岳言忠
已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1,
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令cn=(an+1)n+1(bn+2)n,求數(shù)列{cn}的前n項(xiàng)和Tn.
解(Ⅰ)bn=3n+1.
(Ⅱ) cn=3(n+1)·2n+1.
分析1如果數(shù)列{an}是等差數(shù)列,公差d≠0, 數(shù)列{bn}是等比數(shù)列,公比q≠1,我們稱數(shù)列{an·bn}為“等差乘等比型”數(shù)列.其前n項(xiàng)和Sn可用下面的方法求解:
令Sn=a1·b1+a2·b2+…+an·bn,
則qSn=a1·b2+a2·b3+…+an·bn+1
所以(1-q)Sn=a1·b1+(d·b2+d·b3+…+d·bn)-an·bn+1
=a1·b1+d·b2(1-qn-1)1-q-an·bn+1
所以Sn=a1·b1-an·bn+11-q+d·b2(1-qn-1)(1-q)2.
解法1(錯(cuò)位相減法)
Tn=6·22+9·23+12·24+…+3(n+1)·2n+1 ①
2Tn=6·23+9·24+12·25+…+3(n+1)·2n+2 ②
①-②得-Tn=6·22+3·23+3·24+…+3·2n+1-3(n+1)·2n+2
=6·22+3·23(1-2n-1)[]1-2-3(n+1)·2n+2
=-3n·2n+2.
所以Tn=3n·2n+2 .
分析2當(dāng)q≠1時(shí),等比數(shù)列{an}的通項(xiàng)an=a1·qn-1可變形為an=a1·qn-1×1-q1-q=a11-q·(qn-1-qn).
于是前n項(xiàng)和Sn=a11-q[(1-q)+(q-q2)+(q2-q3)+…+(qn-1-qn)]=a11-q·(1-qn).
它的本質(zhì)是將數(shù)列中的每一項(xiàng)都化為兩項(xiàng)之差,并且前一項(xiàng)的減數(shù)恰好與后一項(xiàng)被減數(shù)相同,求和時(shí)中間項(xiàng)相抵消.這種數(shù)列求和的方法叫裂項(xiàng)求和法.
一般地,若數(shù)列{an}是等差數(shù)列,公差為d,數(shù)列{bn}是等比數(shù)列,公比q≠1,則數(shù)列{an·bn}的前n項(xiàng)和Sn可用裂項(xiàng)求和法求解.
an·bn=an(bn+1-bn)q-1=1q-1[(an+1-d)bn+1-anbn]=1q-1(an+1bn+1-anbn)-d·bn+1q-1.
于是數(shù)列{an·bn}轉(zhuǎn)化為一個(gè)可以裂項(xiàng)求和的數(shù)列{1q-1(an+1bn+1-anbn)}
與一個(gè)等比數(shù)列{d·bn+1q-1}的差,所以數(shù)列{an·bn}的前n項(xiàng)和為
Sn=a1·b1-an+1·bn+11-q+d·b2(1-qn)(1-q)2.
解法2(裂項(xiàng)求和法)
cn=3(n+1)·2n+1=3(n+1)·(2n+2-2n+1)
=3[(n+1)·2n+2-(n+1)·2n+1]
=3[(n+1)·2n+2-n·2n+1]-3·2n+1.
所以
Tn=3[(n+1)·2n+2-4]-3·22(1-2n)1-2
=3(n+1)·2n+2-12-3·22·(2n-1)
=3n·2n+2.
分析3 將原數(shù)列的項(xiàng)分拆,然后重新組合成新數(shù)列進(jìn)行求和.
如果數(shù)列{an}是等差數(shù)列,公差d≠0, 數(shù)列{bn}是等比數(shù)列,公比q≠1,則數(shù)列{an·bn}的前n項(xiàng)和
Sn=a1·b1+a2·b2+a3·b3+…+an·bn
=a1·b1+(a1+d)·b2+(a1+2d)·b3+…+[a1+(n-1)d]·bn
=a1·b1+a1·b2+d·b2+a1·b3+d·b3+d·b3+…+a1·bn+d·bn+d·bn+…+d·bn
=a1·(b1+b2+b3+…+bn)+d·(b2+b3+…+bn)+d·(b3+b4+…+bn)+…+d·bn
=a1·b1(1-qn)1-q+d·b2(1-qn-1)1-q+d·b3(1-qn-2)1-q+…+d·bn(1-q)1-q
=a1·(b1-b1qn)1-q+d·(b2-b2qn-1)1-q+d·(b3-b3qn-2)1-q+…+d·(bn-bnq)1-q
=a1·b11-q-a1·b1qn1-q+d1-q(b2+b3+…+bn)-(n-1)d·b1qn1-q
=a1·b1-an·bn+11-q+d·b2(1-qn-1)(1-q)2.
對本例而言,cn=3(n+1)·2n+1=2n+1+2n+1+…+2n+1,可以考慮用分項(xiàng)重組法求和.
解法3(分項(xiàng)重組法)
由Tn=6·22+9·23+…+3(n+1)·2n+1可得:
Tn3=2·22+3·23+…+(n+1)·2n+1
=22+22+23+23+23+…+2n+1+2n+1+…+2n+1
=2·(22+23+…+2n+1)+(23+…+2n+1)+…+2n+1
=2·22(1-2n)1-2+23(1-2n-1)1-2+…+2n+1-2n+21-2
=2·(2n+2-22)+(2n+2-23)+…+2n+2-2n+1
=(n+1)2n+2-(22+23+…+2n+1)-22
=(n+1)2n+2-22(1-2n)1-2-22
=n·2n+2.
所以Tn=3n·2n+2.
分析4設(shè)數(shù)列{an·bn}的前n項(xiàng)和為Sn,可構(gòu)造關(guān)于Sn的方程,通過解方程求解[1].
如果數(shù)列{an}是等差數(shù)列,公差d≠0, 數(shù)列{bn}是等比數(shù)列,公比q≠1,則數(shù)列{an·bn}的前n項(xiàng)和
Sn=a1·b1+a2·b2+a3·b3+…+an·bn
=a1·b1+q(a2·b1+a3·b2+…+an·bn-1)
=a1·b1+q[(a1+d)·b1+(a2+d)·b2+…+(an-1+d)·bn-1)]
=a1·b1+q(a1·b1+a2·b2+a3·b3+…+an-1·bn-1)+qd·(b1+b2+b3+…+bn-1)
=a1·b1+q(Sn-an·bn)+qd·b1(1-qn-1)1-q.
所以(1-q)Sn=a1·b1-qan·bn+qd·b1(1-qn-1)1-q,
所以Sn=a1·b1-an·bn+11-q+d·b2(1-qn-1)(1-q)2.
解法4(方程法)
由Tn=6·22+9·23+12·24+…+3(n+1)·2n+1可得:
Tn3=2·22+3·23+4·24+…+(n+1)·2n+1
=2·22+2·[3·22+4·23+…+(n+1)·2n]
=2·22+2·(2·22+3·23+…+n·2n)+2·(22+23+…+2n)
=2·22+2·[Tn3-(n+1)·2n+1]+22·(1-2n)1-2.
可解得Tn=3n·2n+2.
分析5 由an·bn=[a1+(n+1)d]·b1qn-1=b1dnqn-1+b1(a1-d)qn-1,
可聯(lián)想求導(dǎo)公式(xn)′=nxn-1,從而用導(dǎo)數(shù)法求和[2].
解法5(導(dǎo)數(shù)法)
當(dāng)x≠1時(shí),x2+x3+…+xn+1=x2(1-xn)1-x
則兩邊同時(shí)求導(dǎo)得:
2x+3x2+4x3+…+(n+1)xn=(2x-x2)-(n+2)xn+1+(n+1)xn+2(1-x)2,
兩邊同時(shí)乘以x得:
2x2+3x3+4x4+…+(n+1)xn+1=(2x2-x3)-(n+2)xn+2+(n+1)xn+3(1-x)2,
令x=2得:
2·22+3·23+4·24+…+(n+1)·2n+1=n·2n+2,
可得Tn=3n·2n+2.
近年來在各地或是全國高考的試卷中頻繁出現(xiàn)“等差乘等比型”數(shù)列的求和問題,老師在平時(shí)的講解中也一再強(qiáng)調(diào)該類題型用“錯(cuò)位相減法”來解決,似乎成了“唯一”的方法,通過對此類題型的探究,打破了固有的思維模式,可以通過轉(zhuǎn)化、函數(shù)與方程等數(shù)學(xué)思想的應(yīng)用,亦可達(dá)到簡化運(yùn)算、提高正答率之目的,化“腐朽”為“神奇”,這讓我更深刻地感受到數(shù)學(xué)解題思想“巧”與“通”的巧妙融合.
參考文獻(xiàn)
[1] 黃超. 等差乘等比型數(shù)列求和方法的分析[J].中學(xué)數(shù)學(xué)教學(xué)參考(上旬),2012(6)
[2] 聶文喜. 2015年高考山東文科數(shù)學(xué)第19題解法探析[J].