Assoc 2011;239(12): 1566-73.

    [14]van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol 2011;2: 203.

    [15]Fluit AC, Carpaij N, Majoor EA, Bonten MJ, Willems RJ. Shared reservoir of ccrB gene sequences between coagulase-negative staphylococci and methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 2013;68: 1707-13.

    [16]Velasco V, Buyukcangaz E, Sherwood JS, Stepan RM, Koslofsky RJ, Logue CM. Characterization of Staphylococcus aureus from humans and a comparison with isolates of animal origin, in North Dakota, United States. PLoS One 2015;10(10): e0140497.

    [17]De Martino L, Lucido M, Mallardo K, Facello B, Mallardo M, Iovane G, et al. Methicillin-resistant staphylococci isolated from healthy horses and horse personnel in Italy. J Vet Diagn Invest 2010;22: 77-82.

    [18]Mallardo K, Nizza S, Fiorito F, Pagnini U, De Martino L. A comparative evaluation of methicillin-resistant staphylococci isolated from harness racing-horses, breeding mares and ridinghorses in Italy. Asian Pac J Trop Biomed 2013;3: 169-73.

    [19]Haenni M, Galofaro L, Ythier M, Giddey M, Majcherczyk P, Moreillon P, et al. Penicillin-binding protein gene alterations in Streptococcus uberis isolates presenting decreased susceptibility to penicillin. Antimicrob Agents Chemother 2010;54(3): 1140-5.

    [20]Klinzing DC, Ishmael N, Dunning Hotopp JC, Tettelin H, Shields KR, Madoff LC, et al. The two-component response regulator LiaR regulates cell wall stress responses, pili expression and virulence in group B Streptococcus. Microbiology 2013;159: 1521-34.

    [21]Longtin J, Vermeiren C, Shahinas D, Tamber GS, McGeer A, Low DE, et al. Novel mutations in a patient isolate of Streptococcus agalactiae with reduced penicillin susceptibility emerging after long-term oral suppression therapy. Antimicrob Agents Chemother 2011;55: 2983-5.

    [22]Pinto TC, Costa NS, Corr?ea AB, de Oliveira IC, de Mattos MC, Rosado AS, et al. Conjugative transfer of resistance determinants among human and bovine Streptococcus agalactiae. Braz J Microbiol 2014;45(3): 785-9.

    [23]Penna B, Thom′e S, Martins R, Martins G, Lilenbaum W. In vitro antimicrobial resistance of Pseudomonas aeruginosa isolated from canine otitis externa in Rio de Janeiro, Brazil. Braz J Microbiol 2011;42: 1434-6.

    [24]De Martino L, Nizza S, de Martinis C, Foglia Manzillo V, Iovane V, Paciello O, et al. Streptococcus constellatus-associated pyoderma in a dog. J Med Microbiol 2012;61: 438-42.

    [25]Giannakaki V, Miyakis S. Novel antimicrobial agents against multi-drug-resistant gram-positive bacteria: an overview. Recent Pat Antiinfect Drug Discov 2012;7(3): 182-8.

    [26]Schmiedel J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berninghoff E, Imirzalioglu C, et al. Multiresistant extendedspectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol 2014;14: 187.

    [27]Hawkins C, Harper D, Burch D, Angg?rd E, Soothill J. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol 2010;146: 309-13.

    *Corresponding author:Prof. Luisa De Martino, Department of Veterinary Medicine and Animal Production, University of Naples“Federico II”, Via F. Delpino 1, 80137 Naples, Italy.

    免费大片黄手机在线观看| 一本—道久久a久久精品蜜桃钙片| 成人特级av手机在线观看| 午夜福利网站1000一区二区三区| 在线观看人妻少妇| 日韩大片免费观看网站| 伊人久久国产一区二区| 黑人猛操日本美女一级片| 天天躁夜夜躁狠狠久久av| 国产成人精品一,二区| 免费观看的影片在线观看| 久久99热这里只有精品18| 久久精品国产亚洲网站| 亚洲av福利一区| 亚洲国产日韩一区二区| 国产深夜福利视频在线观看| 一级片'在线观看视频| 亚洲精品aⅴ在线观看| 日韩电影二区| 国产精品伦人一区二区| 激情 狠狠 欧美| 熟女av电影| 成年免费大片在线观看| 亚洲国产欧美人成| 一区二区av电影网| 欧美日本视频| 国产片特级美女逼逼视频| 国产精品人妻久久久影院| 肉色欧美久久久久久久蜜桃| 欧美成人精品欧美一级黄| 七月丁香在线播放| 国产成人精品久久久久久| 成人综合一区亚洲| 亚洲国产精品成人久久小说| 久久久久精品久久久久真实原创| 女性生殖器流出的白浆| 欧美成人午夜免费资源| 男人爽女人下面视频在线观看| 亚洲精品色激情综合| 亚洲欧美精品自产自拍| 超碰97精品在线观看| 久久精品久久精品一区二区三区| 黄片无遮挡物在线观看| 久久精品国产亚洲av涩爱| 精品亚洲成a人片在线观看 | 一级毛片黄色毛片免费观看视频| 午夜精品国产一区二区电影| 一级片'在线观看视频| 三级国产精品欧美在线观看| 建设人人有责人人尽责人人享有的 | 交换朋友夫妻互换小说| 赤兔流量卡办理| 免费看av在线观看网站| 91精品国产国语对白视频| 观看免费一级毛片| 久久久久久久久久成人| 国产av一区二区精品久久 | 欧美成人精品欧美一级黄| videossex国产| 久久久久久久久大av| 热99国产精品久久久久久7| 在线看a的网站| 成人午夜精彩视频在线观看| 99热6这里只有精品| 国产精品一区二区在线不卡| 纵有疾风起免费观看全集完整版| h视频一区二区三区| 欧美成人一区二区免费高清观看| 婷婷色综合大香蕉| 最近最新中文字幕大全电影3| 日本欧美国产在线视频| 免费久久久久久久精品成人欧美视频 | 一区二区三区精品91| 伊人久久国产一区二区| 亚洲欧美清纯卡通| 亚洲自偷自拍三级| 一级毛片 在线播放| 精品一区二区免费观看| 中国三级夫妇交换| 精品午夜福利在线看| av免费在线看不卡| 亚洲精品亚洲一区二区| 91狼人影院| 纯流量卡能插随身wifi吗| 亚洲国产精品一区三区| 亚洲精品乱码久久久久久按摩| 一级毛片aaaaaa免费看小| 51国产日韩欧美| 日本av手机在线免费观看| 亚洲欧美精品专区久久| 免费大片黄手机在线观看| 欧美高清性xxxxhd video| 视频中文字幕在线观看| 久久99热这里只有精品18| 久久99精品国语久久久| 国产成人精品福利久久| 久久久a久久爽久久v久久| 亚洲国产色片| 国产成人精品婷婷| 交换朋友夫妻互换小说| 亚洲丝袜综合中文字幕| 亚洲欧美一区二区三区国产| 男女国产视频网站| 五月伊人婷婷丁香| 国产免费一级a男人的天堂| 蜜桃久久精品国产亚洲av| 一级毛片 在线播放| 99精国产麻豆久久婷婷| 国产成人a区在线观看| 女人十人毛片免费观看3o分钟| 中文字幕亚洲精品专区| 欧美成人一区二区免费高清观看| 91久久精品国产一区二区三区| 日韩av在线免费看完整版不卡| 18+在线观看网站| 午夜精品国产一区二区电影| 老司机影院成人| 精品一区二区免费观看| 尾随美女入室| 97在线人人人人妻| 色视频在线一区二区三区| av免费观看日本| 夜夜看夜夜爽夜夜摸| 久久久久久久亚洲中文字幕| 亚洲高清免费不卡视频| 欧美精品国产亚洲| 午夜福利在线在线| 黄色日韩在线| 免费看不卡的av| 亚洲不卡免费看| 日韩 亚洲 欧美在线| 王馨瑶露胸无遮挡在线观看| 国产男女内射视频| 成人美女网站在线观看视频| 国产中年淑女户外野战色| a级毛色黄片| 国产爽快片一区二区三区| 国产高清三级在线| 亚洲人成网站在线观看播放| 国产探花极品一区二区| .国产精品久久| 成年美女黄网站色视频大全免费 | 一区二区av电影网| 九九久久精品国产亚洲av麻豆| 26uuu在线亚洲综合色| 亚洲欧美成人综合另类久久久| 午夜激情久久久久久久| 欧美国产精品一级二级三级 | 国产精品免费大片| 免费大片18禁| 91精品伊人久久大香线蕉| 国内精品宾馆在线| 最近2019中文字幕mv第一页| 亚洲成人一二三区av| av线在线观看网站| 大又大粗又爽又黄少妇毛片口| 久久婷婷青草| 日日摸夜夜添夜夜添av毛片| 赤兔流量卡办理| 一个人看视频在线观看www免费| 欧美激情极品国产一区二区三区 | 日本免费在线观看一区| 纵有疾风起免费观看全集完整版| av在线观看视频网站免费| 视频区图区小说| 少妇的逼好多水| 在线观看美女被高潮喷水网站| 国语对白做爰xxxⅹ性视频网站| 最近2019中文字幕mv第一页| 欧美成人精品欧美一级黄| 国产一区有黄有色的免费视频| kizo精华| 九九在线视频观看精品| 久久99蜜桃精品久久| 日日撸夜夜添| 丰满乱子伦码专区| 少妇猛男粗大的猛烈进出视频| a 毛片基地| 在线亚洲精品国产二区图片欧美 | 偷拍熟女少妇极品色| 免费大片18禁| 国产淫片久久久久久久久| 欧美高清性xxxxhd video| 国产免费又黄又爽又色| 亚洲久久久国产精品| 看十八女毛片水多多多| 午夜福利网站1000一区二区三区| 亚洲精品,欧美精品| 日韩大片免费观看网站| 超碰av人人做人人爽久久| 国模一区二区三区四区视频| 国产人妻一区二区三区在| 狠狠精品人妻久久久久久综合| 成年女人在线观看亚洲视频| 女人久久www免费人成看片| 午夜福利高清视频| 久久久久久久久大av| 视频中文字幕在线观看| 日本欧美国产在线视频| 国产视频内射| 最近最新中文字幕大全电影3| 99国产精品免费福利视频| 成人毛片60女人毛片免费| 日韩中字成人| 噜噜噜噜噜久久久久久91| 在线免费十八禁| 国产深夜福利视频在线观看| 久久毛片免费看一区二区三区| 国产精品.久久久| 国产精品成人在线| 久久人人爽人人爽人人片va| 免费观看无遮挡的男女| 又大又黄又爽视频免费| 色哟哟·www| 久久久色成人| 精品亚洲成a人片在线观看 | 亚洲美女视频黄频| 色5月婷婷丁香| 涩涩av久久男人的天堂| 王馨瑶露胸无遮挡在线观看| 在现免费观看毛片| 欧美激情国产日韩精品一区| 亚洲欧美成人精品一区二区| 国产熟女欧美一区二区| 成人黄色视频免费在线看| 有码 亚洲区| 国模一区二区三区四区视频| 热re99久久精品国产66热6| 久久久久久久亚洲中文字幕| 精品少妇黑人巨大在线播放| 日本-黄色视频高清免费观看| 亚洲国产精品专区欧美| 亚洲国产精品一区三区| 久久国内精品自在自线图片| 嘟嘟电影网在线观看| av在线老鸭窝| 在线精品无人区一区二区三 | 观看美女的网站| 女性被躁到高潮视频| 国产欧美日韩一区二区三区在线 | 日本wwww免费看| 日韩大片免费观看网站| 国产精品精品国产色婷婷| 一本久久精品| 国产无遮挡羞羞视频在线观看| 精品一区二区三卡| 波野结衣二区三区在线| 午夜福利在线在线| 亚州av有码| 国产成人免费无遮挡视频| 亚洲国产精品成人久久小说| 日日啪夜夜爽| 看免费成人av毛片| 亚洲精品自拍成人| 黑人高潮一二区| 天天躁日日操中文字幕| 人妻系列 视频| 日本欧美视频一区| 色网站视频免费| 久久精品国产自在天天线| 97在线视频观看| 五月天丁香电影| 亚洲av在线观看美女高潮| 伊人久久精品亚洲午夜| 国产黄色免费在线视频| 欧美少妇被猛烈插入视频| 精品人妻熟女av久视频| 久久久久久久亚洲中文字幕| 一个人看的www免费观看视频| 国产极品天堂在线| 一级毛片 在线播放| 国产成人a∨麻豆精品| 婷婷色av中文字幕| 亚洲精华国产精华液的使用体验| 亚洲av日韩在线播放| 各种免费的搞黄视频| 国产综合精华液| 成人二区视频| 国产毛片在线视频| 久久国产精品大桥未久av | 国产亚洲av片在线观看秒播厂| h视频一区二区三区| 制服丝袜香蕉在线| 色吧在线观看| 嫩草影院新地址| 最近2019中文字幕mv第一页| 免费少妇av软件| 久久国产精品大桥未久av | 男女边摸边吃奶| 国产精品三级大全| 热99国产精品久久久久久7| 最近最新中文字幕大全电影3| 亚洲中文av在线| 成人黄色视频免费在线看| 日本av手机在线免费观看| 99热全是精品| 国产一区有黄有色的免费视频| 高清午夜精品一区二区三区| www.色视频.com| 超碰av人人做人人爽久久| 99热这里只有是精品在线观看| 熟女av电影| av在线观看视频网站免费| 亚洲国产精品一区三区| 国产中年淑女户外野战色| 国产伦理片在线播放av一区| 亚洲精品自拍成人| 亚洲国产欧美在线一区| 久久午夜福利片| 极品少妇高潮喷水抽搐| 国产男女超爽视频在线观看| av国产免费在线观看| 色哟哟·www| 久久久久精品性色| 青春草视频在线免费观看| 午夜福利高清视频| 青青草视频在线视频观看| 18禁裸乳无遮挡免费网站照片| 久久精品国产a三级三级三级| 亚洲av二区三区四区| 97超视频在线观看视频| 亚洲综合精品二区| 最近最新中文字幕大全电影3| 精品熟女少妇av免费看| av一本久久久久| 简卡轻食公司| 国产又色又爽无遮挡免| 91久久精品电影网| 国产亚洲最大av| 人妻系列 视频| 精品少妇黑人巨大在线播放| 黄片wwwwww| 毛片一级片免费看久久久久| 亚洲图色成人| 全区人妻精品视频| 国产男女内射视频| 久久人人爽人人片av| 91狼人影院| 99热国产这里只有精品6| 亚洲,一卡二卡三卡| 久久99热6这里只有精品| 成人高潮视频无遮挡免费网站| 男女下面进入的视频免费午夜| 亚洲婷婷狠狠爱综合网| videos熟女内射| 全区人妻精品视频| 国产男人的电影天堂91| 在线免费十八禁| 人妻一区二区av| 成人黄色视频免费在线看| 高清不卡的av网站| av在线老鸭窝| 亚洲精品久久久久久婷婷小说| 精品少妇久久久久久888优播| 午夜精品国产一区二区电影| 欧美区成人在线视频| 国产男人的电影天堂91| 丝袜脚勾引网站| 亚洲无线观看免费| 深夜a级毛片| 中文字幕精品免费在线观看视频 | 亚洲三级黄色毛片| av网站免费在线观看视频| 午夜激情久久久久久久| 国产成人aa在线观看| 观看免费一级毛片| 久久久久久九九精品二区国产| 国产精品爽爽va在线观看网站| 最近2019中文字幕mv第一页| 久热这里只有精品99| 日本黄大片高清| 日本猛色少妇xxxxx猛交久久| 国产精品嫩草影院av在线观看| 久久久久久久亚洲中文字幕| 成年美女黄网站色视频大全免费 | 99热网站在线观看| 欧美性感艳星| 极品教师在线视频| 九草在线视频观看| 最黄视频免费看| 欧美zozozo另类| 国产精品伦人一区二区| 亚洲久久久国产精品| 亚洲精品视频女| 国产精品精品国产色婷婷| 亚洲欧美日韩另类电影网站 | 内射极品少妇av片p| 国产爱豆传媒在线观看| 国产欧美另类精品又又久久亚洲欧美| av国产久精品久网站免费入址| 免费黄网站久久成人精品| 伦理电影大哥的女人| 国内揄拍国产精品人妻在线| 插阴视频在线观看视频| 亚洲av中文字字幕乱码综合| 亚洲激情五月婷婷啪啪| 深爱激情五月婷婷| 香蕉精品网在线| 女人久久www免费人成看片| 国产精品秋霞免费鲁丝片| 国产成人a∨麻豆精品| 在线观看一区二区三区激情| 国产精品久久久久久久电影| 自拍欧美九色日韩亚洲蝌蚪91 | 一区二区三区四区激情视频| 欧美成人精品欧美一级黄| 九草在线视频观看| 日韩中字成人| 国产在视频线精品| 国产一区有黄有色的免费视频| 国产精品一区二区性色av| 欧美精品国产亚洲| 秋霞在线观看毛片| 亚洲精华国产精华液的使用体验| 婷婷色综合大香蕉| 亚洲国产最新在线播放| 乱码一卡2卡4卡精品| 我的老师免费观看完整版| 亚洲国产欧美人成| 男人狂女人下面高潮的视频| 亚洲av二区三区四区| 中文精品一卡2卡3卡4更新| 国产精品一二三区在线看| av福利片在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产在视频线精品| 成人午夜精彩视频在线观看| 欧美精品一区二区免费开放| 啦啦啦视频在线资源免费观看| 国产 一区 欧美 日韩| 制服丝袜香蕉在线| 国产欧美另类精品又又久久亚洲欧美| 精品人妻熟女av久视频| 伦精品一区二区三区| 欧美日韩在线观看h| 国产免费视频播放在线视频| 伊人久久国产一区二区| 日韩av在线免费看完整版不卡| 欧美性感艳星| 久久精品国产鲁丝片午夜精品| 中文字幕av成人在线电影| 在线观看美女被高潮喷水网站| 欧美高清性xxxxhd video| 午夜福利网站1000一区二区三区| 91在线精品国自产拍蜜月| videos熟女内射| 男女啪啪激烈高潮av片| 成人18禁高潮啪啪吃奶动态图 | 国产亚洲av片在线观看秒播厂| 久久精品人妻少妇| 一本色道久久久久久精品综合| 久久久久视频综合| 日韩一区二区三区影片| 久久久久久久久久久免费av| 午夜激情久久久久久久| 久久久久性生活片| 国产白丝娇喘喷水9色精品| 亚洲av福利一区| 亚洲精品456在线播放app| 你懂的网址亚洲精品在线观看| 久久ye,这里只有精品| 国产欧美日韩一区二区三区在线 | 人妻一区二区av| 亚洲av国产av综合av卡| 啦啦啦视频在线资源免费观看| 男人添女人高潮全过程视频| 亚洲欧美精品专区久久| 午夜老司机福利剧场| 久久亚洲国产成人精品v| 亚洲欧洲国产日韩| 三级国产精品片| 欧美日韩一区二区视频在线观看视频在线| 一级二级三级毛片免费看| 男女无遮挡免费网站观看| 久久99精品国语久久久| av卡一久久| 18+在线观看网站| 国产一区亚洲一区在线观看| 日本黄色片子视频| 成人毛片60女人毛片免费| 免费观看无遮挡的男女| 亚洲av中文字字幕乱码综合| 亚州av有码| 午夜精品国产一区二区电影| 在线观看av片永久免费下载| 成人无遮挡网站| 国产伦理片在线播放av一区| 亚洲国产欧美在线一区| 国产久久久一区二区三区| 日产精品乱码卡一卡2卡三| 一区二区三区免费毛片| 欧美人与善性xxx| 黑人高潮一二区| 国产91av在线免费观看| 日本与韩国留学比较| 在线免费十八禁| 欧美日韩综合久久久久久| 视频中文字幕在线观看| 精品久久久噜噜| 日韩制服骚丝袜av| 免费看av在线观看网站| 久久久亚洲精品成人影院| 夜夜骑夜夜射夜夜干| 日本黄色日本黄色录像| 精品一区在线观看国产| 男女无遮挡免费网站观看| 国产成人91sexporn| 成年av动漫网址| 一区在线观看完整版| 少妇 在线观看| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频| 亚洲av中文字字幕乱码综合| 亚洲av男天堂| 内地一区二区视频在线| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| 高清午夜精品一区二区三区| 国产免费视频播放在线视频| 国产又色又爽无遮挡免| 一级片'在线观看视频| 国产爽快片一区二区三区| 91aial.com中文字幕在线观看| 国产老妇伦熟女老妇高清| 人人妻人人澡人人爽人人夜夜| 在线观看美女被高潮喷水网站| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 极品教师在线视频| 国产极品天堂在线| 国产黄色视频一区二区在线观看| 熟女电影av网| 毛片一级片免费看久久久久| 免费看不卡的av| 又粗又硬又长又爽又黄的视频| 尤物成人国产欧美一区二区三区| 国产精品福利在线免费观看| 99热全是精品| 亚洲av欧美aⅴ国产| 高清欧美精品videossex| 久久国产精品大桥未久av | 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 少妇人妻久久综合中文| 欧美 日韩 精品 国产| 国产黄频视频在线观看| 狂野欧美激情性bbbbbb| 1000部很黄的大片| 少妇猛男粗大的猛烈进出视频| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 国产美女午夜福利| 久久国产精品大桥未久av | 在线观看三级黄色| 亚洲成人一二三区av| 一个人看的www免费观看视频| 国产精品精品国产色婷婷| 亚洲精品国产av蜜桃| 中文天堂在线官网| 亚洲四区av| 天堂中文最新版在线下载| 我要看黄色一级片免费的| 国产高清不卡午夜福利| 卡戴珊不雅视频在线播放| 亚洲欧美日韩东京热| 激情 狠狠 欧美| 国产精品国产av在线观看| 激情五月婷婷亚洲| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱久久久久久| 日日啪夜夜爽| 视频区图区小说| 欧美成人午夜免费资源| 少妇被粗大猛烈的视频| 国产精品蜜桃在线观看| 欧美日韩视频精品一区| 晚上一个人看的免费电影| 欧美精品一区二区免费开放| 在线免费观看不下载黄p国产| 国产女主播在线喷水免费视频网站| 久久久色成人| 美女脱内裤让男人舔精品视频| 18禁在线无遮挡免费观看视频| 大香蕉久久网| 精品久久久久久久末码| 国产精品一区二区在线观看99| 亚洲高清免费不卡视频| 成人亚洲精品一区在线观看 | 97精品久久久久久久久久精品| 国产乱人视频| 少妇熟女欧美另类| 国产精品国产三级专区第一集| av不卡在线播放| av在线蜜桃| 18禁裸乳无遮挡免费网站照片| 你懂的网址亚洲精品在线观看| 能在线免费看毛片的网站| 国产男女超爽视频在线观看| 99久久综合免费| 黄色日韩在线| 午夜福利影视在线免费观看| 你懂的网址亚洲精品在线观看| 亚洲国产最新在线播放| 18禁动态无遮挡网站| 视频区图区小说| 欧美高清性xxxxhd video| 亚洲美女视频黄频| 99久久人妻综合| 少妇人妻久久综合中文| 国产久久久一区二区三区| 亚洲综合色惰| 老女人水多毛片| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 亚洲精品色激情综合|