周 誠,畢福強(qiáng),王伯周,2,李祥志,李吉禎,周 群
(1.西安近代化學(xué)研究所, 陜西 西安 710065; 2.氟氮化工資源高效開發(fā)與利用國家重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710065)
?
含3,5-二硝氨基-1,2,4-三唑肼鹽推進(jìn)劑的能量特性計(jì)算
周誠1,畢福強(qiáng)1,王伯周1,2,李祥志1,李吉禎1,周群1
(1.西安近代化學(xué)研究所, 陜西 西安 710065; 2.氟氮化工資源高效開發(fā)與利用國家重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710065)
摘要:為評價(jià)新型高氮化合物3,5-二硝氨基-1,2,4-三唑肼鹽(HDNAT)作為固體推進(jìn)劑組分的應(yīng)用潛力,采用NASA-CEA軟件,在標(biāo)準(zhǔn)條件下(pc∶p0=70∶1),計(jì)算了含HDNAT的丁羥推進(jìn)劑(HTPB)、聚疊氮縮水甘油醚(GAP)推進(jìn)劑和改性雙基推進(jìn)劑(CMDB)的能量特性。繪制了HTPB/Al/AP/HDNAT推進(jìn)劑(金屬Al的最大質(zhì)量分?jǐn)?shù)為20%)的標(biāo)準(zhǔn)理論比沖Isp、特征速度C*、燃燒溫度Tc、燃?xì)馄骄鄬Ψ肿淤|(zhì)量的等性能三角圖。結(jié)果表明,HDNAT單元推進(jìn)劑的比沖為2533.0N·s/kg;在HTPB推進(jìn)劑中,當(dāng)HDNAT質(zhì)量分?jǐn)?shù)為50%時(shí),Isp最大為2658.0N·s/kg,較基礎(chǔ)配方提高了326.6N·s/kg;在GAP推進(jìn)劑中,當(dāng)HDNAT質(zhì)量分?jǐn)?shù)為30%時(shí),Isp最大為2529.0N·s/kg,較基礎(chǔ)配方提高了252.7N·s/kg;在CMDB推進(jìn)劑中,當(dāng)HDNAT質(zhì)量分?jǐn)?shù)為27%時(shí),Isp最大為2593.1N·s/kg,較基礎(chǔ)配方提高了57.3N·s/kg。
關(guān)鍵詞:物理化學(xué);固體推進(jìn)劑;3,5-二硝氨基-1,2,4-三唑肼鹽; HDNAT;能量特性;NASA-CEA軟件
引 言
追求高能量始終是固體推進(jìn)劑研究的主要方向之一,固體推進(jìn)劑能量的提高依賴于新型氧化劑、黏合劑等新材料的合成,以及推進(jìn)劑配方設(shè)計(jì)思路的創(chuàng)新[1-2]。目前,固體推進(jìn)劑中常用的氧化劑是高氯酸銨(AP),其生成焓較低(-290.45kJ/mol),燃燒產(chǎn)物中有大量氯化氫(HCl)氣體,不利于提高推進(jìn)劑能量和降低特征信號(hào)[3]。3,5-二硝氨基-1,2,4-三唑肼鹽(HDNAT)是一種性能優(yōu)異的新型三唑高氮含能材料,密度為1.89g/cm3,實(shí)測爆速為9000m/s (ρ=1.80g/cm3),理論爆壓為36.0GPa[4],具有高能量、高氮含量(57.01%)、高生成焓(292.5kJ/mol)、熱穩(wěn)定性好等特點(diǎn),且不含鹵素,因此,用其取代AP,有望提高固體推進(jìn)劑的能量、降低特征信號(hào)和減少環(huán)境污染。
1HDNAT和含能化合物性能比較
HDNAT是一種三唑高氮化合物,其結(jié)構(gòu)式如圖1所示。
圖1 HDNAT的結(jié)構(gòu)式Fig.1 The structural formula of HDNAT
表1列出了HDNAT和AP、ADN、RDX、DNTF、1,1′-二羥基-5,5′-聯(lián)四唑二羥胺鹽(HATO)等幾種含能化合物的物化性能。為研究HDNAT在推進(jìn)劑中的能量水平,在標(biāo)準(zhǔn)條件(pc∶p0=70∶1)下,采用基于最小自由能原理的NASA-CEA軟件計(jì)算了其單元推進(jìn)劑的能量特性參數(shù),結(jié)果見表1。
表1 HDNAT與其他幾種含能化合物的物化性能和能量特性參數(shù)
HDNAT具有高氮、高生成焓的特點(diǎn),其單元推進(jìn)劑的標(biāo)準(zhǔn)理論比沖為2533.0N·s/kg,均低于常用的高能化合物RDX、DNTF、HATO,但遠(yuǎn)高于AP和ADN。同時(shí),HDNAT不含鹵素,燃燒產(chǎn)物中無HCl成分,可以大幅度降低推進(jìn)劑的特征信號(hào)、減少環(huán)境污染。因此,在推進(jìn)劑中用其部分或全部取代AP,有利于實(shí)現(xiàn)推進(jìn)劑的高能化和微煙化。
2含HDNAT推進(jìn)劑的能量特性計(jì)算
2.1含HDNAT的HTPB推進(jìn)劑
為了考察HDNAT含量對HTPB推進(jìn)劑能量特性和燃燒產(chǎn)物的影響,本研究設(shè)計(jì)的推進(jìn)劑配方中保持HTPB和Al的質(zhì)量分?jǐn)?shù)分別為10%和5%,用HDNAT逐步取代AP,其能量特性和主要燃燒產(chǎn)物含量計(jì)算結(jié)果如表2所示。
由表2可知,在HTPB/Al/AP/HDNAT推進(jìn)劑中,用HDNAT逐步取代AP,推進(jìn)劑的標(biāo)準(zhǔn)理論比沖Isp先增后減,當(dāng)體系中HDNAT質(zhì)量分?jǐn)?shù)為50%時(shí),Isp達(dá)到最大值2658.0N·s/kg,較基礎(chǔ)配方提高了326.6N·s/kg,特征速度C*提高了213m/s,而燃?xì)馄骄鄬Ψ肿淤|(zhì)量則逐漸下降,可見,加入HDNAT可大幅度提高推進(jìn)劑的能量。同時(shí),主要燃?xì)猱a(chǎn)物中,具有腐蝕性的HCl氣體含量明顯降低,摩爾分?jǐn)?shù)從21.00%降至7.75%。因此,該配方丁羥復(fù)合推進(jìn)劑中,可用HDNAT取代AP,以達(dá)到提高推進(jìn)劑高能量和環(huán)境友好的目標(biāo)。
表2 HDNAT含量對HTPB推進(jìn)劑的能量特性及燃燒產(chǎn)物的影響
圖2 HTPB/Al/AP/HDNAT推進(jìn)劑的等性能三角圖Fig. 2 Iso-property trigonal figures of the HTPB/Al/AP/HDNAT propellant
2.2含HDNAT的GAP推進(jìn)劑
GAP推進(jìn)劑具有燃燒性能優(yōu)異、機(jī)械感度低及燃速高等優(yōu)點(diǎn)。因此,本研究設(shè)計(jì)的推進(jìn)劑配方中,GAP的質(zhì)量分?jǐn)?shù)為15%,用HDNAT取代AP來提高GAP推進(jìn)劑的能量,其能量特性計(jì)算結(jié)果如表3所示。
2.3含HDNAT的改性雙基推進(jìn)劑
本研究設(shè)計(jì)的改性雙基推進(jìn)劑配方為:硝化棉(NC,含氮量12.6%)22%~28%,硝化甘油(NG)30%~35%,AP 30%,Al 2%~7%,DINA 3%~5%,其他助劑4%。采用HDNAT逐步取代配方中的AP,考察推進(jìn)劑的能量變化規(guī)律,結(jié)果見表4。
表3 HDNAT含量對GAP推進(jìn)劑的能量特性及燃燒
表4 含HDNAT的CMDB推進(jìn)劑的能量性能
3結(jié)論
(1)HDNAT是一種高能高氮化合物,單元推進(jìn)劑比沖為2533.0N·s/kg,且不含鹵素,可作為推進(jìn)劑組分以利于推進(jìn)劑的高能化和微煙化。
(2)在HTPB/Al/AP/HDNAT體系中,當(dāng)HDNAT質(zhì)量分?jǐn)?shù)為50%時(shí),Isp最大為2658.0N·s/kg,較基礎(chǔ)配方提高326.6N·s/kg,C*提高213m/s;在GAP/AP/HDNAT體系中,當(dāng)HDNAT質(zhì)量分?jǐn)?shù)為30%時(shí),Isp最大為2529.0N·s/kg,較基礎(chǔ)配方提高了252.7N·s/kg,C*提高了155m/s;在CMDB推進(jìn)劑中,Isp最大為2593.1N·s/kg,較基礎(chǔ)配方提高57.3N·s/kg,C*提高了70m/s。這表明HDNAT在HTPB推進(jìn)劑、GAP推進(jìn)劑和CMDB推進(jìn)劑中有良好的應(yīng)用潛力。
參考文獻(xiàn):
[1]李上文,趙鳳起,袁潮,等. 國外固體推進(jìn)劑研究與開發(fā)的趨勢[J]. 固體火箭技術(shù), 2002, 25(2): 36-42.
LI Shang-wen, ZHAO Feng-qi, YUAN Chao, et al. Tendency of research and development for overseas solid propellants[J]. Journal of Solid Rocket Technology, 2002, 25(2): 36-42.
[2]裴慶,趙鳳起,高紅旭,等. 三唑含能離子鹽在固體推進(jìn)劑中的應(yīng)用研究[J]. 兵工學(xué)報(bào),2014, 35(9): 1387-1392.PEI Qing, ZHAO Feng-qi, GAO Hong-xu, et al. Research on application of energetic triazole ionic salts in solid propellant[J]. Acta Armamentarii, 2014, 35(9): 1387-1392.
[3]李猛,趙鳳起,徐司雨,等. 新型高氯酸銨替代物對固體推進(jìn)劑能量性能的影響[J]. 火炸藥學(xué)報(bào), 2016, 39(2):86-91.
LI Meng, ZHAO Feng-qi, XU Si-yu, et al. Effect of ammonium perchlorate replacements on energetic performance of solid propellant[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2016, 39(2): 86-91.
[4]ZHOU Cheng, WANG Bo-zhou, HUO Huan, et al. A novel energetic material hydrazinium 3,5-diamino-1,2,4-triazole: synthesis and properties[J]. Chinese Journal of Energetic Materials, 2014, 22(4): 576-578.
[5]Gordon S., Mcbride B.J. Computer program for calculation chemical equilibrium compositions and applications: I analysis, NASA RP-1311[R]. Washington D C: NASA, 1994.
[6]Mcbride B J, Gordon S. Computer program for calculation chemical equilibrium compositions and applications: Ⅱ User manual and program description, NASA RP-1311[R]. Washington D C: NASA, 1996.
[7]李猛,趙鳳起,徐司雨,等. 三種能量計(jì)算程序在推進(jìn)劑配方設(shè)計(jì)中的比較[J]. 火炸藥學(xué)報(bào),2013, 36(3): 73-77.LI Meng, ZHAO Feng-qi, XU Si-yu, et al. Comparison of three kinds of energy calculation programs in formulation design of solid propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2013, 36(3): 73-77.
[8]劉劍洪,田德余,趙彥暉,等. 二硝酰胺銨推進(jìn)劑的能量特性[J]. 火炸藥學(xué)報(bào),2000, 23(2): 1-3.
LIU Jian-hong, TIAN De-yu, ZHAO Yan-hui, et al. Energetic characteristic of ammonium dinitramide propellants[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2000, 23(2): 1-3.
[9]張偉,謝五喜,樊學(xué)忠,等. 含ADN推進(jìn)劑的能量特性及綜合性能[J]. 火炸藥學(xué)報(bào),2015, 38(2): 81-85.
ZHANG Wei, XIE Wu-xi, FAN Xue-zhong, et al. Energetic characteristics and comprehensive properties of propellants containing ADN[J]. Chinese Journal of Explosives & Propellants(Huozhayao Xuebao), 2015, 38(2): 81-85.
[10]羅陽,高紅旭,趙鳳起,等. 含3,4-二硝基呋咱基氧化呋咱(DNTF)推進(jìn)劑的能量特性[J]. 含能材料, 2005, 13(4): 225-228.
LUO Yang, GAO Hong-xu, ZHAO Feng-qi, et a1. Energy characteristics of propellant containing 3,4-dinitrofurazanfuroxan (DNTF) [J]. Chinese Journal of Energetic Materials, 2005, 13(4): 225-228.
[11]洪偉良,田德余,劉劍洪,等. 含二硝基偶氮氧化呋咱推進(jìn)劑的能量特性研究[J]. 固體火箭技術(shù), 2001, 24(2): 41-44.
HONG Wei-liang, TIAN De-yu, LIU Jian-hong, et al. Study on the energy characteristic of propellant containing dinitroazofuroxan[J]. Journal of Solid Rocket Technology, 2001, 24(2): 41-44.
[12]李猛,趙鳳起,羅陽,等. 含5,5′-聯(lián)四唑-1,1′-二氧二羥銨推進(jìn)劑的能量特性計(jì)算[J]. 含能材料,2014, 22(3): 286-290.
LI Meng, ZHAO Feng-qi, LUO Yang, et al. Energetic characteristics computation of propellants containing dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate(TKX-50)[J]. Chinese Journal of Energetic Materials, 2014, 22(3): 286-290.
Energetic Characteristics Computation of Propellants Containing Hydrazinium 3,5-Diamino-1,2,4-triazole
ZHOU Cheng1, BI Fu-qiang1, WANG Bo-zhou1,2, LI Xiang-zhi1, LI Ji-zhen1, ZHOU Qun1
(1.Xi′an Modern Chemistry Research Institute, Xi′an 710065, China; 2.State Key Laboratory of Fluorine &Nitrogen Chemical, Xi′an 710065, China)
Abstract:To evaluate the application prospect of novel nitrogen-rich compound hydrazinium 3,5-diamino-1,2,4-triazole(HDNAT) as composite solid propellant components, the energy characteristics of hydroxy terminated polybutadiene(HTPB) propellant, glycidyl azide polymer (GAP) propellant and composite modified double-base(CMDB) propellant containing HDNAT were calculated by NASA-CEA software under the standard condition(pc∶p0=70∶1). The iso-property trigonal figures of standard theory specific impulseIsp, characteristic velocityC*, combustion temperatureTcand average relative molecular weight of combustion gaswfor HTPB/Al/AP/HDNAT propellant(the largest mass fraction of Al is 20%) were drawn out. The results show that theIspof HDNAT monopropellant is 2533.0N·s/kg. When the mass fraction of HDNAT in HTPB propellant is 50%, the largestIspis 2658.0N·s/kg, improves by 326.6N·s/kg compared with the basic formulation. When the mass fraction of HDNAT in GAP propellant is 30%, the largestIspis 2529.0N·s/kg, improves by 252.7N·s/kg compared with the basic formulation. When the mass fraction of HDNAT in CMDB propellant is 27%, the largestIspis 2593.1N·s/kg, improves by 57.3N·s/kg compared with the basic formulation.
Keywords:physical chemistry; solid propellant; hydrazinium 3,5-diamino-1,2,4-triazole; HDNAT;energy characteristics;NASA-CEA software
DOI:10.14077/j.issn.1007-7812.2016.03.016
收稿日期:2015-12-24;修回日期:2016-02-19
基金項(xiàng)目:總裝基礎(chǔ)科研基金(B0920110051)
作者簡介:周誠(1975-),男,副研究員,從事含能材料合成和應(yīng)用研究。E-mail: zhoucn@163.com
中圖分類號(hào):TJ55;V512
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-7812(2016)03-0080-04