吳豐豆 王 健 馮 天 余 恒 秦 山
西南石油大學油氣藏地質及開發(fā)工程國家重點實驗室, 四川 成都 610500
?
蒸汽吞吐中汽竄控制體系配方設計與性能評價
吳豐豆王健馮天余恒秦山
西南石油大學油氣藏地質及開發(fā)工程國家重點實驗室,四川成都610500
摘要:新疆風城油田稠油蒸汽吞吐作業(yè)區(qū)層間非均質性嚴重,導致開采過程中蒸汽竄流現(xiàn)象嚴重,熱能利用率低,開發(fā)效果下降,為此本實驗開展對蒸汽竄流控制體系的配方設計與性能評價,為有效改善吸汽剖面,提高蒸汽波及效率提供保障。針對注入蒸汽的竄流控制,以氮氣為起泡氣體,室內優(yōu)選出在高溫320 ℃下的配方為起泡劑(FA 2,0.1%)+ 起泡劑(FA 4,0.5%)+ 穩(wěn)泡劑(FS 3,0.05%)+ 助劑(AS-1,0.1%),實驗結果表明100 mL該體系起泡液起泡體積為605 mL,泡沫半衰期為135 min,泡沫干度為83.5%,表面張力為0.43 mN/m。對配方進行耐鹽、耐油性評價,結果表明該配方對礦化度變化具有較好的適應性,同時較低的含油飽和度(蒸汽竄流帶)對泡沫體系沒有明顯影響,可有效維持高滲層滲流阻力,從而抑制蒸汽竄流。
關鍵詞:稠油;蒸汽吞吐;高溫;竄流;泡沫
0前言
1)油井排液能力差,地層存水高;
2)水平段動用程度低;
3)地表汽竄造成儲量、產(chǎn)能損失;
4)井間汽竄出砂嚴重[8-12]。
稠油蒸汽吞吐開發(fā)的主要矛盾是汽竄,汽竄導致蒸汽波及效率和熱能利用率降低,蒸汽竄流帶的無效吞吐是導致多輪次吞吐效果差的核心因素[13]??v向上,由于層間非均質性致使蒸汽沿高滲層竄流,富集油的低滲層無法被有效動用;平面上,由于層內非均質性致使蒸汽沿高滲通道竄流,剩余油的遠井帶無法被有效動用[14-16]。因此,本文針對注入蒸汽的低利用率,以氮氣為起泡氣體,高溫條件下采用泡沫調驅技術減少蒸汽指進、調整剖面矛盾,提高波及效率,為提高稠油油藏蒸汽吞吐開發(fā)效果提供保障[17-18]。
1實驗部分
1.1主要材料和儀器
起泡劑:FA 1、FA 2、FA 3、FA 4、FA 5;穩(wěn)泡劑:FS 1、FS 2、FS 3、FS 4;助劑:AS 1,均由新疆油田提供;重32井區(qū)模擬地層水離子組成見表1,化學劑組成見表2。無機鹽:MgCl2·6 H2O、CaCl2、KCl、NaCl、Na2SO4、NaHCO3、NaOH;精密天平;烘箱;量筒;高溫泡沫老化釜;氮氣瓶;全自動表/界面張力儀HZ-800型;吳茵攪拌器,調速范圍0~8 000 r/min。
由表4可知,硅-焓方程法計算得出的熱儲溫度為182.36 ℃~274.58 ℃,冷水混合比例為39.47%~85.88%;硅-焓圖解法計算的結果為172.58 ℃~258.23 ℃,冷水混入比例為39.19%~86.46%。對比發(fā)現(xiàn)由混合模型計算的熱儲溫度與Na-K溫標計算的溫度較為接近,與其他溫標及實測情況偏離較大。
表1重32井區(qū)模擬地層水離子組成
mg/L
表2重32井區(qū)模擬地層水化學劑組成
g/L
1.2實驗方法
2結果與討論
2.1起泡劑的確定
圖1 起泡劑濃度對起泡體積的影響
圖2 起泡劑濃度對泡沫半衰期的影響
表3起泡劑復配體系(FA 4+FA 2)不同濃度組合的起泡體積、泡沫干度、泡沫半衰期
濃度組合/(%)0.1+0.20.1+0.40.2+0.20.2+0.40.3+0.30.4+0.10.4+0.20.5+0.1?V㊣/mL375470500445460570600590?T㊣/min163143140132136137139143?G㊣/(%)73.378.780.077.578.382.583.383.1
2.2穩(wěn)泡劑的確定
圖3 穩(wěn)泡劑濃度對起泡體積的影響
圖4 穩(wěn)泡劑濃度對泡沫半衰期的影響
2.3助劑濃度的確定
表4助劑濃度對起泡體積、泡沫半衰期、表面張力的影響
濃度/(%)0.050.10.150.20.250.3?V㊣/mL600605590580578570?T㊣/min140135125116110108?σ㊣/(mN·m-1)1.730.430.0720.110.200.23
2.4性能評價
2.4.1耐鹽性
在生產(chǎn)過程中,由于流體間的傳質作用,礦化度不斷發(fā)生變化,因此有必要對配方的耐鹽性進行評價。測得的不同地層水礦化度倍數(shù)下的起泡體積、泡沫半衰期與礦化度關系見表5。由表5可知:隨著礦化度的增加,地層水泡沫配方的各項參數(shù)均有所下降,但幅度很小。起泡體積大于500 mL,泡沫半衰期大于2 h;具有較好的耐鹽性,可以滿足施工要求。
表5礦化度對起泡體積、泡沫半衰期的影響
礦化度00.250.50.7511.25?V㊣/mL820785750665600515?T㊣/min190178165155138120
2.4.2耐油性
表6含油飽和度對起泡體積、泡沫半衰期的影響
含油飽和度/(%)5101520253035404550?V㊣/mL610585550415335285230205175155?T㊣/min1301261191141089075584538
3結論
2)將具有不同優(yōu)點的起泡劑進行復配可同時兼顧起泡體積與泡沫半衰期;穩(wěn)泡劑的加入在延長消泡時間的同時減小了起泡體積,助劑的加入對起泡能力影響較小,但對泡沫的穩(wěn)定性和表面張力影響較大。
3)本文優(yōu)選配方具有較好的耐鹽性,能適應注入過程中礦化度的不斷變化;較低的含油飽和度(蒸汽竄流帶)對泡沫體系影響較小,即少量原油存在的情況下,泡沫穩(wěn)定性比較好,能有效維持高滲層的滲流阻力,提高蒸汽吞吐開發(fā)效率。
參考文獻:
[1] 霍進,吳運強,趙增義,等.準噶爾盆地風城地區(qū)稠油特征及其成因探討[J].特種油氣藏,2008,15(2):25-27.Huo Jin, Wu Yunqiang, Zhao Zengyi, et al. Heavy Oil Characteristics and Origin Discussion in Fengcheng of Junggar Basin [J]. Special Oil & Gas Reservoirs, 2008, 15 (2): 25-27.
[2] 朱嬋.新疆油田蒸汽輔助重力泄油開采稠油研究[D].荊州:長江大學,2012.
Zhu Chan. The Research on Development of the Heavy Oil for Steam Assisted Gravity Drainage (SAGD) in Xinjiang Oilfield [D]. Jingzhou: Yangtze University, 2012.
[3] 李海燕,高陽,王延杰,等.辮狀河儲集層夾層發(fā)育模式及其對開發(fā)的影響——以準噶爾盆地風城油田為例[J].石油勘探與開發(fā),2015,42(3):364-373.
Li Haiyan, Gao Yang, Wang Yanjie, et al. Intercalation Pattern and Its Impact on Development of Braided River Reservoirs: A Case of Fengcheng Oilfield, Junggar Basin, NW China [J]. Petroleum Exploration and Development, 2015, 42 (3): 364-373.
[4] 王偉偉.杜229塊蒸汽驅竄流調控技術研究與應用[J].天然氣與石油,2014,32(5):57-60.
Wang Weiwei. Research and Application of Control Technology in Du 229 Block Steam Flooding and Channeling [J]. Natural Gas and Oil, 2014, 32 (5): 57-60.
[5] 孫新革,馬鴻,趙長虹,等.風城超稠油蒸汽吞吐后期轉蒸汽驅開發(fā)方式研究[J].新疆石油地質,2015,36(1):61-64.Sun Xinge, Ma Hong, Zhao Changhong, et al. Research on Ultra-Heavy Oil Development by Steam Stimulation Converting into Steam Drive Combination Process in Fengcheng Oilfield [J]. Xinjiang Petroleum Geology, 2015, 36 (1): 61-64.
[6] Wu S H, Zhang Y T, Yang L Q, et al. Sequential Multi-Well Steam Huff and Puff in Heavy Oil Development [C]// Paper 97845 Presented at the SPE International Thermal Operations and Heavy Oil Symposium,1-3 Novembre 2005, Calgary, Alberta, Canada. New York:SPE,2005.
[7] Wu X H, Xu A Z, Fan Z F, et al. Superheated Steam Huff and Puff to Revivify a Marginal Pre-Salt Heavy Oil Reservoir [C].// Paper 134082 Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition,18-20 October 2010, Brisbane, Queensland, Australia. New York:SPE,2010.
[8] Jeong S, Chung S, Min B, et al. Optimal Operation of Fast-SAGD Process Considering Steam Channeling Among Vapor Chambers [C]// Paper I-13-186 Presented at the 23thInternational Offshore and Polar Engineering Conference,30 June-5 July 2013,Anchorage,Alaska,U S A.
[9] 孫德浩.氮氣泡沫調剖技術改善汽驅效果研究[J].斷塊油氣田,2008,15(6):92-93.
Sun Dehao. Application of Nitrogen Foam Profile Control Technique in Improving Steam Flood Effect [J]. Fault-Block Oil & Gas Field, 2008, 15 (6): 92-93.
[10] 朱明,姚凱,葉惠民,等.高溫氮氣泡沫調剖技術在Girasol油田的應用[J].特種油氣藏,2015,22(2):137-139.
Zhu Ming, Yao Kai, Ye Huimin, et al. The Application of High Temperature Nitrogen Foam Profile Control Technology on Girasol Oilfield [J]. Special Oil & Gas Reservoirs, 2015, 22 (2): 137-139.
[11] 唐亮.稠油油藏化學復合蒸汽驅技術室內研究[J].油田化學,2014,31(1):65-67.
Tang Liang. Laboratory Study of Chemical Combination Steam Flooding for Heavy Oil Reservoir [J]. Oilfield Chemistry, 2014, 31 (1): 65-67.
[12] Wang C, Li H Z. Foam Stability of Solvent/ Surfactant/Heavy-Oil System Under Reservior Conditions [C]// Paper 172888 Presented at the SPE International Heavy Oil Conference and Exhibition,8-10 December 2014, Mangaf, Kuwait.New York:SPE, 2014.
[13] 高海濤,李雪峰,趙斌,等.ZY型耐溫耐鹽泡沫體系的研制及性能評價[J].斷塊油氣田,2010,17(3):369-371.
Gao Haitao, Li Xuefeng, Zhao Bin, et al. Development and Performance Evaluation of ZY Type Temperature-resistant and Salt-resistant Foam System [J]. Fault-Block Oil and Gas Field, 2010, 17 (3): 369-371.
[14] 呂廣忠,張建喬.稠油熱采氮氣泡沫調剖研究與應用[J].鉆采工藝,2006,29(4):88-90.
Lü Guangzhong, Zhang Jianqiao. Study and Application of Nitrogen Foam Profile Control in Heavy Oil Thermal Production [J]. Drilling & Production Technology, 2006, 29 (4): 88-90.
[15] 趙江玉,蒲萬芬,李一波,等.耐高溫高鹽泡沫體系篩選與性能評價[J].天然氣與石油,2014,32(4):65-69.
Zhao Jiangyu, Pu Wanfen, Li Yibo, et al. Laboratory Selection and Performance Evaluation on High Temperature and High Salinity Resistant Foam System [J]. Natural Gas and Oil, 2014, 32 (4): 65-69.
[16] Tang G Q, Kovscek A R. Trapped Gas Fraction During Steady State Foam Flow [J]. Transport in Porous Media, 2006, 65 (2): 287-307.
[17] Huh C, Rossen W R. Approximate Pore Level Modeling for Apparent Viscosity of Polymer-Enhanced Foam in Porous Media [C]// Paper 99653 Presented at the SPEDOE Symposium on Improved Oil Recovery,22-26 April 2008, Tulsa, Oklahoma, USA. New York:SPE,2008.
[18] 曹獻平,曠曦域,劉英波,等.泡沫欠平衡鉆地熱井井筒多相流特性研究[J].天然氣與石油,2013,31(4):48-50.
Cao Xianping, Kuang Xiyu, Liu Yingbo, et al. Study on Characteristics of Multiphase Flow in Foam Underbalance Drilling Geothermal Well Wellbore [J]. Natural Gas and Oil, 2013, 31 (4): 48-50.
[19] 賴書敏,劉慧卿,龐占喜.高溫氮氣泡沫調驅發(fā)泡劑性能評價實驗研究[J].科學技術與工程,2010,10(2):400-404.
Lai Shumin, Liu Huiqing, Pang Zhanxi. Laboratory Evaluation of High Temperature Nitrogen Foam Agents for Profile Control Technology [J]. Science Technology and Engineering, 2010, 10 (2): 400-404.
[20] 雷達.氮氣泡沫劑性能評價及在大慶油田的應用[J].中外能源,2010,15(9):67-71.
Lei Da. Application and Stability Evaluation of Nitrogen Foaming Agent Used in Daqing Oilfield [J]. Sino-Global Energy, 2010, 15 (9): 67-71.
[21] 趙國璽.表面活性劑物理化學[M].北京:北京大學出版社,1984.
Zhao Guoxi. Physical Chemistry of Surfactant [M]. Beijing: Peking University Press, 1984.
收稿日期:2015-12-19
基金項目:國家自然科學基金項目“重力超覆下氣體連續(xù)“剝蝕”稠油邊界層的驅油機制研究”(51574200)
作者簡介:吳豐豆(1991-),男,四川眉山人,碩士研究生,主要從事化學驅和化學調剖堵水方面的學習與研究。
DOI:10.3969/j.issn.1006-5539.2016.03.014