戴 姍,劉運(yùn)牙,楊振華
(1. 湘潭大學(xué)材料科學(xué)與工程學(xué)院,湘潭411105;2. 低維材料及其應(yīng)用技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,湘潭411105;3. 湘潭大學(xué)材料設(shè)計(jì)及制備技術(shù)湖南省重點(diǎn)實(shí)驗(yàn)室,湘潭411105)
?
壓強(qiáng)對(duì)MgSiP2電子結(jié)構(gòu)和熱電性能影響的第一性原理研究
戴姍,劉運(yùn)牙,楊振華
(1. 湘潭大學(xué)材料科學(xué)與工程學(xué)院,湘潭411105;2. 低維材料及其應(yīng)用技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,湘潭411105;3. 湘潭大學(xué)材料設(shè)計(jì)及制備技術(shù)湖南省重點(diǎn)實(shí)驗(yàn)室,湘潭411105)
摘要:基于第一性原理,計(jì)算了MgSiP2的能帶結(jié)構(gòu),結(jié)果顯示壓強(qiáng)減小了能帶帶隙值,部分電子有效質(zhì)量隨著壓強(qiáng)增大而減小。費(fèi)米能級(jí)附近電子態(tài)密度計(jì)算結(jié)果顯示:隨著壓強(qiáng)的增大,價(jià)帶頂電子態(tài)密度的斜率逐漸減小,而導(dǎo)帶底電子態(tài)密度的斜率逐漸增加。結(jié)合半經(jīng)典玻耳茲曼理論,分別計(jì)算了p型和n型MgSiP2的電導(dǎo)率與弛豫時(shí)間的比值、賽貝克系數(shù)以及功率因子與弛豫時(shí)間的比值。結(jié)果發(fā)現(xiàn):壓強(qiáng)所致部分電子有效質(zhì)量的減小,提高了p型和n型MgSiP2的電導(dǎo)率,但在一定程度上降低了MgSiP2的賽貝克系數(shù)。在壓強(qiáng)作用下,相對(duì)于n型MgSiP2,p型MgSiP2的電導(dǎo)率增加幅度更大,補(bǔ)償了壓強(qiáng)所致p型MgSiP2賽貝克系數(shù)的降低,提高了p型MgSiP2的功率因子,使其大于n型MgSiP2的對(duì)應(yīng)值。計(jì)算結(jié)果表明,通過增大壓強(qiáng)可以提高p型MgSiP2的熱電性能,為實(shí)驗(yàn)制備具有良好熱電性能MgSiP2提供了指導(dǎo)方案。
關(guān)鍵詞:MgSiP2;電子結(jié)構(gòu);熱電性能;第一性原理計(jì)算
熱電材料作為一種重要的功能材料,對(duì)減少環(huán)境污染和緩解能源危機(jī)具有非常重要的作用。它可將熱能直接轉(zhuǎn)換成電能,且不會(huì)造成環(huán)境污染[1],因此,在能量轉(zhuǎn)換方面具有重要的研究?jī)r(jià)值和廣泛的應(yīng)用前景。目前,在利用廢熱、余熱等進(jìn)行熱能轉(zhuǎn)換電能方面,熱電材料已有初步的應(yīng)用,如日本建立的500 W垃圾燃燒余熱發(fā)電示范系統(tǒng),已取得良好的實(shí)際效果[2]。但目前熱電材料的熱電轉(zhuǎn)換效率還比較低,因此,探索高性能熱電材料和提升熱電材料的熱電性能成為研究者關(guān)注的重點(diǎn)[3-4]。
熱電材料的熱電性能可由無量綱的熱電優(yōu)值ZT來衡量[1,5]:ZT=S2σTκ-1,其中,S表示賽貝克(Seebeck)系數(shù),μV·K-1;σ表示電導(dǎo)率,S·m-1;T表示熱力學(xué)溫度,K;κ表示熱導(dǎo)率,W·m-1·K-1。S2σ稱為功率因子。因此,提升材料的熱電性能,可以通過提高材料的功率因子和降低其熱導(dǎo)率來實(shí)現(xiàn)。目前,提高材料熱電優(yōu)值常見的方法包括對(duì)熱電材料進(jìn)行摻雜[6-7]、納米化熱電材料[8-9]、對(duì)熱電材料加壓[10-14]等。如Polvani等對(duì)處于300 K的p型Sb1.5Bi0.5Te3合金施加2 GPa的靜水壓,獲得熱電性能ZT>2[15],這說明施加壓強(qiáng)可以提高材料熱電性能。近年來,黃銅礦體系的熱電材料因具有較好的熱電性能而引起廣泛關(guān)注,探索不同種類黃銅礦體系熱電性能的研究也逐漸興起[16-21],但目前對(duì)黃銅礦結(jié)構(gòu)材料MgSiP2的熱電性能[22-25]研究很少,因此,本文將通過第一性原理研究壓強(qiáng)對(duì)MgSiP2電子結(jié)構(gòu)的影響,并結(jié)合半經(jīng)典玻耳茲曼理論,研究壓強(qiáng)對(duì)MgSiP2熱電性能的影響,提出增大壓強(qiáng)以提高M(jìn)gSiP2熱電性能的方法。
1壓強(qiáng)對(duì)MgSiP2電子結(jié)構(gòu)的影響
1.1MgSiP2的晶體結(jié)構(gòu)
圖1MgSiP2晶體結(jié)構(gòu)示意圖Fig.1Crystal structure of MgSiP2
1.2MgSiP2的電子結(jié)構(gòu)
首先,對(duì)MgSiP2進(jìn)行結(jié)構(gòu)優(yōu)化,得到了0,5和10 GPa壓強(qiáng)下MgSiP2的晶格常數(shù),如表1所列。從表1可以看出,隨著壓強(qiáng)的增大,晶格常數(shù)a,c逐漸減小,這是由于靜水壓的作用導(dǎo)致晶體體積變小。表1還給出無壓強(qiáng)條件下MgSiP2晶格常數(shù)的實(shí)驗(yàn)值[10],理論計(jì)算值略低于實(shí)驗(yàn)值,二者偏差不超過5%,理論計(jì)算值與實(shí)驗(yàn)值吻合較好。
其次,根據(jù)優(yōu)化后的晶體結(jié)構(gòu),計(jì)算了0, 5 和10 GPa壓強(qiáng)下的能帶結(jié)構(gòu),結(jié)果如圖2所示,其中費(fèi)米能EF被設(shè)置為0。能帶計(jì)算結(jié)果顯示,MgSiP2為直接型半導(dǎo)體,壓強(qiáng)并未改變MgSiP2直接型半導(dǎo)體這一特性。0 壓強(qiáng)下理論計(jì)算帶隙值比實(shí)驗(yàn)帶隙值小,是由于GGA通常會(huì)低估贗勢(shì)所致[28-29]。
表1 不同壓強(qiáng)下MgSiP2的晶格常數(shù)與帶隙
圖2不同壓強(qiáng)下MgSiP2的能帶結(jié)構(gòu)Fig.2The band structure of MgSiP2under different pressures
從圖2可以看出,隨著壓強(qiáng)的增加,導(dǎo)帶底逐漸向費(fèi)米能靠近,能帶斜率增加,能帶電子的有效質(zhì)量減小,這有利于n型MgSiP2電導(dǎo)率的增加。計(jì)算結(jié)果也顯示, 隨著壓強(qiáng)的增加,價(jià)帶頂能帶變化不明顯,但沿Γ至Z方向部分能帶斜率增加,能帶電子的有效質(zhì)量減小,這有利于p型MgSiP2電導(dǎo)率的增加。導(dǎo)帶底和價(jià)帶頂部分電子有效質(zhì)量隨著壓強(qiáng)的增加而減小,帶隙逐漸減小,這表明MgSiP2的電導(dǎo)率將隨壓強(qiáng)的增加而增加。另外,由于賽貝克系數(shù)正比于電子的有效質(zhì)量[1],因此,電子有效質(zhì)量的減小也會(huì)在一定程度上降低MgSiP2的賽貝克系數(shù)。
晶體中電子的態(tài)密度與賽貝克系數(shù)密切相關(guān)。為此,計(jì)算了0, 5,10 GPa壓強(qiáng)下MgSiP2的電子態(tài)密度,結(jié)果如圖3所示。從圖3可以看出,在費(fèi)米能附近的價(jià)帶頂處,隨著壓強(qiáng)的增加,MgSiP2電子態(tài)密度的斜率逐漸減小。電子態(tài)密度的斜率與賽貝克系數(shù)相關(guān),斜率越大,賽貝克系數(shù)越大。主要是靠近費(fèi)米面附近的價(jià)帶部分決定了p型摻雜半導(dǎo)體的熱電性能。在費(fèi)米能附近導(dǎo)帶底處,隨著壓強(qiáng)的增加,MgSiP2電子態(tài)密度的斜率隨著壓強(qiáng)增大而增大,有利于提高n型MgSiP2賽貝克系數(shù)。但圖2中導(dǎo)帶底電子有效質(zhì)量隨壓強(qiáng)增大而減小,又會(huì)在一定程度上降低賽貝克系數(shù),因此,MgSiP2賽貝克系數(shù)是電子有效質(zhì)量和電子態(tài)密度二者隨壓強(qiáng)變化總效果的體現(xiàn)。
圖3不同壓強(qiáng)下MgSiP2的電子態(tài)密度Fig.3The DOS of MgSiP2 under different pressures
2壓強(qiáng)對(duì)MgSiP2熱電性能的影響
基于半經(jīng)典玻耳茲曼理論,采用BoltzTraP軟件包[30],分別計(jì)算并分析了壓強(qiáng)對(duì)n型和p型MgSiP2熱電性能的影響。BoltzTraP軟件包建立在半經(jīng)典玻耳茲曼理論基礎(chǔ)上,基于VASP計(jì)算得到電子能量本征值、計(jì)算材料的電導(dǎo)率和賽貝克系數(shù)。本文在計(jì)算中采用常弛豫時(shí)間近似,這一近似已被廣泛地應(yīng)用于熱電性能的計(jì)算分析中[31-34]。計(jì)算分析了壓強(qiáng)對(duì)MgSiP2電導(dǎo)率與弛豫時(shí)間的比值、賽貝克系數(shù)、功率因子與弛豫時(shí)間比值的影響。增加載流子濃度可以提高熱電材料電導(dǎo)率,但也會(huì)降低賽貝克系數(shù),因此,選擇合適的載流子濃度才能提升材料的熱電功率因子。為此,計(jì)算了800 K時(shí)無壓力條件下MgSiP2的擇優(yōu)載流子濃度,獲得了p型摻雜的擇優(yōu)載流子濃度為10.35×1020cm-3,n型摻雜的擇優(yōu)載流子濃度為10.41×1020cm-3。
2.1p型MgSiP2
圖4為不同壓強(qiáng)下p型MgSiP2熱電性能隨溫度的變化關(guān)系。其中圖4(a)為電導(dǎo)率與弛豫時(shí)間的比值。從圖4(a)可以看出,隨著溫度的增加,不同壓強(qiáng)下p型MgSiP2的電導(dǎo)率與弛豫時(shí)間的比值均呈現(xiàn)減小的趨勢(shì),這是由于通常材料的電導(dǎo)率隨溫度的升高而降低[35-36]。同時(shí),在同一溫度下,由于MgSiP2的帶隙逐漸減小,有利于載流子的躍遷,使得p型MgSiP2的電導(dǎo)率與弛豫時(shí)間的比值隨壓強(qiáng)的增加而增大。另一方面,隨著壓強(qiáng)增大,能帶結(jié)構(gòu)中價(jià)帶頂沿Γ至Z方向部分電子的有效質(zhì)量減小,增強(qiáng)了電子遷移率[37],提高了p型MgSiP2的電導(dǎo)率。
在圖4(b)中,p型MgSiP2的賽貝克系數(shù)隨溫度的增加而增大,但考慮壓強(qiáng)時(shí),賽貝克系數(shù)隨著壓強(qiáng)的增加而減小,這與對(duì)電子能帶結(jié)構(gòu)和電子態(tài)密度分析得到預(yù)測(cè)結(jié)果一致。圖2中價(jià)帶頂部分電子有效質(zhì)量隨著壓強(qiáng)的增大而減小,雖然提升了p型MgSiP2的電導(dǎo)率,但同時(shí)也降低了p型MgSiP2的賽貝克系數(shù)。與此同時(shí),圖3中電子態(tài)密度計(jì)算結(jié)果顯示價(jià)帶頂處電子態(tài)密度斜率隨著壓強(qiáng)的增大而減小,電子態(tài)密度斜率的減小會(huì)降低材料的賽貝克系數(shù)[38]。因此,壓強(qiáng)增加引起價(jià)帶頂部分電子有效質(zhì)量的減小以及和電子態(tài)密度斜率的降低,同時(shí)使p型MgSiP2賽貝克系數(shù)的降低,不利于提高p型MgSiP2的賽貝克系數(shù)。
基于電導(dǎo)率與弛豫時(shí)間的比值以及賽貝克系數(shù)的計(jì)算結(jié)果,在圖4(c)中給出不同壓強(qiáng)下p型MgSiP2功率因子與弛豫時(shí)間比值隨溫度的變化圖。從圖4(c)還可以看出, 隨著溫度的增加,功率因子與弛豫時(shí)間的比值逐漸增加。在400~1 000 K范圍內(nèi),適度增大壓強(qiáng)會(huì)增強(qiáng)p型MgSiP2的功率因子與弛豫時(shí)間的比值,這說明增大壓強(qiáng)可提升中高溫條件下p型MgSiP2的功率因子,有利于增強(qiáng)p型MgSiP2的熱電性能。
2.2n型MgSiP2
計(jì)算了不同壓強(qiáng)下n型MgSiP2的熱電性能隨溫度的變化,如圖5所示。圖5(a)是不同壓強(qiáng)下n型MgSiP2電導(dǎo)率與弛豫時(shí)間的比值隨溫度的變化關(guān)系,結(jié)果顯示在大部分溫度范圍內(nèi),電導(dǎo)率與弛豫時(shí)間的比值隨溫度的增加而緩慢減小,隨著壓強(qiáng)的增加而增大,這是由于壓強(qiáng)使得導(dǎo)帶底電子有效質(zhì)量減小,增強(qiáng)了載流子的遷移率,從而提高了n型MgSiP2的電導(dǎo)率,這與圖2能帶結(jié)構(gòu)分析所預(yù)測(cè)的電導(dǎo)率升高保持一致。
圖5(b)給出了不同壓強(qiáng)下n型MgSiP2賽貝克系數(shù)隨溫度的變化。由于n型半導(dǎo)體的賽貝克系數(shù)為負(fù),所以分析其絕對(duì)值隨壓強(qiáng)的變化。圖5(b)表明,大部分溫度范圍內(nèi)賽貝克系數(shù)絕對(duì)值隨溫度的升高而增加;在300~1 000 K內(nèi),賽貝克系數(shù)的絕對(duì)值都隨壓強(qiáng)的增加而減小。盡管電子在導(dǎo)帶底附近電子態(tài)密度的斜率隨壓強(qiáng)的增大而增大(如圖3所示),這種變化有利于n型MgSiP2賽貝克系數(shù)的提高,但是在導(dǎo)帶底附近電子有效質(zhì)量的減小(如圖2所示)又使得賽貝克系數(shù)減小,而且電子有效質(zhì)量的減小對(duì)賽貝克系數(shù)的貢獻(xiàn)占據(jù)了主要部分,從而n型MgSiP2賽貝克系數(shù)的絕對(duì)值表現(xiàn)為隨著壓強(qiáng)的增大而減小。
(a)Conductivity divided by relaxation time
(b)Seebeck coefficient
(c)Power factor divided by relaxation time
(a)Conductivity divided by relaxation time
(b)Seebeck coefficient
(c)Power factor divided by relaxation time
圖5不同壓強(qiáng)下n型MgSiP2熱電性能隨溫度的變化
Fig.5Thermoelectric properties ofn-type MgSiP2vs. temperature under different pressures
基于n型MgSiP2的電導(dǎo)率與弛豫時(shí)間的比值以及賽貝克系數(shù),計(jì)算了n型MgSiP2功率因子與弛豫時(shí)間比值隨溫度的變化,結(jié)果如圖5(c)所示。功率因子與弛豫時(shí)間比值隨著溫度的升高而增加,增加壓強(qiáng)只有在較低溫度范圍內(nèi)能夠提高n型MgSiP2的功率因子,絕大部分溫度范圍內(nèi),增加壓強(qiáng)會(huì)降低n型MgSiP2的功率因子,這說明增加壓強(qiáng)不利于提高n型MgSiP2的功率因子。
3結(jié)論
本文利用第一性原理并結(jié)合半經(jīng)典玻耳茲曼理論,研究了壓強(qiáng)對(duì)MgSiP2的電子結(jié)構(gòu)和熱電性能的影響。能帶結(jié)構(gòu)計(jì)算結(jié)果顯示,不同壓強(qiáng)下的MgSiP2都表現(xiàn)為直接型半導(dǎo)體,隨著壓強(qiáng)的增加,帶隙值逐漸減小且價(jià)帶頂和導(dǎo)帶底部分電子的有效質(zhì)量減小,這促進(jìn)了p型和n型MgSiP2電導(dǎo)率與弛豫時(shí)間比值的增加。從電子態(tài)密度結(jié)果中可以看出,在費(fèi)米能附近的價(jià)帶頂處,隨著壓強(qiáng)的增加,MgSiP2電子態(tài)密度的斜率逐漸減小,結(jié)合價(jià)帶頂部分電子有效質(zhì)量的減小,說明p型MgSiP2的賽貝克系數(shù)隨著壓強(qiáng)的增加而減小。同時(shí),導(dǎo)帶底電子有效質(zhì)量的減小,也使得p型MgSiP2的賽貝克系數(shù)隨著壓強(qiáng)的增加而減小。相對(duì)于n型MgSiP2,增加壓強(qiáng)使p型MgSiP2的電導(dǎo)率增加幅度更大,補(bǔ)償了壓強(qiáng)所致p型MgSiP2賽貝克系數(shù)的降低,因此壓強(qiáng)能夠增強(qiáng)p型MgSiP2的功率因子,且p型MgSiP2的熱電性能優(yōu)于n型MgSiP2的熱電性能。這表明,壓強(qiáng)能夠使得p型MgSiP2表現(xiàn)出較高的熱電轉(zhuǎn)換效率,為實(shí)驗(yàn)上制備優(yōu)異熱電性能的MgSiP2材料提供了良好的指導(dǎo)方案。
參考文獻(xiàn)
[1]HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J]. Science, 2008, 321(5 888): 554-557.
[2]李洪濤,朱志秀,吳益文,等. 熱電材料的應(yīng)用和研究進(jìn)展 [J].材料導(dǎo)報(bào), 2012, 26(15): 57-61. (LI Hong-tao, ZHU Zhi-xiu, WU Yi-wen, et al. Progress of application and research of thermoelectric materials [J]. Materials Review, 2012, 26(15): 57-61.)
[3]RHYEE J S, LEE K H, LEE S M, et al. Peierls distortion as a route to high thermoelectric performance in In4Se3-δcrystals[J]. Nature, 2009, 459(7 249): 965-968.
[4]SHAKOURI A. Recent developments in semiconductor thermoelectric physics and materials[J]. Annual Review of Materials Research, 2011, 41: 399-431.
[5]PEI Y E, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics[J]. Nature, 2011, 473(7345): 66-69.
[6]LIU W, TAN X J, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance ofn-type Mg2Si1-xSnxsolid solutions[J]. Phys Rev Lett, 2012, 108(16): 166601.
[7]KUO J H, ANDERSON H U, SPARLIN D M. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: Defect structure, electrical conductivity, and thermoelectric power[J]. Journal of Solid State Chemistry, 1990, 87(1): 55-63.
[8]PICHANUSAKORN P, BANDARU P. Nanostructured thermoelectrics[J]. Materials Science and Engineering, R: Reports, 2010, 67(2): 19-63.
[9]PEI Y E, LENSCH F J, TOBERER E S, et al. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping[J]. Advanced Functional Materials, 2011, 21(2): 241-249.
[10]OUAHRANI T. Chemical and physical insight on the local properties of the phosphides XSiP2(X= Be, Mg, Cd, Zn and Hg) under pressure: from first principles calculations[J]. The European Physical Journal B, 2013, 86(9): 1-11.
[11]MENG J F, POLVANI D A, JONES C D W, et al. Pressure tuning in the chemical search for improved thermoelectric materials: NdxCe3-xPt3Sb4[J]. Chem Mater, 2000, 12(1): 197-201.
[12]SU T C, JIA X P, MA H A, et al. Enhanced thermoelectric performance of AgSbTe2synthesized by high pressure and high temperature[J]. Appl Phys, 2009, 105(7): 073713.
[13]OVSYANNIKOV S V, SHCHENNIKOV V V, VORONTSOV G V, et al. Giant improvement of thermoelectric power factor of Bi2Te3under pressure[J]. J Appl Phys, 2008, 104(5): 053713.
[14]CHEN F, STOKES K L, NOLAS G S. Thermoelectric properties of tin clathrates under hydrostatic pressure[J]. Journal of Physics and Chemistry of Solids, 2002, 63(5): 827-832.
[15]POLVANI D A, MENG J F, CHANDRA SHEKAR N V, et al. Large improvement in thermoelectric properties in pressure-tunedp-type Sb1.5Bi0.5Te3[J]. Chem Mater, 2001, 13(6): 2 068-2 071.
[16]WU W J, WU K C, MA Z J, et al. Doping and temperature dependence of thermoelectric properties of AgGaTe2: First principles investigations[J]. Chem Phys Lett, 2012, 537: 62-64.
[17]LIU R H, XI L L, LIU H L, et al. Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure[J]. Chem Commun, 2012, 48(32): 3 818-3 820.
[18]YAO J L, TAKAS N J, SCHLIEFERT M L, et al. Thermoelectric properties ofp-type CuInSe2chalcopyrites enhanced by introduction of manganese[J]. Phys Rev B, 2011, 84(7): 075203.
[19]LI Y P, MENG Q S, DENG Y, et al. High thermoelectric performance of solid solutions CuGa1-xInxTe2(x= 0-1.0)[J]. Appl Phys Lett, 2012, 100(23): 231903.
[20]KOSUGA A, PLIRDPRING T, HIGASHINE R, et al. High-temperature thermoelectric properties of Cu1-xInTe2with a chalcopyrite structure[J]. Appl Phys Lett, 2012, 100(4): 042108.
[21]ZOU D F, XIE S H, LIU Y Y, et al. First-principles study of thermoelectric and lattice vibrational properties of chalcopyrite CuGaTe2[J]. Journal of Alloys and Compounds, 2013, 570: 150-155.
[22]PETUKHOV A G, LAMBRECHT W R L, SEGALL B. Electronic structure of wide-band-gap ternary pnictides with the chalcopyrite structure [J]. Phys Rev B, 1994, 49(7): 4 549-4 558.
[23]POPLAVNOI A S, POLYGALOV Y I, CHALDYSHEV V A. Energy-band structure of semiconductors having the chalcopyrite lattice II. MgSiP2, ZnGeP2, ZnSiAs2, and CdSiP2[J]. Soviet Physics Journal, 1970, 13(6): 766-770.
[24]JAFFE J E, ZUNGER A. Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2[J]. Phys Rev B, 1984, 30(2): 741-756.
[25]SHI L, HU J, QIN Y, et al. First-principles study of structural, elastic and lattice dynamical properties of chalcopyrite BeSiV2and MgSiV2(V= P, As, Sb)[J]. Journal of Alloys and Compounds, 2014, 611: 210-218.
[26]KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Phys Rev B, 1993, 47(1): 558-561.
[27]KRESSE G, FURTHMULLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15-50.
[28]MORI-SANCHEZ P, COHEN A J, YANG W. Localization and delocalization errors in density functional theory and implications for band-gap prediction[J]. Phys Rev, 2008, 100(14): 146401.
[29]OBUKURO Y, MATSUSHIMA S, OBATA K, et al. Improved calculation of band gap of Sr2Bi2O5crystal using modified Becke-Johnson exchange potential [J]. Journal of Physics and Chemistry of Solids, 2014, 75(3): 427-432.
[30]MADSEN G K H, SINGH D J. BoltzTraP: A code for calculating band-structure dependent quantities[J]. Computer Physics Communications, 2006, 175(1): 67-71.
[31]PARKER D, SINGH D J. Thermoelectric properties of AgGaTe2and related chalcopyrite structure materials[J]. Phys Rev B, 2012, 85(12): 125209.
[32]SINGH D J, MAZIN I I. Calculated thermoelectric properties of La-filled skutterudites[J]. Phys Rev B, 1997, 56(4): 1 650-1 653.
[33]NOUGIER J P, VAISSIERE J C, GASQUET D, et al. Determination of transient regime of hot carriers in semiconductors using the relaxation time approximations[J]. J Appl Phys, 1981, 52(2): 825-832.
[34]ONG K P, SINGH D J, WU P. Analysis of the thermoelectric properties ofn-type ZnO[J]. Phys Rev B, 2011, 83(11): 115110.
[35]BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7 416): 414-418.
[36]ZOU D F, XIE S H, LIU Y Y, et al. Electronic structure and thermoelectric properties of half-Heusler Zr0.5Hf0.5NiSn by first-principles calculations[J]. J Appl Phys, 2013, 113(19): 193705.
[37]YAN Y L, WANG Y X. Crystal structure, electronic structure, and thermoelectric properties of Ca5Al2Sb6[J]. Journal of Materials Chemistry, 2011, 21(33): 12 497-12 502.
[38]ZOU D F, XIE S H, LIU Y Y, et al. Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se and Te): first-principles calculations[J]. J Mater Chem A, 2013, 1(31): 8 888-8 896.
(上接第020403-4頁)
[8]梁曦東, 陳昌漁, 周遠(yuǎn)翔. 高電壓工程[M]. 北京: 清華大學(xué)出版社, 2003. (LIANG Xi-dong, CHEN Chang-yu, ZHOU Yuan-xiang. High Voltage Engineering[M]. Beijing: Tsinghua University Press, 2003.)
[9]COOPER J R, HUTCHESON G, KRISTIANSEN M, et al. A multi-spark preionization source for diffuse discharges containing attachers [C]//IEEE 4th International Pulsed Power Conference, 1983: 726-728.
[10]邵濤, 孫廣生, 嚴(yán)萍,等. 高壓納秒脈沖氣體放電試驗(yàn)研究進(jìn)展[J].高壓電器,2004,40(4): 279-282. (SHAO Tao, SUN Guang-sheng, YAN Ping, et al. Progress in the experiment and research of gas breakdown under HV nanosecond pulse[J]. High Voltage Apparatus, 2004, 40(4): 279-282.)
[11]嚴(yán)璋, 朱德恒. 高電壓絕緣技術(shù)[M]. 北京: 中國(guó)電力出版社,2007. (YAN Zhang, ZHU De-heng. High Voltage and Insulation Technology[M]. Beijing: China Electric Power Press, 2007.)
[12]MARTIN T H. Pulsed charged gas breakdown [C]//5th IEEE Pulsed Power Conference, 1985, 74-83.
(上接第020601-4頁)
[10]藤井信生. 運(yùn)算放大器的基礎(chǔ)與應(yīng)用[M]. 趙滿良, 彭連昌, 譯. 北京: 電子工業(yè)出版社, 1983.(FUJII NOBUK. Basis and Application of Operational Amplifier [M]. (ZHAO Man-liang, PENG Lian-chang, translated. Beijing: Publishing House of Electronics Industry, 1980.)
[11]頡曉明. 集成運(yùn)算放大器的失效分析及防護(hù)[J]. 河南科學(xué), 2009, 27(10): 1 254-1 257.(XIE Xiao-ming. Integration operational amplifier’s failure analysis and protection[J]. Henan Science, 2009, 27(10): 1 254-1 257.)
[12]鮑秀峰. 軍用集成電路典型失效模式分析與改進(jìn)措施研究[D]. 南京: 南京理工大學(xué), 2006.(BAO Xiu-feng. Research on typic failure model and improvement measure of military integrated circuits[D]. Nanjing: Nanjing University of Science & Technology, 2006.)
[13]王長(zhǎng)河. 高功率微波和電磁脈沖對(duì)半導(dǎo)體器件輻射損傷的研究[J]. 半導(dǎo)體情報(bào), 1997, 34(1): 9-16.(WANG Chang-he. Study on the effect of HPM and EMP radiation damage on semiconductor devices[J]. Semiconductor Information, 1997, 34(1): 9-16.)
收稿日期:2015-06-12;修回日期:2016-01-26
作者簡(jiǎn)介:戴姍(1990- ),女,湖北天門人,碩士研究生,主要從事新型能源材料研究。 E-mail:Dshan33@aliyun.com
中圖分類號(hào):TN377
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):2095-6223(2016)020801(7)
The Effects of Pressure on Electronic Structures and Thermoelectric Properties of MgSiP2by First-Principles Calculations
DAIShan,LIU Yun-ya,YANG Zhen-hua
(1. School of Materials Science and Engineering, Xiangtan University,Xiangtan411105,China;2. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan411105,China;3. Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University,Xiangtan411105,China)
Abstract:The band structures of MgSiP2 under different pressures were investigated by using first-principles calculations. It was found that the band gap and some of electron effective mass of MgSiP2 decrease with the increase of pressure. The results of the density of electronic state (DOS) near the Fermi level show that the slope of DOS decreases with the increases of pressure at the top of valence band, while it shows a contrary trend at the bottom of conduction band. The thermoelectric properties of p-type and n-type MgSiP2 were calculated using the semi-classical Boltzmann transport theory. The results show that both the electric conductivities of p-type and n-type MgSiP2 increase with respect to pressure, while the Seebeck coefficients decrease with respect to pressure due to the decrease of electron effective mass. Although the Seebeck coefficients decrease under pressure, the enhancement of electric conductivity of p-type is more obvious than that of n-type MgSiP2, resulting in the enhancement of power factor of p-type MgSiP2 under pressure. The power factor of p-type MgSiP2 is higher than that of n-type MgSiP2. These insights point to alternative pathways to enhance the thermoelectric properties of MgSiP2 materials.
Key words:MgSiP2;electronic structure;thermoelectric properties;first-principles calculations