司民真,張德清,李 倫,張川云
1. 楚雄師范學(xué)院云南省高校分子光譜重點(diǎn)實(shí)驗(yàn)室,云南 楚雄 675000 2. 楚雄師范學(xué)院光譜應(yīng)用技術(shù)研究所,云南 楚雄 675000
姜油細(xì)胞原位拉曼光譜研究
司民真1,2,張德清1,2,李 倫1,2,張川云1,2
1. 楚雄師范學(xué)院云南省高校分子光譜重點(diǎn)實(shí)驗(yàn)室,云南 楚雄 675000 2. 楚雄師范學(xué)院光譜應(yīng)用技術(shù)研究所,云南 楚雄 675000
提出一種用拉曼光譜原位分析新鮮姜油細(xì)胞中姜油主成分的方法。用徒手切片制備新鮮姜樣品,該樣品置于DXR 激光共焦顯微拉曼光譜儀下,用20倍物鏡觀察到油細(xì)胞,將激光聚焦在該油細(xì)胞上,獲得了姜油細(xì)胞中姜油的拉曼光譜,共21條譜峰。不同油細(xì)胞上獲得的拉曼光譜非常相似。獲得了姜精油的拉曼光譜,與姜精油拉曼光譜的37條譜峰比較,油細(xì)胞有19條譜峰與之有對(duì)應(yīng)關(guān)系。為了解釋油細(xì)胞精油及姜精油的拉曼光譜,用密度泛函理論計(jì)算了姜烯的拉曼光譜。姜精油拉曼光譜有31條譜峰,油細(xì)胞中有19條譜峰與計(jì)算光譜有對(duì)應(yīng)關(guān)系。該研究提供了一種拉曼光譜技術(shù)與密度泛函理論計(jì)算結(jié)合的快速容易的精油質(zhì)量控制方法。
拉曼光譜;姜油細(xì)胞;姜精油;姜烯;密度泛函理論
姜(ZingiberOfficialRosc.)是傳統(tǒng)的調(diào)味料和加香劑,又是一種常用的中藥,在我國(guó)廣為種植。姜精油中主要成分姜烯具有多種生物活性,如抗病毒、抗?jié)兒涂股龋瑥V泛用于化妝品和香料工業(yè)。對(duì)姜油的研究通常用GC-MS聯(lián)用技術(shù)分離鑒定其中的化學(xué)組成,然而用該方法存在兩個(gè)問(wèn)題: 一是由于提取方法的不同,使得提取到的主要的揮發(fā)性物質(zhì)不同,如,崔儉杰[1]對(duì)不同產(chǎn)地(山東、云南、安徽、江蘇、新疆)的姜油中的揮發(fā)性成分進(jìn)行分析和比較,其組成成分平均含量最高為姜烯(29.7%),其他依次為β-倍半水芹烯(12.28%)、α-姜黃烯(9.7%);張薇[2]得出超聲復(fù)合酶法提取所得姜油成分含量最高的為姜酚25.36%, 其次是姜烯18.12%;超聲法提取所得姜油成分含量最高的為姜烯24.41%, 其次是姜酚20.14%;Singh Gurdip[3]用水蒸餾法得到姜油,分析鑒定其主要的揮發(fā)物為香葉醛(25.9%);劉源[4]用頂空固相微萃取氣質(zhì)聯(lián)用檢測(cè)生姜揮發(fā)性成分方法得到姜的主要揮發(fā)性物質(zhì)為Z一檸檬醛(24.21%)和姜烯(17.1%);Huang[5]用同樣的方法,檢測(cè)用普通爐子、微波爐、硅膠干燥方法干燥的干姜揮發(fā)性成分得到姜的主要揮發(fā)性物質(zhì)為姜烯(26.4%~37.1%),β-水芹烯(7.4%~12.9%),β-倍半水芹烯(10.2%-12.8%), 及香葉醛(6.6%~8.1%)。二是該方法所需要的前期樣品的制備時(shí)間較長(zhǎng),費(fèi)用高,其流程為氣相色譜柱分離-質(zhì)譜儀定性或定量,其中在進(jìn)行氣相色譜分離時(shí)需要在較高的溫度下進(jìn)行,可能會(huì)引起生物活性分子的結(jié)構(gòu)改變[6]。能否不通過(guò)繁雜提取且在常溫下就能進(jìn)行姜油的主要揮發(fā)性物質(zhì)進(jìn)行檢測(cè)? 本文對(duì)新鮮姜采用徒手切片制樣,用顯微拉曼光譜直接獲得了姜的油細(xì)胞中姜精油的拉曼光譜,對(duì)所獲得的拉曼光譜進(jìn)行了研究。文獻(xiàn)調(diào)研結(jié)果表明,還未見(jiàn)這方面的報(bào)道。
實(shí)驗(yàn)樣品鮮姜于2015年7月28日采購(gòu)于楚雄市菜市場(chǎng),用徒手切片法制樣后待用。Jofont牌水蒸餾姜精油由宏芳香料(昆山)有限公司惠贈(zèng)。DXR 激光共焦顯微拉曼光譜儀(DXR Raman Microscope,美國(guó)Thermo Fisher),激發(fā)波長(zhǎng)785 nm,測(cè)定功率2 mW,曝光時(shí)間30 s,樣品曝光次數(shù)3次。物鏡倍數(shù)為20×。
理論計(jì)算采用Gaussian’03 程序,運(yùn)用RB3LYP方法(交換函數(shù)為Becke3, 相關(guān)函數(shù)為L(zhǎng)YP)在6-311G基組水平上,對(duì)姜烯的幾何結(jié)構(gòu)進(jìn)行優(yōu)化,在優(yōu)化的基礎(chǔ)上計(jì)算了振動(dòng)頻率,姜烯的計(jì)算波數(shù)乘以校準(zhǔn)因子0.968 5。
3.1 樣品拉曼光譜重現(xiàn)性及穩(wěn)定性檢測(cè)
將切片置于顯微鏡下,調(diào)焦后可清楚的見(jiàn)到姜的細(xì)胞結(jié)構(gòu),尋找近圓形的油細(xì)胞,將激光聚焦該點(diǎn)如圖1所示,得到油細(xì)胞中精油的拉曼光譜如圖2所示。為考察光譜的重現(xiàn)性及穩(wěn)定性,尋找不同的5個(gè)油細(xì)胞,得到五條光譜線,如圖2所示。
圖1 顯微鏡下的姜油細(xì)胞
圖2 五個(gè)不同油細(xì)胞的拉曼光譜
從圖2可見(jiàn),從不同油細(xì)胞中得到的拉曼光譜具有較好的重復(fù)性和穩(wěn)定性。
3.2 油細(xì)胞中姜油與惠贈(zèng)姜油拉曼光譜比較
為了考察油細(xì)胞中姜油的拉曼光譜與惠贈(zèng)的姜油拉曼光譜是否相同,圖3a給出惠贈(zèng)姜油的拉曼光譜,為便于比較,油細(xì)胞中的拉曼光譜一同在圖3b給出。其相應(yīng)的波數(shù)列于表1中。
圖3 姜精油(a)及姜油細(xì)胞(b)的拉曼光譜
從圖2及表1中可見(jiàn),油細(xì)胞中姜精油的拉曼峰,較強(qiáng)峰出現(xiàn)在1 674,1 636和1 594 cm-1,次強(qiáng)峰出現(xiàn)在1 451,1 437,1 380,1 343,1 303,1 216和1 155 cm-1。惠贈(zèng)姜油的較強(qiáng)峰出現(xiàn)在1 674,1 637和1 591 cm-1,次強(qiáng)峰出現(xiàn)在1 450,1 380,1 216,925,875和801 cm-1,此外還有一些較弱的峰,這些峰在油細(xì)胞拉曼譜中沒(méi)有出現(xiàn)。姜油的大部分拉曼峰與油細(xì)胞中姜油的拉曼峰一致,說(shuō)明惠贈(zèng)姜油在提取過(guò)程中其化學(xué)主成分沒(méi)有發(fā)生根本的變化,但一些較弱峰的出現(xiàn)則有兩種可能,1是惠贈(zèng)的姜油中,還有與油細(xì)胞中不同的成分,2是油細(xì)胞中該成分的量太少,未能檢出。Hartwig Schulz用FT-Raman獲得了姜的根部中心的拉曼光譜[7],見(jiàn)表1。其中1 666,1 634,1 601,1 452,1 381,477和441 cm-1處的譜峰與油細(xì)胞及姜油的譜峰都有對(duì)應(yīng)的關(guān)系,這說(shuō)明不同產(chǎn)地的姜的主成分是相同的。
表1 姜烯分子計(jì)算的拉曼光譜及姜精油、油細(xì)胞拉曼譜的歸屬
續(xù)表1
5951.55612wtwistingvibration(11CH2)andγ(C—H)635m636w651m6801.30670mγ(5CH2)7504.05762mγ(22CH2&25CH2)7795.94782m779wγ(22CH2,25CH2&5CH2)8092.98801mtwistingvibration(11CH2)8656.01875m867skeletalvibration9204.23925m925wringdeformation9533.01956m940γ(C—H)10143.321018wskeletalvibration10334.501041wν(6C—1C)10922.051081w1090wγ(C—H)110316.081109ringdeformationandγ(C—H)11655.611158w1125ν(3C—11C)andγ(C—H)11742.821171w11927.831184w1187w121614.841215m1214w1264γ(C—H)129813.631295m1300w13273.881328m133713576.091361w136914.441380s1378w1381γ(25C—26H&28C—29H)1439s1436w146730.761451s1451w1452scissoringvibration(5CH2)andγ(C—H)158891.971591s1599m1601ν(1C=2C,3C=4C&3C—2C)1637s1636m1634167465.501674s1675m1666ν(28C=30C)2729m2718287475.852871vsγ(16C—17H)2917114.492915vs2916m2913ν(18CH3)297184.062963vs2972wν(5C—10H)301333.423025m3016wν(35C—37H)3070158.043077w3077wν(1C—7H&2C—8H)
aKey: w=weak; m=medium; s=strong; vs=very strong.ν=stretching mode;γ=rocking mode
由于姜精油和姜辣素混合存在于同一種類(lèi)型的油細(xì)胞中,而姜精油和姜辣素的成分又復(fù)雜,要對(duì)油細(xì)胞中獲得的譜峰進(jìn)行歸屬是很困難的。而用蒸餾法得到的姜精油的主要成分為姜烯,故對(duì)姜烯的拉曼光譜進(jìn)行了計(jì)算,其分子優(yōu)化結(jié)構(gòu)見(jiàn)圖4,其振動(dòng)歸屬列于表1中。
圖4 姜烯分子的優(yōu)化結(jié)構(gòu)圖
圖5 姜精油(a)及計(jì)算的姜烯分子(b)的拉曼光譜
Fig.5 Observed (a) Raman spectrum of ginger oil and Calculated (b) Raman spectrum of Zingiberene
用徒手切片法制樣,在顯微拉曼光譜儀上可清楚看到鮮姜中的油細(xì)胞,在油細(xì)胞上獲得了姜油的拉曼光譜?;葙?zèng)姜油的拉曼光譜與油細(xì)胞姜油的拉曼光譜相似,大部分的譜峰來(lái)源于姜烯。直接測(cè)量油細(xì)胞中的拉曼譜可避免復(fù)雜的提取及樣品的制備過(guò)程,最大限度避免姜油活性成分變化,可對(duì)姜油的質(zhì)量進(jìn)行控制。由于姜科植物大都可提取精油,具有油細(xì)胞,用此方法可直接對(duì)姜科植物精油進(jìn)行質(zhì)量控制及開(kāi)發(fā)研究。
[1] CUI Jian-jie, LI Qiong(崔儉杰, 李 瓊). Flavour Fragrance Cosmetics(香料香精化妝品),2011, 1: 1.
[2] ZHANG Wei, WU Hao, YANG Shao-lan, et al(張 薇, 吳 昊, 楊紹蘭, 等). Journal of Food Safety and Quality(食品安全質(zhì)量檢測(cè)學(xué)報(bào)), 2014, 5(2): 533.
[3] Singh Gurdip, Kapoor I P S, Singh Pratibha, et al. Food and Chemical Toxicology, 2008, 46(10): 3295.
[4] LIU Yuan,XU Xing-lian,ZHOU Guang-hong(劉 源,徐幸蓮,周光宏). China Condiment(中國(guó)調(diào)味品), 2004, 1: 42.
[5] Huang Baokang, Wang Guowei, Chu Zhiyong, et al. Drying Technology, 2012, 30(3): 248.
[6] SI Min-zhen, ZHANG De-qing, LIU Ren-ming(司民真,張德清, 劉仁明). Spectroscopy and Spectral Analysis(光譜學(xué)與光譜分析),2014, 34(9): 2449.
[7] Andreev G N, Schrader B, Schulz H, et al. J. Anal. Chem., 2001, 371: 1009.
(Received Aug. 16, 2015; accepted Dec. 18, 2015)
In Situ Research on Ginger Oil Cell with Raman
SI Min-zhen1,2, ZHANG De-qing1,2, LI Lun1,2, ZHANG Chuan-yun1,2
1. Key Laboratory of Molecular Spectroscopy, Colleges and Universities in Yunnan Province, Chuxiong Normal University, Chuxiong 675000, China 2. Application Institute of Spectroscopy Technology, Chuxiong Normal University, Chuxiong 675000, China
This article presents a novel and original approach to analyze the main components of the essential oils in ginger oil cell by means of Raman spectroscopy. Fresh ginger sample was prepareed with free-hand section. Under the DXR Laser confocal micro Raman spectrometer, the oil cell has 20 objective lens. As to the ginger oil cell, the Raman spectrum, all together 21 spectroscopic bands, was obtained. It has been found that the obtained Raman spectrums at different oil cells are very similar. The Raman spectrum of the commercial essential oils of ginger, together 37 spectroscopic bands, was obtained. It has been found that the 19 presented spectroscopic bands of ginger oil cell correlate very well with those obtained by the commercial essential oils. Density Functional Theory (DFT) of zingiberene calculations were performed in order to interpret the spectra of the essential oils of the ginger oil cell and essential oils of ginger. There are 31 spectroscopic bands of the essential oils of ginger, and 19 spectroscopic bands of ginger oil cell correlate very well with calculations. All these investigations are helpful tools to generate a fast and easy method to control the quality of the essential oils with Raman spectroscopic techniques in combination with DFT calculations.
Raman spectrum;Ginger oil cell;Essential oils of ginger;Zingiberene;Density functional theory
2015-08-16,
2015-12-18
國(guó)家自然科學(xué)基金項(xiàng)目(11364001, 10864001)資助
司民真,女,1962年生,楚雄師范學(xué)院云南省高校分子光譜重點(diǎn)實(shí)驗(yàn)室教授 e-mail: siminzhen@cxtc.edu.cn
O657.3
A
10.3964/j.issn.1000-0593(2016)11-3578-04