• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      不同覆蓋方式和施氮量對糜子光合特性及產(chǎn)量性狀的影響

      2016-07-14 09:57:06瑜蘇旺王艦屈洋高小麗楊璞馮佰利旱區(qū)作物逆境生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室西北農(nóng)林科技大學(xué)陜西楊凌700青海省農(nóng)林科學(xué)院生物技術(shù)研究所青海西寧8006寶雞市農(nóng)業(yè)科學(xué)研究所陜西岐山7400
      作物學(xué)報(bào) 2016年6期
      關(guān)鍵詞:干物質(zhì)覆蓋糜子

      周 瑜蘇 旺王 艦屈 洋高小麗楊 璞馮佰利,*旱區(qū)作物逆境生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室 / 西北農(nóng)林科技大學(xué),陜西楊凌700;青海省農(nóng)林科學(xué)院生物技術(shù)研究所,青海西寧8006;寶雞市農(nóng)業(yè)科學(xué)研究所,陜西岐山7400

      ?

      不同覆蓋方式和施氮量對糜子光合特性及產(chǎn)量性狀的影響

      周 瑜1,**蘇 旺1,2,**王 艦2屈 洋1,3高小麗1楊 璞1馮佰利1,*1旱區(qū)作物逆境生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室 / 西北農(nóng)林科技大學(xué),陜西楊凌712100;2青海省農(nóng)林科學(xué)院生物技術(shù)研究所,青海西寧810016;3寶雞市農(nóng)業(yè)科學(xué)研究所,陜西岐山722400

      摘 要:于2011—2013年以榆糜2號為試驗(yàn)材料,采用雙因素裂區(qū)設(shè)計(jì),以覆蓋栽培方式為主因素,氮肥應(yīng)用水平為副因素,調(diào)查不同栽培方式和施氮量下糜子光合指標(biāo)及產(chǎn)量性狀的變化。結(jié)果表明,與傳統(tǒng)不覆蓋和不施肥相比,覆蓋和施氮均顯著提高糜子開花至成熟階段旗葉的葉綠素含量、凈光合速率(Pn)、氣孔導(dǎo)度(Gs)和蒸騰速率(Tr),同時(shí)顯著降低胞間CO2濃度(Ci),光合改善效果以“W”壟覆地膜+壟間覆秸稈和180 kg hm-2氮肥施用量最為顯著。覆蓋和氮肥均顯著提高糜子開花期和成熟期干物質(zhì)積累量、干物質(zhì)在各器官中的分配量,降低糜子花前營養(yǎng)器官貯藏同化物轉(zhuǎn)運(yùn)量及其對籽粒的貢獻(xiàn)率,而提高了糜子花后同化物在籽粒中的分配量及其對籽粒的貢獻(xiàn)率。覆蓋顯著提高糜子產(chǎn)量、千粒重、穗粒數(shù)和穗長,其調(diào)控效應(yīng)以“W”壟覆地膜+壟間覆秸稈較好;隨施氮量的提高,糜子產(chǎn)量和千粒重先升后降,而穗粒數(shù)和穗長持續(xù)增加,適宜的氮肥施用量為135~145 kg hm-2。因此,建議黃土高原糜子最佳栽培措施為“W”壟覆地膜+壟間覆秸稈的二元覆蓋集水保水系統(tǒng)結(jié)合135~145 kg hm-2氮肥用量。

      關(guān)鍵詞:糜子;覆蓋;氮肥;光合特性;干物質(zhì);產(chǎn)量

      本研究由國家科技支撐計(jì)劃項(xiàng)目(2014BAD07B03),國家自然科學(xué)基金項(xiàng)目(31371529),國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-07-12.5-A9)和陜西省小雜糧產(chǎn)業(yè)技術(shù)體系資助。

      The study was supported by the National Key Technology R&D Program of China (2014BAD07B03),the Natural Science Foundation of China (31371529),the China Agriculture Research System (CARS-07-12.5-A9),and the Shaanxi Provincial Agro-industry Technology Research System of Shaanxi Province.

      第一作者聯(lián)系方式∶ E-mail∶ xinganmermer@163.com**同等貢獻(xiàn)(Contributed equally to this work)

      URL∶ http∶//www.cnki.net/kcms/detail/11.1809.S.20160321.1056.006.html

      壟溝覆蓋集水技術(shù)是指地表起壟、壟溝相間、壟面產(chǎn)流、溝內(nèi)集雨種植的栽培模式[1],其集水效應(yīng)可使當(dāng)季屬于無效和微效的降水形成徑流,疊加到種植溝內(nèi),同時(shí)可抑制覆蓋下土壤水分的無效蒸發(fā),促進(jìn)降水下滲,改善作物根區(qū)的土壤水分供應(yīng)狀況,進(jìn)而提高作物產(chǎn)量和水分利用效率[2]。結(jié)合普通地膜、秸稈和礫石等覆蓋材料,壟溝覆蓋集水具有提高作物養(yǎng)分利用率[3-4]、調(diào)節(jié)地表溫度[5-6]、活化土壤養(yǎng)分[7]、降低水土流失[8]、緩解土壤鹽堿化[9]、改善作物光合能力[10]等作用,最終促進(jìn)作物生產(chǎn)力提升和籽粒品質(zhì)的改良[11]。截至目前,壟溝覆蓋集水技術(shù)已經(jīng)廣泛應(yīng)用于小麥[12]、玉米[13]、馬鈴薯[14]、谷子[15]、苜蓿[16]等作物,并實(shí)現(xiàn)了農(nóng)機(jī)農(nóng)藝配套,推進(jìn)了旱區(qū)作物生產(chǎn)。

      氮肥施用為農(nóng)業(yè)增產(chǎn)的重要措施[17],應(yīng)用氮肥可顯著調(diào)控作物生長發(fā)育、光合特性及防止葉片衰老等,進(jìn)而改善作物籽粒品質(zhì)、提高產(chǎn)量。作物產(chǎn)量隨氮肥施用量提高而增加,但當(dāng)施氮量超過一定范圍,作物產(chǎn)量不增反減[18-20]。Liu和 Wiatrak[21]研究表明,增施氮肥可顯著提高玉米株高、葉片葉綠素含量、葉面積指數(shù)和產(chǎn)量,而當(dāng)?shù)视昧砍^ 45 kg hm-2并繼續(xù)增加氮肥對玉米籽粒產(chǎn)量沒有顯著影響,當(dāng)?shù)适┯昧看笥?90 kg hm-2時(shí)增施氮肥并不能進(jìn)一步提高玉米葉綠素含量。韓寶吉等[22]研究發(fā)現(xiàn),在當(dāng)前農(nóng)民習(xí)慣施肥用量下將氮肥減少 20%左右,湖北中稻不僅不會減產(chǎn)反而還會增產(chǎn)增效;而在高氮的投入下高產(chǎn)田水稻增產(chǎn)不明顯甚至減產(chǎn)。相關(guān)研究普遍認(rèn)為,作物產(chǎn)量與施氮量的關(guān)系符合報(bào)酬遞減規(guī)律,并利用二次拋物線、線性+平臺和二次式+平臺等模型模擬出了作物產(chǎn)量隨氮肥施用量的變化趨勢[23]。對覆蓋和氮肥施用的研究多集中在大宗糧食作物和效益較好的經(jīng)濟(jì)作物上,本試驗(yàn)設(shè)置不同的覆蓋方式和氮肥水平,研究糜子葉片光合特性、干物質(zhì)分配規(guī)律和產(chǎn)量變化,討論構(gòu)建以覆蓋集水保水技術(shù)為主、氮肥合理施用為輔的糜子抗旱高產(chǎn)節(jié)水栽培模式,以期為黃土高原旱地覆蓋、氮肥施用技術(shù)的推廣應(yīng)用提供理論依據(jù)。

      1 材料與方法

      1.1 研究區(qū)概況

      陜西榆林小雜糧試驗(yàn)示范基地(37°56′26″ N,109°21′46″ E,海拔1229 m)屬黃土高原丘陵溝壑區(qū),年降水量395 mm左右,集中在7月至9月,約占全年降水量的 61%。2011、2012和 2013年糜子生育期有效降水分別為305.3、330.1和314.8 mm。試驗(yàn)區(qū)屬典型的干旱半干旱大陸性季風(fēng)氣候,年均氣溫為 8.5℃,最高氣溫 38.4℃,最低氣溫-29.0℃,日照時(shí)數(shù)2815.8 h,境內(nèi)年蒸發(fā)量為2088.1 mm,謝氏干燥度 3.08,無霜期 145 d。試驗(yàn)地土壤為黃綿土,耕層有機(jī)質(zhì)3.2 g kg-1,pH 8.6,CEC 0.1 mol kg-1,全氮0.3 g kg-1,全磷0.5 g kg-1,全鉀18.3 g kg-1,堿解氮16.1 mg kg-1,速效磷4.8 mg kg-1,速效鉀65.8 mg kg-1。

      1.2 試驗(yàn)設(shè)計(jì)

      采用雙因素裂區(qū)設(shè)計(jì)。主因素為覆蓋方式,分別為“W”壟覆地膜+壟間覆秸稈(M4)、壟覆地膜+壟間覆秸稈(M3)、雙壟面覆地膜+壟間覆秸稈(M2)、傳統(tǒng)平作全覆蓋秸稈(M1)和傳統(tǒng)平作無覆蓋(M0)(M4、M3和M2田間布局見圖1)。處理M4和M3為寬窄行種植,其寬行行距40 cm,窄行行距20 cm;處理M2、M1和M0為等行距種植,行距30 cm;壟高均為 10 cm。副因素為氮肥水平,分別為純氮180 (N4)、135 (N3)、90 (N2)、45 (N1)和 0 (N0)kg hm-2,選用尿素(含純氮 46%)一次性基施。共 25個(gè)處理,3次重復(fù),小區(qū)面積12 m2(5.0 m × 2.4 m)。

      選用當(dāng)?shù)刂髟云贩N榆糜2號(側(cè)穗型粳性),種植密度為32.7×104株 hm-2。糜子忌連作,3年試驗(yàn)期內(nèi)倒茬換地,前茬綠豆,山旱地,地力中等,無灌溉條件。播前整地、覆膜和施肥,均施P2O590 kg hm-2(過磷酸鈣,含P2O512%),K2O 75 kg hm-2(硫酸鉀,含 K2O 33%),間定苗后覆秸稈。白色地膜厚度為0.008 mm,秸稈(谷草) 4500 kg hm-2。2011年6月8日播種,9月16日成熟;2012年6月9日播種,9月15日成熟;2013年6月15日播種,9月21日成熟。按照國家糜子品種區(qū)域試驗(yàn)要求進(jìn)行田間管理。

      圖1 其中3個(gè)處理的田間示意圖Fig. 1 Schematic diagrams of three treatments in field

      1.3 測定項(xiàng)目與方法

      1.3.1 葉片光合特性 糜子開花至成熟期,選擇晴朗、無風(fēng)的天氣,9∶00至11∶00,每7 d每小區(qū)選5株有代表性、長勢一致的植株,采用日本 Konica Minolta公司生產(chǎn)的SPAD-502 Plus便攜式葉綠素計(jì),選取葉片的上、中、下 3個(gè)部位測定糜子旗葉葉綠素含量,然后計(jì)算平均值。采用Li-6400便攜式光合作用測定系統(tǒng)(美國Li-Cor公司),設(shè)定CO2濃度為400 μmol mol-1,光強(qiáng)為1000 μmol m-2s-1,重復(fù)4次,溫度 20℃,測定旗葉的凈光合速率(Pn)、氣孔導(dǎo)度(Gs)、胞間CO2濃度(Ci)和蒸騰速率(Tr)。

      1.3.2 干物質(zhì)的積累與分配 采用烘干法測定。在糜子開花期和成熟期,按葉片、莖稈+葉鞘、穗軸+穎殼、籽粒等器官取樣,105℃烘箱殺青30 min,80℃烘至恒重,稱干物質(zhì)質(zhì)量[24-25]。

      花前營養(yǎng)器官貯藏同化物轉(zhuǎn)運(yùn)量(g plant-1) =開花期干物質(zhì)量?成熟期干物質(zhì)量

      花前營養(yǎng)器官貯藏同化物對籽粒貢獻(xiàn)率(%) =(開花期干重?成熟期干重)/成熟期籽粒干重×100

      花后同化物在籽粒中的分配量(g plant-1) = 成熟期籽粒干重?開花前營養(yǎng)器官貯藏同化物轉(zhuǎn)運(yùn)量

      花后同化物對籽粒貢獻(xiàn)率(%) = 花后同化物在籽粒中的分配量/成熟期籽粒干重×100

      1.3.3 產(chǎn)量及其構(gòu)成因素 糜子成熟時(shí),隨機(jī)選取各小區(qū)10株,測定其穗長、穗粒數(shù)、千粒重,并計(jì)算平均值。按各處理小區(qū)實(shí)收測產(chǎn)。

      1.4 數(shù)據(jù)處理

      用 Microsoft Excel 2003和SAS V8.0統(tǒng)計(jì)分析,用Duncan's進(jìn)行多重比較(α = 0.05),SigmaPlot 12.0軟件繪圖。

      2 結(jié)果與分析

      2.1 不同覆蓋方式和氮肥水平下旗葉光合特性

      2.1.1 旗葉葉綠素含量 由圖2可見,2013年糜子灌漿期間旗葉葉綠素含量呈現(xiàn)逐步降低的趨勢。各覆蓋處理間糜子灌漿期間旗葉葉綠素含量差異達(dá)到顯著水平(P < 0.05),與傳統(tǒng)栽培M0相比,M4、M3、M2和M1處理分別提高21.2%、14.7%、10.4% 和 5.5%,其中以 M4處理提升效應(yīng)最為明顯;各氮肥處理間糜子灌漿期間旗葉葉綠素含量差異達(dá)到顯著水平(P < 0.05),與不施氮肥處理N0相比,N4、N3、N2和N1處理分別提高了19.6%、16.1%、11.3% 和 8.9%,其中以 N4處理增加效應(yīng)最為顯著。2011 和 2012年各覆蓋處理和氮肥水平對糜子灌漿期旗葉葉綠素含量的影響與2013年一致。

      2.1.2 旗葉凈光合速率 由圖3可見,2013年糜子灌漿期間旗葉凈光合速率整體上呈現(xiàn)逐步降低趨勢。各覆蓋處理間糜子灌漿期間旗葉凈光合速率差異達(dá)到顯著水平(P < 0.05),與傳統(tǒng)栽培 M0相比,M4、M3、M2和M1處理分別提高62.2%、47.0%、28.4%和13.8%,其中以M4處理提升效應(yīng)最為明顯;各氮肥處理間糜子灌漿期間旗葉凈光合速率差異達(dá)到顯著水平(P < 0.05),與不施氮肥處理 N0相比,N4、N3、N2和N1處理分別提高44.5%、37.3%、26.6%和12.9%,其中以N4處理增加效應(yīng)最為顯著。覆蓋方式和氮肥水平對糜子旗葉凈光合速率的影響在年份間保持一致。

      圖2 2013年不同覆蓋方式和氮肥水平下糜子開花至成熟階段旗葉葉綠素含量的動態(tài)變化Fig. 2 Dynamic changes of chlorophyll content of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013

      圖3 2013年不同覆蓋方式和氮肥水平下糜子開花至成熟階段旗葉凈光合速率的動態(tài)變化Fig. 3 Dynamic changes of net photosynthetic rate of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013

      2.1.3 旗葉氣孔導(dǎo)度的影響 由圖 4可見,2013年糜子灌漿期間旗葉氣孔導(dǎo)度呈現(xiàn)逐步降低的趨勢。各覆蓋處理間糜子灌漿期間旗葉氣孔導(dǎo)度差異達(dá)到顯著水平(P < 0.05),與傳統(tǒng)栽培M0相比,M4、M3、M2和M1處理分別提高55.6%、40.7%、27.6% 和12.4%,其中以M4處理提升效應(yīng)最為明顯;各氮肥處理間糜子灌漿期間旗葉氣孔導(dǎo)度差異達(dá)到顯著水平(P < 0.05),與不施氮肥處理N0相比,N4、N3、N2和 N1處理分別提高 50.7%、35.9%、25.2%和 11.3%,其中以N4處理增加效應(yīng)最為顯著。覆蓋方式和氮肥水平對糜子旗葉氣孔導(dǎo)度的影響在年份間保持一致。

      2.1.4 旗葉胞間CO2濃度 由圖5可見,2013年糜子灌漿期間旗葉胞間 CO2濃度呈現(xiàn)逐步升高的趨勢。各覆蓋處理間糜子灌漿期間旗葉胞間CO2濃度差異達(dá)到顯著水平(P < 0.05),與傳統(tǒng)栽培M0相比,M4、M3、M2和M1處理分別降低29.4%、22.3%、14.9%和7.2%,以M4處理減少幅度最大;各氮肥處理間糜子灌漿期間旗葉胞間CO2濃度差異達(dá)到顯著水平(P < 0.05),與不施氮肥處理N0相比,N4、N3、N2和N1處理分別減少33.2%、26.3%、17.2%和8.6%,其中以N4處理降低幅度最大。覆蓋方式和氮肥水平對糜子旗葉胞間CO2濃度的影響在年份間保持一致。

      圖4 2013年不同覆蓋方式和氮肥水平下糜子開花至成熟階段旗葉氣孔導(dǎo)度的動態(tài)變化Fig. 4 Dynamic changes of stomatal conductance of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013

      圖5 2013年不同覆蓋方式和氮肥水平下糜子開花至成熟階段旗葉胞間CO2濃度的動態(tài)變化Fig. 5 Dynamic changes of intercellular CO2concentration of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013

      2.1.5 旗葉蒸騰速率 由圖6可知,2013年糜子灌漿期間旗葉蒸騰速率整體上呈現(xiàn)逐步降低的趨勢。各覆蓋處理間糜子灌漿期間旗葉蒸騰速率差異達(dá)到顯著水平(P < 0.05),與傳統(tǒng)栽培M0相比,M4、M3、M2和M1處理分別提高36.2%、27.6%、16.6% 和 9.2%,其中以M4的提升幅度最大;各氮肥處理間糜子灌漿期間旗葉蒸騰速率差異達(dá)到顯著水平(P < 0.05),與不施氮肥處理N0相比,N4、N3、N2和N1處理分別提高26.9%、21.9%、16.5%和7.7%,其中以N4處理的提升幅度最大。

      大田試驗(yàn)可以看出,糜子開花至成熟階段頂三葉的葉綠素含量和氣孔導(dǎo)度呈現(xiàn)不斷降低的趨勢,凈光合速率和蒸騰速率在變化上存在同步關(guān)系,表現(xiàn)為下降—略微上升—急劇下降的規(guī)律,而胞間CO2濃度不斷上升,年際間糜子旗葉光合特性沒有顯著差異。年份×覆蓋方式和年份×氮肥水平交互作用均不顯著,同時(shí)年份×覆蓋方式×氮肥水平交互作用亦沒有達(dá)到顯著水平,而覆蓋方式×氮肥水平交互作用達(dá)到顯著水平(表1)。

      2.2 不同覆蓋方式和氮肥水平下糜子干物質(zhì)積累和分配規(guī)律

      2.2.1 糜子開花期和成熟期干物質(zhì)積累 由圖 7可知,與傳統(tǒng)栽培M0相比,3年試驗(yàn)中M4、M3、M2和M1處理糜子開花期和成熟期干物質(zhì)積累量均顯著提高,提升效應(yīng)表現(xiàn)為M4 > M3 > M2 > M1;與不施氮肥處理N0相比,N4、N3、N2和N1處理糜子開花期和成熟期干物質(zhì)積累量均顯著提高,提升效應(yīng)表現(xiàn)為N4 > N3 > N2 > N1。

      圖6 2013年不同覆蓋方式和氮肥水平下糜子開花至成熟階段旗葉蒸騰速率的動態(tài)變化Fig. 6 Dynamic changes of transpiration rate of flag leaf in broomcorn millet from flowering to maturity under different treatments in 2013

      表1 糜子旗葉開花至成熟期光合特性互作效應(yīng)分析Table 1 Interaction of photosynthetic characteristics of flag leaf in broomcorn millet from flowering to maturity

      圖7 不同覆蓋方式和氮肥水平下糜子開花期和成熟期的干物質(zhì)積累量Fig. 7 Dry matter accumulation amounts at flowering and maturity of broomcorn millet under different treatments誤差線上不同小寫字母表示差異顯著(P < 0.05)。FS表示開花期,MS表示成熟期。

      2.2.2 糜子成熟期干物質(zhì)在各器官中分配量 由圖 8可知,成熟期干物質(zhì)在糜子各器官中的分配量為籽粒>莖稈+葉鞘>葉>穎殼+穗軸。2013年,M4、M3、M2和M1處理下,糜子成熟期干物質(zhì)在各器官中的分配量較 M0均顯著提高,分別增加 89.0%、75.0%、51.1%和19.6%,提升效應(yīng)表現(xiàn)為M4 > M3 >M2 > M1。糜子N4、N3、N2和N1處理成熟期干物質(zhì)在各器官中的分配量比N0均顯著提高,成熟期干物質(zhì)在莖稈+葉鞘、葉、穎殼+穗軸中的分配量提升效應(yīng)均為N4 > N3 > N2 > N1,而在籽粒中的分配量提升效應(yīng)表現(xiàn)則為N3 > N4 > N2 > N1。2011、2012年覆蓋處理和氮肥水平對糜子成熟期干物質(zhì)在各器官中分配量的影響均表現(xiàn)出與 2013年相一致的規(guī)律。

      圖8 2013年不同覆蓋方式和氮肥水平下糜子成熟期干物質(zhì)在各器官中的分配量Fig. 8 Dry matter partitioning in different organs at maturity of broomcorn millet under different treatments in 2013

      2.2.3 糜子開花后營養(yǎng)器官干物質(zhì)再分配量 年際間糜子花前營養(yǎng)器官貯藏同化物轉(zhuǎn)運(yùn)量和花后同化物在籽粒中分配量的差異達(dá)顯著水平,表現(xiàn)為2012年>2013年>2011年,而糜子花前營養(yǎng)器官貯藏同化物對籽粒的貢獻(xiàn)率和花后同化物對籽粒的貢獻(xiàn)率均沒有顯著差異(表2)。與M0相比,覆蓋處理下的糜子花前營養(yǎng)器官貯藏同化物轉(zhuǎn)運(yùn)量及其對籽粒的貢獻(xiàn)率均顯著降低,而花后同化物在籽粒中的分配量及其對籽粒的貢獻(xiàn)率顯著提高,均以 M4處理效應(yīng)最為顯著;與不施氮肥處理N0相比,施氮處理的糜子花前營養(yǎng)器官貯藏同化物轉(zhuǎn)運(yùn)量及其對籽粒的貢獻(xiàn)率均顯著減少,而花后同化物在籽粒中的分配量及其對籽粒的貢獻(xiàn)率均顯著增加,均以 N3處理效果最為顯著。

      3年試驗(yàn)結(jié)果可知,年份、覆蓋方式和氮肥水平對糜子花前營養(yǎng)器官貯藏同化物轉(zhuǎn)運(yùn)量和花后同化物在籽粒中的分配量兩兩交互作用顯著,三因素之間交互作用達(dá)到顯著水平;而年份、覆蓋方式和氮肥水平對糜子開花前營養(yǎng)器官貯藏同化物對籽粒的貢獻(xiàn)率和花后同化物對籽粒的貢獻(xiàn)率兩兩交互作用不顯著,三因素之間交互作用亦沒有達(dá)到顯著水平。

      2.3 不同覆蓋方式和氮肥水平下糜子產(chǎn)量差異

      年際間糜子產(chǎn)量、千粒重、穗粒數(shù)及穗長差異均達(dá)到顯著水平,表現(xiàn)為 2012年>2013年>2011年(表3)。經(jīng)過覆蓋處理的糜子產(chǎn)量、千粒重、穗粒數(shù)及穗長均較 M0差異顯著,且各覆蓋處理間差異均達(dá)到顯著水平,其中處理 M4效應(yīng)最明顯,其次為M3、M2和M1處理。與不覆膜處理M0相比,M4、M3、M2和 M1處理糜子平均產(chǎn)量分別顯著提高55.9%、46.0%、33.1%和17.7%,平均千粒重分別顯著提高2.7%、2.0%、1.5%和0.9%,平均穗粒數(shù)分別顯著提高53.7%、40.8%、30.6%和12.8%,平均穗長分別顯著提高12.2%、9.1%、8.4%和5.7%。經(jīng)過氮肥處理的糜子產(chǎn)量、千粒重、穗粒數(shù)及穗長均較N0顯著提高,且各氮肥處理間差異亦達(dá)到顯著水平,平均產(chǎn)量和千粒重均在處理 N3下最高,平均穗粒數(shù)和穗長均在處理N4下最高。與不施肥處理N0相比,N4、N3、N2和N1處理糜子平均產(chǎn)量分別顯著提高29.8%、37.3%、26.6%和16.1%,平均千粒重分別顯著提高1.9%、2.4%、1.7%和1.1%,平均穗粒數(shù)分別顯著提高61.0%、46.5%、28.9%和15.2%,平均穗長分別顯著提高12.2%、10.8%、9.8%和4.4%。

      表2 不同覆蓋方式和氮肥水平下糜子花后營養(yǎng)器官干物質(zhì)的再分配量Table 2 Reallocation of dry matter from vegetative organs after flowering of broomcorn millet under different treatments

      年份、覆蓋方式和氮肥水平對糜子產(chǎn)量、千粒重、穗粒數(shù)及穗長兩兩交互作用均顯著,且三因素之間交互作用亦均達(dá)到顯著水平。

      3 討論

      3.1 不同覆蓋和氮肥水平對糜子旗葉光合特性的影響

      葉片光合作用是光化學(xué)過程、CO2向固定位置擴(kuò)散和生物合成的共同作用,除受氣孔因素調(diào)控外,還受光合結(jié)構(gòu)的影響[26]。葉片光合結(jié)構(gòu)的活性與其吸收、轉(zhuǎn)化、傳遞和固定光電子的能力密切相關(guān)[27],而光電能量轉(zhuǎn)化與傳遞又會受到環(huán)境因子的顯著影響[28]。本試驗(yàn)研究結(jié)果證實(shí)環(huán)境的改變可明顯改變植物葉片的光合能力,與前人的研究結(jié)果相吻合[29]。

      干旱缺水會極大降低作物光合能力[30]。Chernyad'ev[31]研究發(fā)現(xiàn),水分脅迫下植物可通過調(diào)節(jié)氣孔導(dǎo)度、細(xì)胞結(jié)構(gòu)和關(guān)聯(lián)蛋白的從頭合成來增加對干旱的抵御;Subrahmanyam等[32]研究認(rèn)為,水分脅迫導(dǎo)致光合速率下降是由非光化學(xué)因素引起的;Shangguan等[33]研究表明,水分脅迫會導(dǎo)致光合速率降低并減少光合同化物在冬小麥葉片中的積累;Ueda等[34]研究發(fā)現(xiàn),水分脅迫下植物的光合速率和氣孔導(dǎo)度都受到影響,胞間 CO2得到積累。直接導(dǎo)致作物光合能力下降的因素有氣孔因素和非氣孔因素,其中氣孔因素是指環(huán)境脅迫使氣孔導(dǎo)度下降,進(jìn)而使CO2進(jìn)入葉片受阻從而降低光合速率[35]。如果胞間CO2濃度與凈光合速率和氣孔導(dǎo)度變化趨勢一致,說明光合速率下降是受氣孔因素的影響;反之,如果胞間 CO2濃度與凈光合速率和氣孔導(dǎo)度變化趨勢相反,說明光合速率下降是受非氣孔因素的影響[36-37]。本研究中,灌漿期糜子旗葉凈光合速率和氣孔導(dǎo)度逐步降低,而葉片胞間 CO2濃度逐步升高,表明糜子光合速率的下降并不是由氣孔導(dǎo)度下降使 CO2供應(yīng)減少所致,而是由于非氣孔因素阻礙了CO2的利用,造成CO2的積累,這與Robredo等[38]和Ghobadi等[39]的研究結(jié)果相一致。覆蓋可以顯著提高糜子旗葉的葉綠素含量、凈光合速率、氣孔導(dǎo)度和蒸騰速率,同時(shí)明顯降低胞間 CO2濃度,可能是由于覆蓋能夠降低作物棵間蒸發(fā)、增加土壤水分貯存,從而降低了非氣孔因素對光合作用的限制[40-41]。本試驗(yàn)中,覆蓋的光合改善效果由高到低依次為“W”壟覆地膜+壟間覆秸稈、壟覆地膜+壟間覆秸稈、雙壟面覆地膜+壟間覆秸稈、秸稈覆蓋,覆蓋的光合改善效果可能與其蓄水保墑能力有關(guān)。韓娟等[42]和李儒等[43]的研究表明,與傳統(tǒng)的壟覆地膜+壟間不覆蓋處理相比,壟覆地膜+壟間覆蓋秸稈處理的蓄水保墑效果更為顯著;李榮等[44]也證明壟覆地膜+壟間覆蓋秸稈處理的集水保墑效果最好。這可能是由于地膜和秸稈結(jié)合起到雙重保墑作用,能更有效地阻斷土壤水分的垂直蒸發(fā),從而減少無效水的逃逸,降低土壤水分循環(huán)的強(qiáng)度[45-46]?!癢”壟覆地膜+壟間覆秸稈的光合改善效果最好,可能是由于起壟造溝后在田間形成了較多的壟和溝,改變了微地形,土壤表面積增加,使受熱和散熱面積同時(shí)增加,土壤溫度波動幅度更大,但由于覆蓋使水分蒸發(fā)受阻,土壤-植物-大氣連續(xù)體(soil-plant-atmosphere continuum,SPAC)的水熱交換發(fā)生變化,從而土壤水熱特性將產(chǎn)生顯著變化[47]。本試驗(yàn)沒有涉及覆蓋方式對光、溫、水等的影響,關(guān)于不同覆蓋方式改善作物光合能力的機(jī)制有待進(jìn)一步研究。

      表3 不同覆蓋方式和氮肥水平下糜子產(chǎn)量及其構(gòu)成因素的變化Table 3 Changes of yield and yield components in broomcorn millet under different treatments

      氮是維持葉綠素含量、提高葉片光合速率及延長葉片功能期的重要元素[48]。Rubisco含量和Rubisco活化程度均是影響作物光合速率的非氣孔因素[49],葉片中 Rubisco含量和活性與氮素密切相關(guān)[50-51]。本研究表明,增施氮肥可以顯著改善糜子旗葉光合能力,隨著氮肥水平的增加,光合能力的提升幅度增加,可能是因?yàn)槭┑黾恿巳~片的含氮量,提高了單位葉面積內(nèi)羧化酶的總活性。吳自明等[52]研究同樣表明,增施氮肥能夠提高水稻 Rubisco羧化活性和光合能力,降低雜交水稻葉綠素衰減率 6.1%~27.1%,提高雜交水稻凈光合速率3.0%~15.8%。

      3.2 不同覆蓋和氮肥水平對糜子干物質(zhì)積累與分配的影響

      土壤水肥條件的改變可顯著調(diào)控作物的干物質(zhì)積累與分配[53-54]。覆蓋可顯著影響土壤水、肥、氣、熱,從而影響作物產(chǎn)量[55]。李華等[56]研究表明,覆膜顯著增加冬小麥各生育期干物質(zhì)的積累,提高干物質(zhì)轉(zhuǎn)運(yùn)量或花后干物質(zhì)累積量;覆草顯著增加生長后期干物質(zhì)累積量。Liu等[57]研究表明當(dāng)?shù)视昧啃∮?50 kg hm-2時(shí)玉米干物質(zhì)積累量隨氮肥用量的增加而增加。Tekalign等[58]認(rèn)為,低氮條件下,由于缺乏產(chǎn)量形成的物質(zhì)基礎(chǔ)而使?fàn)I養(yǎng)器官中干物質(zhì)分配比例下降,從而影響產(chǎn)量;高氮條件下,會由于地上部的徒長使分配到經(jīng)濟(jì)器官中的干物質(zhì)減少,導(dǎo)致產(chǎn)量降低。本研究認(rèn)為,覆蓋和施氮均有利于糜子干物質(zhì)的積累,提高糜子花后營養(yǎng)器官(葉片、莖稈+葉鞘、穗軸+穎殼)干物質(zhì)向籽粒的轉(zhuǎn)運(yùn)量和對籽粒的貢獻(xiàn)率,這是旱作糜子獲得高產(chǎn)的生理基礎(chǔ)。此外,當(dāng)?shù)视昧砍^135 kg hm-2時(shí),增施氮肥并沒有進(jìn)一步提高糜子花后同化物對籽粒的貢獻(xiàn)率,結(jié)果與Lahai和Ekanayake[59]研究相似,這可能是水肥條件不適宜導(dǎo)致作物源/庫比例不協(xié)調(diào),從而不利于作物經(jīng)濟(jì)產(chǎn)量的提高。

      3.3 不同覆蓋和氮肥水平對糜子產(chǎn)量的影響

      覆蓋和氮肥措施均能顯著提高作物產(chǎn)量[60-64]。Ibarra-Jimenez等[10]研究表明,覆蓋黑色聚乙烯膜加白色穿孔聚乙烯膜的黃瓜產(chǎn)量顯著高于只覆蓋黑色聚乙烯膜。Kumar和Dey[65]研究證實(shí)覆蓋能顯著提高草莓的產(chǎn)量,但是黑色聚乙烯膜的提升效果顯著高于干草。由此可知,覆蓋對作物產(chǎn)量的效應(yīng)與覆蓋物的類型有一定相關(guān)性。本研究表明,地膜和秸稈覆蓋均能顯著提高黃土高原旱地糜子產(chǎn)量,以地膜覆蓋提升效果更好。

      Barati等[66]認(rèn)為在地中海半干旱地區(qū),適宜的氮肥用量可提高大麥的產(chǎn)量,但施氮過高或過低均不利于大麥產(chǎn)量的提高。Azizian和Sepaskhah[67]研究表明,當(dāng)?shù)视昧砍^150 kg hm-2時(shí),增施氮肥并不能進(jìn)一步提升玉米產(chǎn)量。本研究得出類似的結(jié)論,施用氮肥可以增加糜子產(chǎn)量,但當(dāng)?shù)仕匠^135 kg hm-2時(shí),增施氮肥卻降低了糜子的產(chǎn)量。此外,利用二次拋物線模型模擬得出黃土高原旱地糜子適宜的氮肥施用量為 135~145 kg hm-2(年際間有所差異),氮肥應(yīng)用要科學(xué)合理[68]。

      葉片光合作用是作物物質(zhì)生產(chǎn)和產(chǎn)量構(gòu)成的基礎(chǔ),而光合產(chǎn)物的分配在一定程度上也影響了作物的最終產(chǎn)量。本試驗(yàn)中,覆蓋處理對光合作用的改善效果、開花期和成熟期干物質(zhì)積累量的增加、花后同化物向籽粒轉(zhuǎn)運(yùn)的提高程度均表現(xiàn)為 M4>M3>M2>M1,因而 M4的產(chǎn)量最高;氮肥水平對光合作用的改善效果、開花期和成熟期干物質(zhì)積累量的增加表現(xiàn)為 N4>N3>N2>N1,而對成熟期干物質(zhì)向籽粒轉(zhuǎn)運(yùn)的提高程度表現(xiàn)為 N3>N4>N2>N1,最終產(chǎn)量也呈現(xiàn)N3>N4>N2>N1的趨勢。

      4 結(jié)論

      覆蓋和氮肥施用均能在不同程度上提升糜子的光和能力,提高產(chǎn)量,其中“W”壟覆地膜+壟間覆秸稈的二元覆蓋集水保水系統(tǒng)結(jié)合135~145 kg hm-2的氮肥用量,是黃土高原旱區(qū)糜子生產(chǎn)的適宜栽培模式。

      References

      [1] 屈洋,蘇旺,李翠,高金鋒,高小麗,王鵬科,馮佰利,柴巖.陜北半干旱區(qū)溝壟覆膜集水模式下糜子邊際效應(yīng)及生理特性.應(yīng)用生態(tài)學(xué)報(bào),2014,25∶ 776-782 Qu Y,Su W,Li C,Gao J F,Gao X L,Wang P K,F(xiàn)eng B L,Chai Y. Border effect and physiological characteristics of broomcorn millet under film mulching on ridge-furrow for harvesting rainwater model in the semi-arid region of Northern Shaanxi,China. Chin J Appl Ecol,2014,25∶ 776-782 (in Chinese with English abstract)

      [2] Li X Y,Gong J D. Effect of different ridge∶ Furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agric Water Manag,2002,54∶ 243-254

      [3] Li F M,Guo A H,Wei H. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Res,1999,63∶ 79-86

      [4] Fisher P D. An alternative plastic mulching system for improved water management in dryland maize production. Agric Water Manag,1995,27∶ 155-166

      [5] Zhang S,L?vdahl L,Grip H,Tong Y,Yang X,Wang Q. Effects of mulching and catch cropping on soil temperature,soil moisture and wheat yield on the Loess Plateau of China. Soil Till Res,2009,102∶ 78-86

      [6] Ramakrishna A,Tam H M,Wani S P,Long T D. Effect of mulch on soil temperature,moisture,weed infestation and yield of groundnut in northern Vietnam. Field Crops Res,2006,95∶115-125

      [7] Niu J Y,Gan Y T,Zhang J W,Yang Q F. Postanthesis dry matteraccumulation and redistribution in spring wheat mulched with plastic film. Crop Sci,1998,38∶ 1562-1568

      [8] Ren X,Chen X,Jia Z. Ridge and furrow method of rainfall concentration for fertilizer use efficiency in farmland under semiarid conditions. Appl Eng Agric,2009,25∶ 905-913

      [9] Dong H Z,Li W J,Tang W,Zhang D M. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res,2009,111∶ 269-275

      [10] Ibarra-Jiménez L,Quezada-Martin M R,de la Rosa-Ibarra M. The effect of plastic mulch and row covers on the growth and physiology of cucumber. Aust J Exp Agric,2004,44∶ 91-94

      [11] Li F M,Wang J,Xu J Z,Xu H L. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil Till Res,2004,78∶ 9-20

      [12] 王彩絨,田霄鴻,李生秀. 溝壟覆膜集雨栽培對冬小麥水分利用效率及產(chǎn)量的影響. 中國農(nóng)業(yè)科學(xué),2004,37∶ 208-214 Wang C R,Tian X H,Li S X. Effects of plastic sheet-mulching on ridge for rainwater-harvesting cultivation on WUE and yield of winter wheat. Sci Agric Sin,2004,37∶ 208-214 (in Chinese with English abstract)

      [13] Zhang S,Li P,Yang X,Wang Z,Chen X. Effects of tillage and plastic mulch on soil water,growth and yield of spring-sown maize. Soil Till Res,2011,112∶ 92-97

      [14] Wang X L,Li F M,Jia Y,Shi W Q. Increasing potato yields with additional water and increased soil temperature. Agric Water Manag,2005,78∶ 181-194

      [15] 丁瑞霞,賈志寬,韓清芳,任廣鑫,王俊鵬. 寧南旱區(qū)微集水種植條件下谷子邊際效應(yīng)和生理特性的響應(yīng). 中國農(nóng)業(yè)科學(xué),2006,39∶ 494-501 Ding R X,Jia Z K,Han Q F,Ren G X,Wang J P. Border effect and physiological characteristic responses of foxtail millet to different micro-catchment stripshapes in semiarid region of South Ningxia. Sci Agric Sin,2006,39∶ 494-501 (in Chinese with English abstract)

      [16] 寇江濤,師尚禮,周萬海,尹國麗,李建偉. 壟覆膜集雨種植對二年齡苜蓿草地土壤養(yǎng)分的影響. 草業(yè)學(xué)報(bào),2011,20(5)∶207-216 Kou J T,Shi S L,Zhou W H,Yin G L,Li J W. Soil nutrient in two-year alfalfa field on condition of film-mulching rainfall harvesting cultivation. Acta Pratac Sin,2011,20(5)∶ 207-216 (in Chinese with English abstract)

      [17] 朱兆良,金繼運(yùn). 保障我國糧食安全的肥料問題. 植物營養(yǎng)與肥料學(xué)報(bào),2013,19∶ 259-273 Zhu Z L,Jin J Y. Fertilizer use and food security in China. Plant Nutr Fert Sci,2013,19∶ 259-273 (in Chinese with English abstract)

      [18] 同延安,趙營,趙護(hù)兵,樊紅柱. 施氮量對冬小麥氮素吸收、轉(zhuǎn)運(yùn)及產(chǎn)量的影響. 植物營養(yǎng)與肥料學(xué)報(bào),2007,13∶ 64-69 Tong Y A,Zhao Y,Zhao H B,F(xiàn)an H Z. Effect of N rates on N uptake,transformation and the yield of winter wheat. Plant Nutr Fert Sci,2007,13∶ 64-69 (in Chinese with English abstract)

      [19] Wang Y C,Wang E L,Wang D L,Huang S M,Ma Y B,Smith C J,Wang L G. Crop productivity and nutrient use efficiency as affected by long-term fertilisation in North China Plain. Nutr Cycl Agroecos,2010,86∶ 105-119

      [20] 楊憲龍,路永莉,同延安,林文,梁婷. 長期施氮和秸稈還田對小麥-玉米輪作體系土壤氮素平衡的影響. 植物營養(yǎng)與肥料學(xué)報(bào),2013,19∶ 65-73 Yang X L,Lu Y L,Tong Y A,Lin W,Liang T. Effects of long-term N application and straw returning on N budget under wheat-maize rotation system. Plant Nutr Fert Sci,2013,19∶65-73 (in Chinese with English abstract)

      [21] Liu K S,Wiatrak P. Corn production response to tillage and nitrogen application in dry-land environment. Soil Till Res,2012,124∶ 138-143

      [22] 韓寶吉,曾祥明,卓光毅,徐芳森,姚忠清,肖習(xí)明,石磊. 氮肥施用措施對湖北中稻產(chǎn)量,品質(zhì)和氮肥利用率的影響. 中國農(nóng)業(yè)科學(xué),2011,44∶ 842-850 Han B J,Zeng X M,Zhuo G Y,Xu F S,Yao Z Q,Xiao X M,Shi L. Yield,grain quality and N-use efficiency of midseason rice in Hubei province. Sci Agric Sin,2011,44∶ 842-850 (in Chinese with English abstract)

      [23] Chen X P,Zhou J C,Wang X R,Zhang F S,Bao D J,Jia X H. Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter-wheat and summer-corn rotation system. Acta Pedol Sin,2000,37∶ 346-354

      [24] 郭增江,于振文,石玉,趙俊曄,張永麗,王東. 不同土層測墑補(bǔ)灌對小麥旗葉光合特性和干物質(zhì)積累與分配的影響. 作物學(xué)報(bào),2014,40∶ 731-738 Guo Z J,Yu Z W,Shi Y,Zhao J Y,Zhang Y L,Wang D. Photosynthesis characteristics of flag and dry matter accumulation and allocation in winter wheat under supplemental irrigation after measuring moisture content in different soil layers. Acta Agron Sin,2014,40∶ 731-738 (in Chinese with English abstract)

      [25] 胡夢蕓,張正斌,徐萍,董寶娣,李魏強(qiáng),李景娟. 虧缺灌溉下小麥水分利用效率與光合產(chǎn)物積累運(yùn)轉(zhuǎn)的相關(guān)研究. 作物學(xué)報(bào),2007,33∶ 1884-1891 Hu M Y,Zhang Z B,Xu P,Dong B D,Li W J,Li J J. Relationship of water use efficiency with photoassimilate accumulation and transport in wheat under deficit irrigation. Acta Agron Sin,2007,33∶1884-1891 (in Chinese with English abstract)

      [26] Hikosaka K. Interspecific difference in the photosynthesisnitrogen relationship∶ patterns,physiological causes,and ecological importance. J Plant Res,2004,117∶ 481-494

      [27] Bartels D,Sunkar R. Drought and salt tolerance in plants. Crit Rev Plant Sci,2005,24∶ 23-58

      [28] Logan B A,Demmig-Adams B,Adams W W,Grace S C. Antioxidants and xanthophyll cycle-dependent energy dissipation in Cucurbita pepo L. and Vinca major L. acclimated to four growth PPFDs in the field. J Exp Bot,1998,49∶ 1869-1879

      [29] Lone P M,Khan N A. The effects of rate and timing of N fertilizer on growth,photosynthesis,N accumulation and yield of mustard (Brassica juncea) subjected to defoliation. Environ Exp Bot,2007,60∶ 318-323

      [30] 張興華,高杰,杜偉莉,張仁和,薛吉全. 干旱脅迫對玉米品種苗期葉片光合特性的影響. 作物學(xué)報(bào),2015,41∶ 154-159 Zhang X H,Gao J,Du W L,Zhang R H,Xue J Q. Effects of drought stress on photosynthetic characteristics of maize hybrids at seedling stage. Acta Agron Sin,2015,41∶ 154-159 (in Chinese with English abstract)

      [31] Chernyad'ev I I. Effect of water stress on the photosynthetic apparatus of plants and the protective role of cytokinins∶ a review.Appl Biochem Micro,2005,41∶ 115-128

      [32] Subrahmanyam D,Subash N,Haris A,Sikka K. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought. Photosynthetica,2006,44∶ 125-129

      [33] Shangguan Z P,Shao M A,Dyckmans J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ Exp Bot,2000,44∶141-149

      [34] Ueda A,Kanechi M,Uno Y,Inaqaki N. Photosynthetic limitations of a halophyte sea aster (Aster tripolium L.) under water stress and NaCl stress. J Plant Res,2003,116∶ 65-70

      [35] 王曉娟,賈志寬,梁連友,丁瑞霞,王敏,李涵. 不同有機(jī)肥量對旱地玉米光合特性和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào),2012,23∶ 419-425 Wang X J,Jia Z K,Liang L Y,Ding R X,Wang M,Li H. Effects of organic fertilizer application rate on leaf photosynthetic characteristics and grain yield of dryland maize. Chin J Appl Ecol,2012,23∶ 419-425 (in Chinese with English abstract)

      [36] Klaus W,Michael J S. Analysis of stomatal and nonstomatal components in the environmental control of CO2exchanges in leaves of Welwitschia mirabilis. Plant Physiol,1986,82∶173-178

      [37] Farquhar G D,Sharkey T D. Stomatal conductance and photosynthesis. Annu Rev Plant Physiol,1982,33∶ 317-345

      [38] Robredo A,Perez-Lopez U,Lacuesta M,Mena-Petite A,Munoz-Rueda A. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2concentrations. Blol Plant,2010,54∶ 285-292

      [39] Ghobadi M,Taherabadi S,Ghobadi M E,Mohammadi G R,Jalali-Honarmand S. Antioxidant capacity,photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.)cultivars in response to drought stress. Ind Crop Prod,2013,50∶29-38

      [40] Ashraf M,Ahmad A,McNeilly T. Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica,2001,39∶ 289-294

      [41] Karkanis A,Bilalis D,Efthimiadou A. Architectural plasticity,photosynthesis and growth responses of velvetleaf (Abutilon theophrasti Medicus) plants to water stress in a semi-arid environment. Aust J Crop Sci,2011,5∶ 369-374

      [42] 韓娟,廖允成,賈志寬,韓清芳,丁瑞霞. 半濕潤偏旱區(qū)溝壟覆蓋種植對冬小麥產(chǎn)量及水分利用效率的影響. 作物學(xué)報(bào),2014,40∶ 101-109 Han J,Liao Y C,Jia Z K,Han Q F,Ding R X. Effects of ridging with mulching on yield and water use efficiency in winter wheat in semi-humid drought-prone region in China. Acta Agron Sin,2014,40∶ 101-109 (in Chinese with English abstract)

      [43] 李儒,崔榮美,賈志寬,韓清芳,路文濤,侯賢清. 不同溝壟覆蓋方式對冬小麥土壤水分及水分利用效率的影響. 中國農(nóng)業(yè)科學(xué),2011,44∶ 3312-3322 Li R,Cui R M,Jia Z K,Han Q F,Lu W T,Hou X Q. Effects of different furrow-ridge mulching ways on soil moisture and water use efficiency of winter wheat. Sci Agric Sin,2011,44∶3312-3322 (in Chinese with English abstract)

      [44] 李榮,王敏,賈志寬,侯賢清,楊寶平,韓清芳,聶俊峰,張睿.渭北旱塬區(qū)不同溝壟覆蓋模式對春玉米土壤溫度,水分及產(chǎn)量的影響. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2)∶ 106-113 Li R,Wang M,Jia Z K,Hou X Q,Yang B P,Han Q F,Nie J F,Zhang R. Effects of different mulching patterns on soil temperature,moisture water and yield of spring maize in Weibei Highland. Trans. Chin Soc Agric Eng,2012,28(2)∶ 106-113 (in Chinese with English abstract)

      [45] 買自珍,羅世武,程炳文,王勇. 玉米二元覆蓋農(nóng)田水分動態(tài)及水分利用效率研究. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2007,15(3)∶ 68-70 Mai Z Z,Luo S W,Cheng B W,Wang Y. Soil water content dynamics and water use efficiency under plastic film and straw dual-mulching in maize fields. Chin J Eco-Agric,2007,15(3)∶68-70 (in Chinese with English abstract)

      [46] 劉艷紅,賈志寬,張睿,劉婷,馬曉麗. 溝壟二元覆蓋對旱地土壤水分及作物水分利用效率的影響. 干旱地區(qū)農(nóng)業(yè)研究,2010,28(4)∶ 152-157 Liu Y H,Jia Z K,Zhang R,Liu T,Ma X L. Effects of dualmulching with plastic film and other mulching materials on soil water and WUE in semiarid region. Agric Res Arid Areas,2010,28(4)∶ 152-157 (in Chinese with English abstract)

      [47] 侯慧芝,王娟,張緒成,方彥杰,于顯楓,王紅麗,馬一凡. 半干旱區(qū)全膜覆蓋壟上微溝種植對土壤水熱及馬鈴薯產(chǎn)量的影響. 作物學(xué)報(bào),2015,41∶ 1582-1590 Hou H Z,Wang J,Zhang X C,F(xiàn)ang Y J,Yu X F,Wang H L,Ma Y F. Effects of mini-ditch planting with plastic mulching in ridges on soil water content,temperature and potato yield in rain-fed semiarid region. Acta Agron Sin,2015,41∶ 1582-1590 (in Chinese with English abstract)

      [48] Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant physiol,1983,72∶ 297-302

      [49] 陳貴,周毅,郭世偉,沈其榮. 水分脅迫條件下不同形態(tài)氮素營養(yǎng)對水稻葉片光合效率的調(diào)控機(jī)理研究. 中國農(nóng)業(yè)科學(xué),2007,40∶ 2162-2168 Chen G,Zhou Y,Guo S,Shen Q R. The regulatory mechanism of different nitrogen form on photosynthetic efficiency of rice plants under water stress. Sci Agric Sin,2007,40∶ 2162-2168 (in Chinese with English abstract)

      [50] Ookawa T,Naruoka Y,Sayama A,Hirasawa T. Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening. Crop Sci,2004,44∶2107-2115

      [51] Imai K,Suzuki Y,Mae T,Makino A. Changes in the synthesis of Rubisco in rice leaves in relation to senescence and N influx. Ann Bot,2008,101∶ 135-144

      [52] 吳自明,王竹青,李木英,曾蕾,石慶華,潘曉華,譚雪明. 后期水分虧缺與增施氮肥對雜交稻葉片光合功能的影響. 作物學(xué)報(bào),2013,39∶ 494-505 Wu Z M,Wang Z Q,Li M Y,Zeng L,Shi Q H,Pan X H,Tan X M. Effect of water shortage and increasing nitrogen application on photosynthetic function of different hybrid rice combinations at grain filling stage. Acta Agron Sin,2013,39∶ 494-505 (in Chinese with English abstract)

      [53] Ma S C,Duan A W,Wang R,Guan Z M,Yang S J,Ma S T,Shao Y. Root-sourced signal and photosynthetic traits,dry matter accumulation and remobilization,and yield stability in winter wheat as affected by regulated deficit irrigation. Agric Water Manag,2015,148∶ 123-129

      [54] Pepler S,Gooding M J,Ellis R H. Modeling simultaneously water content and dry matter dynamics of wheat grains. Field Crops Res,2006,95∶ 49-63

      [55] 王俊,李鳳民,宋秋華,李世清. 地膜覆蓋對土壤水溫和春小麥產(chǎn)量形成的影響. 應(yīng)用生態(tài)學(xué)報(bào),2003,14∶ 205-210 Wang J,Li F M,Song Q H,Li S Q. Effects of plastic film mulching on soil temperature and moisture and on yield formation of spring wheat. Chin J Appl Ecol,2003,14∶ 205-210 (in Chinese with English abstract)

      [56] 李華,王朝輝,李生秀. 地表覆蓋和施氮對冬小麥干物質(zhì)和氮素積累和轉(zhuǎn)移的影響. 植物營養(yǎng)與肥料學(xué)報(bào),2008,14∶1027-1034 Li H,Wang Z H,Li S X. Effect of soil surface mulching and N rate on dry matter and nitrogen accumulation and translocation of winter wheat. Plant Nutr Fert Sci,2008,14∶ 1027-1034 (in Chinese with English abstract)

      [57] Liu J L,Zhan A,Bu L D,Zhu L,Luo S S,Chen X P,Cui Z L,Li S Q,Hill R L,Zhao Y. Understanding dry matter and nitrogen accumulation for high-yielding film-mulched maize. Agron J,2014,106∶ 390-396

      [58] Tekalign T,Hammes P S. Growth and productivity of potato as influenced by cultivar and reproductive growth∶ I. Stomatal conductance,rate of transpiration,net photosynthesis,and dry matter production and allocation. Sci Hort,2005,105∶ 13-27

      [59] Lahai M T,Ekanayake I J. Accumulation and distribution of dry matter in relation to root yield of cassava under a fluctuating water table in inland valley ecology. Afr J Biotechnol,2009,8∶4895-4905

      [60] Di Paolo E,Rinaldi M. Yield response of corn to irrigation and nitrogen fertilization in a Mediterranean environment. Field Crops Res,2008,105∶ 202-210

      [61] Iqbal M,Anwar-ul-Hassan,Ibrahim M. Effects of tillage systems and mulch on soil physical quality parameters and maize (Zea mays L.) yield in semi-arid Pakistan. Biol Agric Hort,2008,25∶311-325

      [62] Mukherjee A,Kundu M,Sarkar S. Role of irrigation and mulch on yield,evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L). Agric Water Manag,2010,98∶182-189

      [63] Shaheen A,Ali S,Stewart B A,Naeem M A,Jilani G. Mulching and synergistic use of organic and chemical fertilizers enhances the yield,nutrient uptake and water use efficiency of sorghum. Afr J Agric Res 2010,5∶ 2178-2183

      [64] Miller P R,Gan Y,McConkey B G,McDonald C L. Pulse crops for the northern Great Plains∶ I. Grain productivity and residual effects on soil water and nitrogen. Agron J,2003,95∶ 972-979

      [65] Kumar S,Dey P. Effects of different mulches and irrigation methods on root growth,nutrient uptake,water-use efficiency and yield of strawberry. Sci Hort,2011,127∶ 318-324

      [66] Barati V,Ghadiri H,Zand-Parsa S,Karimian N. Nitrogen and water use efficiencies and yield response of barley cultivars under different irrigation and nitrogen regimes in a semi-arid Mediterranean climate. Arch Agron Soil Sci,2015,61∶ 15-32

      [67] Azizian A,Sepaskhah A R. Maize response to water,salinity and nitrogen levels∶ yield-water relation,water-use efficiency and water uptake reduction function. Int J Plant Prod,2014,8∶183-214

      [68] Pirmoradian N,Sepaskhah A R,Maftoun M. Effects of water-saving irrigation and nitrogen fertilization on yield and yield components of rice (Oryza sativa L.). Plant Prod Sci,2004,7∶ 337-346

      Effects of Mulching and Nitrogen Application on Photosynthetic Characteristics and Yield Traits in Broomcorn Millet

      ZHOU Yu1,**,SU Wang1,2,**,WANG Jian2,QU Yang1,3,GAO Xiao-Li1,YANG Pu1,and FENG Bai-Li1,*1State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy,Northwest A&F University,Yangling 712100,China;2Research Institute of Biotechnology,Qinghai Academy of Agriculture and Forestry Sciences,Xining 810016,China;3Baoji Academy of Agriculture Sciences,Qishan 722400,China

      Abstract:To reveal the mechanism of effects of mulching and nitrogen fertilizer on yield of broomcorn millet,we employed a split-plot design in variety Yumi 2 with mulching as main plot and nitrogen rates as subplot. In a three-year field experiment from 2011 to 2013,we investigated and related the variation of photosynthetic characteristics and yield traits indices under different mulching patterns and nitrogen rates. The results showed that compared with traditional planting (no mulching and no nitrogen),all mulching patterns and nitrogen fertilizer treatments could significantly increase chlorophyll content,net photosynthetic rate (Pn),stomatal conductance (Gs) and transpiration rate (Tr),and decrease intercellular CO2concentration (Ci) of flag leaves from flowering to maturity in broomcorn millet,among which “W” ridge covered with common plastic film + intredune covered with straw (M4) and 180 kg ha-1of nitrogen rate (N4) caused the most significant improvement on photosynthesis. All mulching patterns and nitrogen fertilizer treatments could significantly improve dry matter accumulation and allocation amount at flowering and maturity stages. In addition,the mulching and nitrogen fertilizer treatments significantly reduced pre-flowering reserves translocation and contribution to grain,but increased post-flowering assimilates allocation and contribution to grain. Mulching could significantly improve the grain yield,thousand grain weight,panicle grain number and panicle length of broomcorn millet,and M4 treatment showed the greatest improvement. With the increasing of nitrogen fertilizer rates,broomcorn millet grain yield and thousand grain weight increased at first and declined then,but panicle grain number and panicle length constantly increased. The best rate of nitrogen fertilizer applied in Loess Plateau was between 135 and 145 kg ha-1. Therefore,the combination of “W”ridge covered with common plastic film + intredune covered with straw and nitrogen rate from 135 to 145 kg ha-1could be considered as the most efficient cultivation measure to broomcorn millet in Loess Plateau.

      Keywords:Broomcorn millet;Mulching;Nitrogen fertilizer;Photosynthetic characteristic;Dry matter;Yield

      DOI:10.3724/SP.J.1006.2016.00873

      *通訊作者(

      Corresponding author)∶ 馮佰利,E-mail∶ 7012766@163.com,Tel∶ 13891852175

      收稿日期Received()∶ 2015-12-03;Accepted(接受日期)∶ 2016-03-14;Published online(網(wǎng)絡(luò)出版日期)∶ 2016-03-21.

      猜你喜歡
      干物質(zhì)覆蓋糜子
      糜子品種理化特性與體外抗氧化性研究
      山西構(gòu)建糜子DNA分子身份證
      基于網(wǎng)絡(luò)調(diào)研的我國糜子消費(fèi)現(xiàn)狀分析
      淺談地鐵通信無線系統(tǒng)覆蓋
      對數(shù)周期偶極子天線在航向覆蓋中的作用
      中國航空用廉價(jià)票“覆蓋”世界
      小小糜子富了一鎮(zhèn)百姓
      不同氮鉀水平對馬鈴薯干物質(zhì)積累和產(chǎn)量的影響
      不同施鉀量對谷子干物質(zhì)及產(chǎn)量的影響
      水楊酸對菊花耐熱性的影響
      新平| 富源县| 临猗县| 海淀区| 洪湖市| 赤峰市| 康马县| 治县。| 武乡县| 崇阳县| 娱乐| 济阳县| 建德市| 习水县| 新龙县| 原平市| 旅游| 栾城县| 望江县| 白银市| 镇安县| 三河市| 中卫市| 沈丘县| 桂平市| 安仁县| 永定县| 资兴市| 三河市| 敦化市| 丰都县| 延边| 阳东县| 大同市| 江川县| 海南省| 乌兰察布市| 溧水县| 康定县| 虞城县| 绿春县|