張楠楠 楊淑殷 陳柳瑩 尹 珊 王十錦 劉三?!⊥踺磔?3 汪 錚 李 海#
上海交通大學醫(yī)學院附屬仁濟醫(yī)院消化科 上海市消化疾病研究所1(200001) 首都醫(yī)科大學附屬北京地壇醫(yī)院傳染病研究所2 新發(fā)突發(fā)傳染病研究北京市重點實驗室3
?
·論著·
ConA重復給藥建立ACLF免疫狀態(tài)動態(tài)轉(zhuǎn)變的小鼠模型*
張楠楠1楊淑殷1陳柳瑩1尹珊1王十錦1劉三海2王蓓蓓2,3汪錚1李海1#
上海交通大學醫(yī)學院附屬仁濟醫(yī)院消化科上海市消化疾病研究所1(200001) 首都醫(yī)科大學附屬北京地壇醫(yī)院傳染病研究所2新發(fā)突發(fā)傳染病研究北京市重點實驗室3
背景:慢加急性肝衰竭(ACLF)是我國常見的肝衰竭類型,目前尚缺乏能有效模擬ACLF免疫狀態(tài)動態(tài)轉(zhuǎn)變的動物模型。目的:通過刀豆球蛋白A(ConA)重復給藥,建立模擬ACLF免疫狀態(tài)動態(tài)轉(zhuǎn)變的動物模型。方法:小鼠隨機分為對照組和ConA重復給藥組,ConA重復給藥組小鼠給予球后內(nèi)眥靜脈叢注射ConA 15 mg/kg,每隔48 h一次,共5次,對照組給予等體積0.9%NaCl溶液。CBA法檢測外周血IL-6、IL-10、IL-12、TNF-α、IFN-γ、MCP-1水平,并測定IL-10/TNF-α比值;流式細胞術(shù)檢測外周血中單核細胞HLA-DR表達、CD4+T細胞數(shù)量及其比例以及PD-1表達。結(jié)果:隨著給藥次數(shù)增加,ConA重復給藥組小鼠外周血細胞因子從促炎細胞因子為主轉(zhuǎn)變成抗炎細胞因子為主。與對照組相比,ConA重復給藥組外周血中單核細胞HLA-DR表達下降(P<0.05);CD4+T細胞數(shù)量和比例下降(P<0.05),PD-1表達上調(diào)(P<0.05)。結(jié)論:本研究通過ConA重復刺激成功建立了模擬ACLF免疫狀態(tài)從全身炎癥反應綜合征(SIRS)到代償性抗炎反應綜合征(CARS)動態(tài)轉(zhuǎn)變的動物模型。
關(guān)鍵詞慢加急性肝衰竭;伴刀豆球蛋白A;免疫狀態(tài);細胞因子類;模型,動物
Establishment of Model of Dynamic Change of Immune Status of ACLF Induced by ConA Repeated Administration in MiceZHANGNannan1,YANGShuyin1,CHENLiuying1,YINShan1,WANGShijin1,LIUSanhai2,WANGBeibei2,3,WANGZheng1,LIHai1.1DivisionofGastroenterologyandHepatology,RenJiHospital,SchoolofMedicine,ShanghaiJiaoTongUniversity;ShanghaiInstituteofDigestiveDisease,Shanghai(200001);2InstituteofInfectiousDiseases,BeijingDitanHospital,CapitalMedicalUniversity,Beijing;3BeijingKeyLaboratoryofEmergingInfectiousDiseases,Beijing
Correspondence to: LI Hai, Email: haili_17@126.com
慢加急性肝衰竭(ACLF)是臨床常見的肝衰竭類型,晚期常合并多臟器功能衰竭,死亡率可高達30%~50%[1]。東方ACLF的病因以乙型肝炎感染為主,西方則以酒精性肝炎為基礎(chǔ)。ACLF的急性誘因包括感染、過度飲酒、外科手術(shù)、肝臟毒性藥物等[2-4]。盡管東西方ACLF的病因和急性誘因不一,但引起機體免疫應答和免疫演變的過程大致相同,主要表現(xiàn)為急性肝損傷誘因?qū)е碌臋C體早期免疫亢進即全身炎癥反應綜合征(SIRS),逐漸演變?yōu)橐钥寡准毎蜃影准毎樗?IL)-10為主的代償性抗炎反應綜合征(CARS)[4-8]。
2014年世界胃腸病組織工作小組提出了ACLF的“優(yōu)先和次優(yōu)先”研究主題,其中發(fā)展有效的動物實驗模型以深入研究ACLF病理生理機制和研制可能的治療藥物作為三大優(yōu)先主題之一,因此建立模擬ACLF動態(tài)免疫演變的動物模型是深入闡明該疾病的關(guān)鍵切入點。本研究通過給予小鼠刀豆球蛋白A(ConA)重復刺激,旨在建立反復急性肝損傷誘導的ACLF免疫狀態(tài)動態(tài)演變的動物模型。
材料與方法
一、實驗動物、主要試劑和儀器
1. 實驗動物:SPF級6~8周齡C57BL/6雄性小鼠20只,體質(zhì)量20~23 g,購于中國醫(yī)學科學院醫(yī)學實驗動物研究所。給予小鼠清潔飲食,晝夜規(guī)律光照。
2. 主要試劑和儀器:ConA購于美國Sigma公司;低溫多用途離心機購于德國Thermo公司;小鼠CBA試劑盒、抗小鼠CD45-FITC抗體、抗小鼠NK1.1-PE、抗小鼠CD3-PerCP抗體、抗小鼠CD4-APC抗體、抗小鼠CD11b-FITC抗體、抗小鼠Gr-1 PE抗體、抗小鼠MHC-Ⅱ-PerCP抗體、抗小鼠CD48-APC、抗小鼠PD-1-FITC抗體、絕對細胞計數(shù)管、流式細胞儀(BD FACS Calibur)購于美國BD公司。
二、實驗方法
1. 模型制備:小鼠隨機分為對照組和ConA重復給藥組,每組各10只。ConA重復給藥組小鼠給予球后內(nèi)眥靜脈叢注射ConA 15 mg/kg,每隔48 h一次,共5次,建立ConA重復給藥模型。對照組給予等體積0.9% NaCl溶液。
2. 細胞因子的檢測:每次給予ConA或0.9% NaCl溶液后3 h眼球取血,2 000 r/min離心 20 min,分離血清。根據(jù)CBA試劑盒說明書,通過流式細胞儀檢測IL-6、IL-10、IL-12、TNF-α、IFN-γ、單核細胞趨化蛋白(MCP)-1水平。
3. 單核細胞HLA-DR表達、CD4+T細胞數(shù)量和程序性死亡受體(PD)-1表達的檢測:ConA末次刺激后48 h取小鼠外周血,制成單細胞懸液,應用流式細胞儀檢測單核細胞HLA-DR表達、CD4+T細胞數(shù)量和PD-1表達。
三、統(tǒng)計學分析
結(jié)果
一、促炎/抑炎細胞因子的動態(tài)變化過程
第1次ConA刺激后,促炎細胞因子TNF-α(P<0.000 1)水平、IL-12(P=0.015 2)、IFN-γ(P=0.001 8)、MCP-1(P<0.000 1)、IL-6(P=0.000 2)較刺激前顯著升高,抗炎細胞因子IL-10水平顯著升高(P=0.002 3);第5次ConA刺激后,TNF-α、IL-12、IFN-γ、MCP-1、IL-6水平均由峰值明顯降低,而IL-10繼續(xù)維持高水平(圖1A)。給予ConA刺激后,IL-10/TNF-α比值持續(xù)升高(圖1B)。說明隨著ConA刺激次數(shù)增加,小鼠的主導細胞因子由第1次ConA刺激后以促炎細胞因子為主導的SIRS轉(zhuǎn)變?yōu)榈?次ConA刺激后以抑炎細胞因子IL-10為主導的CARS階段。
二、HLA-DR表達
ConA第5次給藥后,外周血單核細胞HLA-DR表達較對照組明顯下降(平均熒光強度:3.56對11.76),差異有統(tǒng)計學意義(P<0.000 1)(圖2、圖3)。說明ConA重復刺激后機體處于先天性免疫系統(tǒng)受損狀態(tài)。
三、外周血CD4+T細胞數(shù)量和PD-1表達
與對照組相比,ConA第5次刺激后,小鼠外周血CD4+T細胞數(shù)量明顯下降[(1 417±1 386)/mL對(1 986±323)/mL,P=0.350 5],CD4+T細胞比例亦明顯下降(33.69%對59.97%,P<0.000 1)(圖3)。說 明ConA重復刺激后小鼠適應性免疫系統(tǒng)受損。
A:外周血細胞因子水平;B:IL-10/TNF-α比值
圖2 流式細胞術(shù)檢測外周血HLA-DR和PD-1表達
圖3 外周血HLA-DR表達、CD4+T細胞比例、數(shù)量和PD-1表達
與對照組相比,ConA重復給藥組小鼠的外周血CD4+T細胞表面PD-1表達明顯上調(diào)(平均熒光強度:6.90對4.79,P<0.000 1)(圖2、圖3),表明具有正向免疫調(diào)節(jié)功能的CD4+T細胞受損。
討論
已有研究表明免疫狀態(tài)的相互轉(zhuǎn)變在ACLF發(fā)病和轉(zhuǎn)歸中起有重要作用[4-8]。ACLF的免疫狀態(tài)可分為SIRS和隨后的CARS[8]。外周血細胞因子是反映機體免疫狀態(tài)的重要指標,SIRS主要表現(xiàn)為外周血促炎細胞因子(TNF-α等)明顯升高且占主導地位的細胞因子風暴;CARS主要表現(xiàn)為促炎細胞因子明顯降低而抗炎細胞因子(IL-10等)分泌增加并占主導地位[9-11]。
本研究中,ConA首次給藥后,小鼠外周血促炎細胞因子TNF-α、IFN-γ、MCP-1、IL-6急劇升高,隨著給藥次數(shù)增加,促炎細胞因子水平逐漸下降,末次給藥時基本處于正常范圍;但IL-12水平變化不明顯。抗炎細胞因子IL-10在首次給藥輕微升高,第2次給藥后繼續(xù)升高并達到峰值,隨這給藥次數(shù)增加,IL-10仍維持較高水平。細胞因子的變化說明首次給藥后小鼠處于免疫亢進狀態(tài)(SIRS),即促炎細胞因子急劇升高,而抗炎細胞因子處于較低水平;第3次ConA刺激后,促炎細胞因子水平逐漸下降而抗炎細胞因子維持較高水平,小鼠呈現(xiàn)免疫耐受狀態(tài)(CARS)。
ConA是一種植物來源的凝集素,對肝臟細胞具有特異性毒性作用[12-13]。ConA單次給藥能引起肝臟大面積壞死,外周血促炎細胞因子(TNF-α、IFN-γ)顯著升高,機體處于免疫亢進狀態(tài)(SIRS)[14-15],同時單核細胞HLA-DR表達升高[16-17]。
CARS主要表現(xiàn)為促炎細胞因子(TNF-α等)明顯降低而抗炎細胞因子(IL-10等)分泌增加并占主導地位。據(jù)文獻報道,ACLF患者的免疫狀態(tài)以CARS狀態(tài)為主,持續(xù)CARS狀態(tài)是導致ACLF患者死亡的主要原因[4,18-19]。ACLF的免疫抑制主要表現(xiàn)為先天性和適應性免疫系統(tǒng)功能抑制[8,20-24],因此本研究選擇HLA-DR反映先天性免疫系統(tǒng)在免疫抑制時單核細胞呈遞抗原的能力,同時選擇CD4+T細胞反映免疫抑制時適應性免疫系統(tǒng)功能的變化。文獻[25-27]報道,PD-1(CD279)是一種重要的免疫抑制分子,免疫抑制時CD4+T細胞通過PD-1介導其凋亡,誘導外周免疫耐受。本研究結(jié)果表明ConA 5次刺激小鼠后,HLA-DR表達明顯降低,外周血CD4+T細胞數(shù)量和比例均明顯降低,PD-1表達明顯升高。說明ConA 5次刺激后機體免疫系統(tǒng)處于抑制狀態(tài),即發(fā)生了先天性和適應性免疫系統(tǒng)的功能障礙。
綜上所述,本研究通過連續(xù)ConA重復刺激成功建立了ACLF免疫狀態(tài)動態(tài)演變的動物模型,對探索ACLF的病理生理過程、篩選有效的治療藥物以及研究新的有效治療方法等具有重要意義。
參考文獻
1 Moreau R, Jalan R, Gines P, et al; CANONIC Study Investigators of the EASL-CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis[J]. Gastroenterology, 2013, 144 (7): 1426-1437.
2 Duseja A, Chawla YK, Dhiman RK, et al. Non-hepatic insults are common acute precipitants in patients with acute on chronic liver failure (ACLF) [J]. Dig Dis Sci, 2010, 55 (11): 3188-3192.
3 Katoonizadeh A, Laleman W, Verslype C, et al. Early features of acute-on-chronic alcoholic liver failure: a prospective cohort study[J]. Gut, 2010, 59 (11): 1561-1569.
4 Sarin SK, Kumar A, Almeida JA, et al. Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the study of the liver (APASL) [J]. Hepatol Int, 2009, 3 (1): 269-282.
5 Laleman W, Verbeke L, Meersseman P, et al. Acute-on-chronic liver failure: current concepts on definition, pathogenesis, clinical manifestations and potential therapeutic interventions[J]. Expert Rev Gastroenterol Hepatol, 2011, 5 (4): 523-537.
6 Jalan R. Acute-on-chronic liver failure: from concept to a new syndrome[J]. Curr Opin Crit Care, 2011, 17 (2): 152.
7 Olson JC, Kamath PS. Acute-on-chronic liver failure: concept, natural history, and prognosis[J]. Curr Opin Crit Care, 2011, 17 (2): 165-169.
8 Jalan R, Gines P, Olson JC, et al. Acute-on chronic liver failure[J]. J Hepatol, 2012, 57 (6): 1336-1348.
9 Rosenbloom AJ, Pinsky MR, Bryant JL, et al. Leukocyte activation in the peripheral blood of patients with cirrhosis of the liver and SIRS. Correlation with serum interleukin-6 levels and organ dysfunction[J]. JAMA, 1995, 274 (1): 58-65.
10Osuchowski MF, Welch K, Siddiqui J, et al. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality[J]. J Immunol, 2006, 177 (3): 1967-1974.
11Osuchowski MF, Craciun F, Weixelbaumer KM, et al. Sepsis chronically in MARS: systemic cytokine responses are always mixed regardless of the outcome, magnitude, or phase of sepsis[J]. J Immunol, 2012, 189 (9): 4648-4656.
12Tiegs G, Hentschel J, Wendel A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A[J]. J Clin Invest, 1992, 90 (1): 196-203.
13Mizuhara H, O’Neill E, Seki N, et al. T cell activation-associated hepatic injury: mediation by tumor necrosis factors and protection by interleukin 6[J]. J Exp Med, 1994, 179 (5): 1529-1537.
14Küsters S, Gantner F, Künstle G, et al. Interferon gamma plays a critical role in T cell-dependent liver injury in mice initiated by concanavalin A[J]. Gastroenterology, 1996, 111 (2): 462-471.
15Sass G, Heinlein S, Agli A, et al. Cytokine expression in three mouse models of experimental hepatitis[J]. Cytokine, 2002, 19 (3): 115-120.
16Yang Q, Liu Y, Shi Y, et al. The role of intracellular high-mobility group box 1 in the early activation of Kupffer cells and the development of Con A-induced acute liver failure[J]. Immunobiology, 2013, 218 (10): 1284-1292.
17Antoniades CG, Berry PA, Wendon JA, et al. The importance of immune dysfunction in determining outcome in acute liver failure[J]. J Hepatol, 2008, 49 (5): 845-861.
18Mookerjee RP, Stadlbauer V, Lidder S, et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome[J]. Hepatology, 2007, 46 (3): 831-840.
19Berry PA, Antoniades CG, Carey I, et al. Severity of the compensatory anti-inflammatory response determined by monocyte HLA-DR expression may assist outcome prediction in cirrhosis[J]. Intensive Care Med, 2011, 37 (3): 453-460.
20Stadlbauer V, Mookerjee RP, Hodges S, et al. Effect of probiotic treatment on deranged neutrophil function and cytokine responses in patients with compensated alcoholic cirrhosis[J]. J Hepatol, 2008, 48 (6): 945-951.
21Antoniades CG, Wendon J, Vergani D. Paralysed monocytes in acute on chronic liver disease[J]. J Hepatol, 2005, 42 (2): 163-165.
22Wasmuth HE, Kunz D, Yagmur E, et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis[J]. J Hepatol, 2005, 42 (2): 195-201.
23Dong X, Gong Y, Zeng H, et al. Imbalance between circulating CD4+ regulatory T and conventional T lymphocytes in patients with HBV-related acute-on-chronic liver failure[J]. Liver Int, 2013, 33 (10): 1517-1526.
24Albillos A, Hera Ad Ade L, Reyes E, et al. Tumour necrosis factor-alpha expression by activated monocytes and altered T-cell homeostasis in ascitic alcoholic cirrhosis: amelioration with norfloxacin[J]. J Hepatol, 2004, 40 (4): 624-631.
25Nishimura H, Honjo T. PD-1: an inhibitory immunoreceptor involved in peripheral tolerance[J]. Trends Immunol, 2001, 22 (5): 265-268.
26Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8 (8): 793-800.
27Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation[J]. J Exp Med, 2000, 192 (7): 1027-1034.
(2015-12-14收稿;2016-01-26修回)
DOI:10.3969/j.issn.1008-7125.2016.06.002
Background: Acute-on-chronic liver failure (ACLF) is a commonly seen liver failure in China, and lacking an animal model that can effectively simulate the dynamic change of immune status of ACLF. Aims: To establish an animal model that can simulate dynamic change of immune status of ACLF by repeated administration of concanavalin A (ConA). Methods: Mice were randomly divided into normal control group and ConA repeated administration group. Mice in ConA repeated administration group were injected with ConA 15 mg/kg through retrobulbar angular vein every 48 hours for 5 times, and mice in control group were injected with same volume of 0.9% NaCl solution. Serum levels of IL-6, IL-10, IL-12, TNF-α, IFN-γ, MCP-1 in peripheral blood were assessed by CBA assay, and the ratio of IL-10/TNF-α was calculated. The expression of HLA-DR, number and proportion of CD4+T cells and the expression of PD-1 of monocytes in peripheral blood were detected by flow cytometry. Results: Peripheral blood cytokines changed from predominated proinflammatory cytokines into predominated anti-inflammatory cytokines with the increasing in time of administration in ConA repeated administration group. Compared with control group, HLA-DR expression of monocytes in peripheral blood was significantly decreased (P<0.05), number and proportion of CD4+T cells were significantly decreased (P<0.05), and PD-1 expression was significantly increased (P<0.05) in ConA repeated administration group. Conclusions: An animal model of ACLF immune status from systemic inflammatory response syndrome (SIRS) to compensatory anti-inflammatory response syndrome (CARS) induced by repeated ConA stimulation is successfully established.
Key wordsAcute-On-Chronic Liver Failure;Concanavalin A;Immune Status;Cytokines;Models, Animal
*本課題為國家自然基金項目(30971333、81170421、81470869)
#本文通信作者,Email: haili_17@126.com