• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      小麥?zhǔn)┑笮Ш头N植方式對(duì)大豆產(chǎn)量及農(nóng)藝性狀的影響

      2016-08-02 10:52:34王佳銳王科趙亞妮徐開未周濤陳遠(yuǎn)學(xué)
      草業(yè)學(xué)報(bào) 2016年7期
      關(guān)鍵詞:套作農(nóng)藝性狀大豆

      王佳銳,王科,趙亞妮,徐開未,周濤,陳遠(yuǎn)學(xué)

      (四川農(nóng)業(yè)大學(xué)資源學(xué)院,四川 成都 611130)

      ?

      小麥?zhǔn)┑笮Ш头N植方式對(duì)大豆產(chǎn)量及農(nóng)藝性狀的影響

      王佳銳,王科,趙亞妮,徐開未,周濤,陳遠(yuǎn)學(xué)*

      (四川農(nóng)業(yè)大學(xué)資源學(xué)院,四川 成都 611130)

      摘要:通過2013-2014年度田間試驗(yàn),在種植小麥時(shí)設(shè)置不施氮、低氮、中氮、高氮4個(gè)氮肥施用量(0,60,120,180 kg/hm2),同時(shí)設(shè)置凈作大豆(小麥-大豆)和套作大豆(小麥/玉米/大豆)兩種種植模式,探究了前作小麥?zhǔn)┑笮Ъ皟糇鳌⑻鬃鲀煞N種植方式對(duì)大豆產(chǎn)量和農(nóng)藝性狀的影響。結(jié)果表明,1)無論凈作或套作,大豆均能利用前作小麥的施氮后效,生物量和籽粒產(chǎn)量均隨施氮量增加呈先升高再降低的變化趨勢(shì),均在N120處理(純氮120 kg/hm2)時(shí)達(dá)到最大值,其中套作大豆籽粒產(chǎn)量最高為4133 kg/hm2,達(dá)高產(chǎn)水平。2)分枝期時(shí)大豆地上部生物量為凈作顯著高于套作,平均高 62.3%,而收獲期時(shí)為套作顯著高于凈作,平均高 57.9%。與凈作相比,套作大豆單株粒數(shù)、籽粒產(chǎn)量分別高63.9%和55.9%,百粒重二者間相差不大。凈作大豆的籽粒重在主莖、分枝上分別占54.2%和45.8%,以在主莖上較多,而套作大豆的籽粒主要分布在分枝上,平均達(dá)68.9%。雖然套作大豆的倒伏率比凈作大豆高5.2%,但空桿率、癟莢率卻分別低78.0%和25.4%。前作施氮量增加,套作大豆籽粒在分枝上的比例增大。3)大豆主莖長(zhǎng),在分枝期時(shí)為套作(平均39.5 cm)比凈作(平均33.3 cm)顯著高6.2 cm,而收獲期時(shí)為凈作(平均84.8 cm)比套作(平均74.4 cm)高10.4 cm;第一節(jié)間長(zhǎng),在分枝期、收獲期均為套作(8.3和6.6 cm)大于凈作(5.6和4.6 cm);分枝數(shù),在分枝期時(shí)為凈作(平均1.9個(gè))顯著高于套作(平均0.7個(gè))1.2個(gè)分枝,而收獲期時(shí)是套作(平均6.1個(gè))高于凈作(平均3.5個(gè))2.6個(gè)分枝。同時(shí)套作大豆分枝數(shù)隨前作施氮量增加而增加。說明在小麥-大豆和小麥/玉米/大豆體系中大豆能充分利用前作小麥的施氮后效;套作大豆前期雖受玉米的抑制影響,但玉米收獲后能加快生長(zhǎng),可以通過合理的前作氮肥調(diào)控促進(jìn)分枝、結(jié)莢和鼓粒,提高產(chǎn)量。

      關(guān)鍵詞:大豆;凈作;套作;產(chǎn)量;農(nóng)藝性狀

      21世紀(jì)以來,全球人口急劇增長(zhǎng)、耕地面積不斷減少,我國對(duì)糧食需求量也在不斷增加[1]。間套作能夠提高水、光、養(yǎng)分等有效資源利用率和糧食產(chǎn)量[2-3],增強(qiáng)農(nóng)業(yè)系統(tǒng)的抗風(fēng)險(xiǎn)能力[4],增加水土保持能力[5],提高土壤肥力[6],同時(shí)能夠抑制病蟲草害的發(fā)生[7],已經(jīng)成為生態(tài)農(nóng)業(yè)與可持續(xù)農(nóng)業(yè)發(fā)展的主要方向之一[8]。四川地區(qū)多雨寡照,三熟不足,兩熟有余,主要以麥/玉/豆和麥/玉/薯三熟套作模式為主,而甘薯(Ipomoeabatatas)市場(chǎng)需求降低,逐漸被大豆(Glycinemax)代替[9]。在玉米(Zeamays)和大豆套作體系中,玉米和大豆間既存在光互補(bǔ)又有光競(jìng)爭(zhēng),大豆經(jīng)歷蔭蔽和光照恢復(fù)兩個(gè)不同的光環(huán)境[10],受玉米遮陰影響而使自身光合能力減弱、生長(zhǎng)不良,影響產(chǎn)量[11]。但套作對(duì)分枝的發(fā)生及產(chǎn)量的形成極為有利,分枝產(chǎn)量成為單株總產(chǎn)量的主體部分,這與高產(chǎn)凈作大豆的產(chǎn)量分布截然不同[12-13]。在適當(dāng)蔭蔽條件下,套作大豆可以通過自身調(diào)節(jié)與恢復(fù)功能,增加單株莢數(shù)、粒數(shù)和粒重,實(shí)現(xiàn)大豆增產(chǎn)[14]。

      近年來中國的氮、磷等化學(xué)肥料的施入量大于同期國際水平,且氮和磷的利用效率遠(yuǎn)低于國際水平[15-17]。施入土壤中的氮肥50%以上通過氮素?fù)p失途徑進(jìn)入大氣和水體中, 造成嚴(yán)重的生態(tài)環(huán)境問題,如溫室效應(yīng)增加、水體富營養(yǎng)化等[18-19]。施氮在一定程度上會(huì)增加倒伏的可能[20],增施氮素后,帶狀套作大豆主莖產(chǎn)量、分枝產(chǎn)量及總產(chǎn)量隨氮素營養(yǎng)的增加呈現(xiàn)先增加后減少的趨勢(shì),氮過量會(huì)加劇大豆的旺長(zhǎng),更不利于提高產(chǎn)量[21]。在“麥/玉/豆”體系中,大豆可以利用前茬作物殘留在土壤的養(yǎng)分[22],在土壤肥力較高情況下,大豆可不施肥,利用小麥(Triticumaestivum)吸收后殘余在土壤和土壤自身礦化的養(yǎng)分來滿足整個(gè)生育期的需要[23-24]。對(duì)于小麥/玉米/大豆間套作體系中小麥與大豆前后茬的種植關(guān)系,是否可以考慮后作大豆僅依靠前作小麥?zhǔn)┑屎髿埩粲谕寥乐械牡?,以減少氮肥的施用,避免施肥過量導(dǎo)致大豆植株徒長(zhǎng)莖葉影響其結(jié)莢和鼓粒而降低產(chǎn)量?前人關(guān)于套作大豆產(chǎn)量和農(nóng)藝性狀的研究大多集中在施肥量、株型、株行距、播期種植密度上[13,25-27],對(duì)不施氮肥僅利用前季作物的殘肥的情況研究較少。加上農(nóng)業(yè)部制定《到2020年化肥使用零增長(zhǎng)行動(dòng)方案》,到2020年,初步建立科學(xué)施肥管理和技術(shù)體系,實(shí)現(xiàn)主要農(nóng)作物化肥使用量零增長(zhǎng)。為此,本研究設(shè)置麥-豆凈作和麥/玉/豆間套作兩種種植方式,在種植小麥時(shí)設(shè)置4個(gè)不同氮水平處理,種植大豆時(shí)不施肥,探究前作小麥不同施氮后效和種植方式對(duì)大豆產(chǎn)量及農(nóng)藝性狀的影響。

      1材料與方法

      1.1試驗(yàn)地點(diǎn)

      試驗(yàn)于2013-2014年度進(jìn)行,試驗(yàn)地位于四川省崇州市榿泉鎮(zhèn)四川農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)研發(fā)基地內(nèi),土壤類型為水稻土,耕種前耕層(0~20 cm)混合土壤質(zhì)地為壤土,小麥播種前pH為6.3,有機(jī)質(zhì)37.6 g/kg、全氮2.03 g/kg、堿解氮136 mg/kg、有效磷20.4 mg/kg、速效鉀101 mg/kg。

      1.2試驗(yàn)材料

      小麥選用高產(chǎn)優(yōu)質(zhì)新品種“蜀麥969”,由四川農(nóng)業(yè)大學(xué)小麥所選育;玉米選用四川省和農(nóng)業(yè)部主推優(yōu)良品種“川單418”,由四川農(nóng)業(yè)大學(xué)玉米研究所選育;大豆選用秋豆品種“南豆12”,由四川省南充市農(nóng)業(yè)科學(xué)研究院大豆所提供。試驗(yàn)用氮肥為尿素(N 46%),磷肥為過磷酸鈣(含P2O512%),鉀肥為氯化鉀(含K2O 60%),均購于當(dāng)?shù)剞r(nóng)資市場(chǎng)。

      1.3試驗(yàn)設(shè)計(jì)與實(shí)施

      試驗(yàn)采用兩因素裂區(qū)設(shè)計(jì),主因素為氮水平,前作小麥4個(gè)施氮(N)水平為0,60,120,180 kg/hm2,分別記為N0、N60、N120、N180;副因素為種植方式,設(shè)小麥-大豆凈作和小麥/玉米/大豆套作兩種種植方式。8個(gè)處理,3次重復(fù),共24個(gè)小區(qū),小區(qū)面積6 m×5 m=30 m2。套作小區(qū)2 m開廂,小麥(大豆)、玉米條帶各占1 m,每小區(qū)共有3個(gè)小麥(大豆)帶幅和3個(gè)玉米帶幅。田間小區(qū)布局如圖1。

      小麥播種前0~20 cm土層土壤硝態(tài)氮含量為33.2 mg/kg,經(jīng)過4個(gè)氮水平下種植小麥,小麥?zhǔn)斋@后大豆播種前各處理的土壤硝態(tài)氮含量分別為19.0,23.4,27.9,29.8 mg/kg。玉米收獲后各處理的土壤硝態(tài)氮含量分別為12.2,15.3,17.0,19.2 mg/kg。大豆收獲后各處理的土壤硝態(tài)氮含量分別為17.4,21.4,24.6,27.9 mg/kg。小麥于2013年11月10日播種,玉米采用肥團(tuán)育苗移栽,在2014年3月21日育苗,4月8日移栽,小麥在5月6日收獲。大豆6月21日播種,玉米7月29日收獲,大豆10月20日收獲。大豆、玉米共生期38 d。小麥氮肥按底肥∶分蘗肥∶拔節(jié)=3∶3∶4施用。磷、鉀均為底肥,施用量分別為P2O5180 kg/hm2,K2O 120 kg/hm2。大豆不施肥。試驗(yàn)田間管理均同當(dāng)?shù)馗弋a(chǎn)田。

      玉米采用寬窄行栽培,窄行距0.50 m,寬行距1.50 m,窩距0.40 m(圖1),穴植兩株,玉米密度為52500株/hm2;大豆播于玉米寬行內(nèi),種兩行,玉米與大豆的間距為0.55 m,行距為0.40 m,穴距0.35 m,穴留2株,種植密度為57200株/hm2。套作大豆種3帶,每帶兩行;凈作大豆種15行,行距為0.40 m,穴距0.35 m(圖1),穴留2株,種植密度為114400株/hm2。

      1.4測(cè)定項(xiàng)目及方法

      大豆成熟時(shí),凈作大豆選取中間的3行、套作大豆選取一個(gè)帶幅的兩行進(jìn)行實(shí)收測(cè)產(chǎn)。大豆分枝期 (玉米收獲期),每小區(qū)隨機(jī)采取6株進(jìn)行測(cè)量,調(diào)查每株主莖長(zhǎng)、第一節(jié)間長(zhǎng)、分枝數(shù)等農(nóng)藝性狀與生物量構(gòu)成;收獲期時(shí),每小區(qū)隨機(jī)采取6株進(jìn)行考種,調(diào)查每株癟莢數(shù)、飽莢數(shù)、主莖粒重、分枝粒重、百粒重等產(chǎn)量構(gòu)成因素,同時(shí)測(cè)量每株主莖長(zhǎng)、第一節(jié)間長(zhǎng)、分枝數(shù)等農(nóng)藝性狀,同時(shí)分莖、葉、莢殼、籽粒等部位計(jì)生物量。

      1.5數(shù)據(jù)處理分析

      凈、套作大豆產(chǎn)量和生物量計(jì)算方法:凈作大豆產(chǎn)量和生物量以100%凈作大豆土地面積計(jì)算,而套作大豆產(chǎn)量和生物量以套作大豆種植帶所占面積折算(套作大豆2行占1 m)。

      所有數(shù)據(jù)利用Excel 2010進(jìn)行數(shù)據(jù)整理及作圖,SPSS 13.0統(tǒng)計(jì)分析,LSD法進(jìn)行顯著性測(cè)驗(yàn)。

      2結(jié)果與分析

      2.1前作不同氮處理下凈/套作大豆的籽粒產(chǎn)量及產(chǎn)量構(gòu)成

      套作大豆產(chǎn)量高于凈作大豆,前作施氮量對(duì)凈作大豆影響不顯著,而套作大豆產(chǎn)量隨前作施氮量的增加有先增加后減少的趨勢(shì)(表1)。N60,N120,N180處理下套作大豆籽粒產(chǎn)量顯著高于凈作,分別高60.8%,66.0%,62.9%。凈作處理以N120處理產(chǎn)量最高,比最低的N0處理高19.7%,套作處理以N120處理產(chǎn)量最高,顯著高于N0處理51.7%;N0,N60,N120和N180處理下套作大豆單株粒數(shù)均顯著高于凈作大豆,分別高出31.7%,64.5%,72.1%和85.8%。前作氮處理對(duì)大豆單株粒數(shù)的影響與產(chǎn)量趨同,對(duì)凈作大豆單株粒數(shù)影響不顯著,套作大豆單株粒數(shù)隨前作施氮量增加呈現(xiàn)先增加后降低趨勢(shì),凈作大豆單株粒數(shù)最高為N60處理,較最低的N0處理高12.6%,套作大豆單株粒數(shù)最高為N120處理,顯著高于最低的N0處理47.0%;各氮處理下凈作和套作大豆百粒重均無顯著性差異。前作不同施氮量對(duì)凈作大豆百粒重有顯著影響,N0處理顯著高于N60處理,但對(duì)套作大豆的影響不顯著。

      2.2 前作不同處理下凈/套作大豆的生物量

      2.2.1生物量如圖2所示,凈/套作大豆地上部生物量在分枝期(玉米收獲時(shí))和收獲期明顯不同,分枝期時(shí),大豆地上部生物量為凈作顯著高于套作,4個(gè)氮水平下凈作比套作分別高146.7%,147.4%,44.2%和10.3%,平均高62.3%;而在收獲期,大豆地上部生物量為套作顯著高于凈作,4個(gè)氮水平下套作比凈作分別高33.1%,63.6%,62.4%和68.1%,平均高57.9%。套作大豆在與玉米共生期間生物量增長(zhǎng)緩慢,而玉米收獲后生物量顯著高于凈作大豆。前作施氮量對(duì)套作大豆在生長(zhǎng)前期生物量有顯著影響,分枝期時(shí)套作大豆各部位生物量隨前作氮水平的增加而增加,N180時(shí)達(dá)到最大值為826.4 kg/hm2。而分枝期時(shí)前作氮水平對(duì)凈作影響較小, N60時(shí)達(dá)到最大值為1151.0 kg/hm2。收獲期時(shí),凈/套作大豆生物量均隨前作氮水平有先增大后減小的趨勢(shì),凈作最大值為4790.0 kg/hm2,套作最大值為8180.0 kg/hm2,比凈作高70.8%。

      2.2.2生物量在主莖與分枝間的占比對(duì)于凈作大豆,4個(gè)氮水平下主莖、分枝上的籽粒重平均各占54.2%和45.8%,莢殼重平均各占55.2%和44.8%,莖重平均各占78.8%和21.2%,說明凈作大豆的生物量主要分配在主莖上,主莖上的籽粒和莢殼各約占55%,莖重約占79%。施氮對(duì)各部位生物量在主莖與分枝間的占比影響不大(表2)。

      表1 不同氮水平下凈/套作大豆的產(chǎn)量及產(chǎn)量構(gòu)成Table 1 Yield and yield components of monoculture/intercropping soybean in different nitrogen levels

      不同小寫字母表示同一種植模式下同指標(biāo)氮處理間差異達(dá)5%顯著水平,*表示同氮處理下同指標(biāo)凈/套作間差異達(dá)5%顯著水平;N0,N60,N120和N180分別表示前作小麥不施氮,純N 60 kg/hm2,純 N 120 kg/hm2和純N 180 kg/hm2處理,下同。Different small letters in the same item was significant differences at 5% level among N treatments in the same plant pattern; * represents the same item in monoculture/intercropping was significant differences at 5% level with the same N treatments. N0, N60, N120and N180represent no N, pure N 60 kg/ha, pure N 120 kg/ha and pure N 180 kg/ha treatment respectively in wheat. The same below.

      圖2 不同氮水平下大豆分枝期(A)、收獲期(B)生物量Fig.2 The Biomass of soybean in monoculture and intercropping in the branching stage (A) and harvest stage (B) MS:凈作大豆 Monoculture soybean;IS:套作大豆 Intercropping soybean。不同小寫字母表示同一種植模式下同指標(biāo)氮處理間差異達(dá)5%顯著水平,*表示同氮處理下同指標(biāo)凈/套作間差異達(dá)5%顯著水平,下同。Different small letters means the same item was significant differences at 5% level among N treatments in the same plant pattern, * represents the same item in monoculture/intercropping was significant differences at 5% level with the same N treatments. The same below.

      對(duì)于套作大豆,4個(gè)氮水平下主莖、分枝上的籽粒重平均各占31.1%和68.9%,莢殼重平均各占30.8%和69.2%,莖重平均各占68.4%和31.6%,雖然套作大豆的莖重主要分配在主莖上,但其籽粒和莢殼重主要分配在分枝上,分枝上的籽粒和莢殼各約占69%。隨著前作施氮量的增加,套作大豆籽粒在分枝上的比例增大,N180水平下籽粒在分枝上的比重最大,比N0高17.4個(gè)百分點(diǎn)(表2)。

      2.3前作不同氮處理下凈/套作大豆的農(nóng)藝性狀

      2.3.1倒伏率、空桿率、癟莢率如表3所示,倒伏率凈作大豆在N120時(shí)最高為92.7%,顯著高于其他N水平,而套作大豆N180時(shí)最高為98.2%,顯著高于N0處理25.1%;套作大豆的倒伏率比凈作大豆平均高5.2%。套作大豆空桿率、癟莢率顯著低于凈作大豆,平均低78.0%和25.4%。前作氮水平對(duì)套作大豆癟莢率有顯著影響,呈現(xiàn)隨施氮量增加先降低后升高的趨勢(shì),N120處理下的最低,但對(duì)凈作大豆癟莢率影響不顯著。

      表2 不同氮水平下凈/套作大豆各部位生物量在主莖與分枝間的占比Table 2 The biomass proportion rate of various parts between the main stem and branches of soybean in monoculture/intercropping with different nitrogen levels  %

      表3 不同氮水平下凈/套作大豆的倒伏率,空桿率和癟莢率Table 3 The lodging rate, empty stick rate and blighted pods rate of monoculture/ intercropping soybean in different nitrogen levels  %

      2.3.2主莖長(zhǎng)分枝期(玉米收獲時(shí))與收獲期時(shí),套作大豆與凈作大豆的主莖長(zhǎng)差異均顯著(圖3)。分枝期時(shí),套作大豆主莖長(zhǎng)(平均39.5 cm)顯著高于凈作大豆 (平均33.3 cm),套作比凈作大豆主莖長(zhǎng)平均長(zhǎng)6.2 cm;前作施氮量對(duì)套作、凈作大豆主莖長(zhǎng)沒有顯著影響。而成熟期時(shí)凈作大豆主莖長(zhǎng)(平均84.8 cm)高于套作大豆(平均74.4 cm),凈作比套作大豆主莖長(zhǎng)平均長(zhǎng)10.4 cm。即共生期間套作大豆主莖長(zhǎng)高于凈作,而收獲期時(shí)低于凈作。

      圖3 不同氮水平下大豆主莖長(zhǎng)Fig.3 The main stem length of soybean at the branching stage (A) and harvest stage (B) in different nitrogen levels

      2.3.3第一節(jié)間長(zhǎng)分枝期(玉米收獲時(shí))和收獲期時(shí),套作大豆與凈作大豆的第一節(jié)間長(zhǎng)均有顯著差異,均是套作高于凈作(圖4)。分枝期間,前作施氮量對(duì)套作大豆第一節(jié)間長(zhǎng)有一定影響,N120處理最低,而對(duì)凈作大豆第一節(jié)間長(zhǎng)無顯著影響;套作大豆第一節(jié)間長(zhǎng)(平均8.3 cm)顯著高于凈作大豆(平均5.6 cm)2.7 cm。收獲期,前作施氮量對(duì)套作第一節(jié)間長(zhǎng)沒有顯著影響,對(duì)凈作大豆有一定影響,N180處理最低;套作大豆第一節(jié)間長(zhǎng)(平均6.6 cm)高于凈作大豆第一節(jié)間長(zhǎng)(平均4.6 cm) 2.0 cm。

      圖5 不同氮水平下大豆分枝數(shù)Fig.5 The branching number of soybean at the branching stage (A) and harvest stage (B) in different nitrogen levels

      2.3.4分枝數(shù)分枝期(玉米收獲時(shí))和收獲期時(shí),套作大豆與凈作大豆的分枝數(shù)均有顯著差異(圖5)。分枝期時(shí),前作施氮量對(duì)凈作大豆分枝數(shù)有一定影響,N0處理最低,而套作大豆分枝數(shù)隨施氮量增加而增多,N0水平下分枝數(shù)僅為N180水平的17%;凈作大豆分枝數(shù)(平均1.9個(gè))顯著高于套作(平均0.7個(gè)) 1.2個(gè)分枝。而收獲時(shí)期前作施氮量對(duì)凈作和套作分枝數(shù)沒有顯著影響;套作大豆分枝數(shù)(平均6.1個(gè))顯著高于凈作(平均3.5個(gè)) 2.6個(gè)分枝。共生期后,套作大豆分枝數(shù)顯著增加,表明玉米收獲后套作大豆分枝能力加強(qiáng)。

      3討論

      前人研究表明:大豆產(chǎn)量隨施氮量的增加先升高再降低[28]。本研究大豆不施氮肥,利用前作小麥?zhǔn)┑屎髿埩粲谕寥乐械牡兀瑹o論凈作大豆還是套作大豆產(chǎn)量均呈現(xiàn)出隨前作施氮量的增加先升高再降低的趨勢(shì)。根據(jù)玉米大豆套作復(fù)合群體產(chǎn)量分級(jí)標(biāo)準(zhǔn)[29],本研究套作大豆利用前作小麥的氮肥后效其產(chǎn)量達(dá)到中高產(chǎn),特別是N120處理下,套作大豆達(dá)到高產(chǎn)水平,且各個(gè)氮水平下產(chǎn)量均為套作高于凈作。課題組2011和2012年在四川雅安的試驗(yàn)和2013年在四川崇州的試驗(yàn)都印證了在小麥/玉米/大豆周年套作體系中大豆不施肥,大豆僅利用小麥?zhǔn)┑?、施磷后效,在中、高施肥條件下均能保證大豆產(chǎn)量[23-24]。說明本研究的試驗(yàn)結(jié)果在不同年際間得到了重現(xiàn)。

      大豆收獲后各處理的土壤硝態(tài)氮含量略低于種植大豆之前土壤硝態(tài)氮含量,但變化幅度不大??赡苁怯捎谛←溕L(zhǎng)在冬季和春季而大豆生長(zhǎng)在夏季和秋季,更有利氮庫的轉(zhuǎn)化,同時(shí)大豆通過生物固氮作用固定空氣中的氮從而增加對(duì)氮素的供給。說明土壤肥力較高,前作小麥?zhǔn)┑实臈l件下,麥/玉/豆體系在種植大豆時(shí)可以不施用或者少施用氮肥,仍能保證大豆的產(chǎn)量,其中以小麥?zhǔn)┘兊?20 kg/hm2,大豆不施肥(N120處理)產(chǎn)量最高,達(dá)到高產(chǎn)水平。

      研究表明,遮陰是西南地區(qū)大豆生長(zhǎng)發(fā)育、產(chǎn)量和品質(zhì)形成的主要限制因子[30-32],合理的群體結(jié)構(gòu)可以提高光能利用率,使大豆優(yōu)良特性得到最大限度發(fā)揮[33-34]。耐陰性大豆品種為滿足生存需要,會(huì)在生長(zhǎng)發(fā)育過程中對(duì)環(huán)境的光信息不斷作出可塑性變化,通過自我機(jī)體調(diào)節(jié)促使大豆幼苗改變形態(tài),最終使植株適應(yīng)弱光環(huán)境[35]。大豆前期遮陰對(duì)主莖形態(tài)性狀影響大,遮陰使大豆植株主莖長(zhǎng)和節(jié)間長(zhǎng)均增加,倒伏率增高[21]。套作分枝上莢數(shù)和粒數(shù)占據(jù)大豆莢數(shù)和粒數(shù)的主體,遠(yuǎn)高于主莖上莢數(shù)和粒數(shù)[36]。本研究結(jié)果發(fā)現(xiàn),套作較凈作能顯著提高大豆的產(chǎn)量,套作最高產(chǎn)量為4133.2 kg/hm2。分枝期套作大豆與凈作大豆生物量和農(nóng)藝性狀有顯著差異:套作大豆前期受玉米蔭蔽的影響,表現(xiàn)出蔭蔽反應(yīng),生物量積累顯著低于凈作。玉米收獲之前套作對(duì)大豆生物量的影響實(shí)質(zhì)是玉米降低了大豆的通風(fēng)透光效果,使大豆生長(zhǎng)緩慢,各部位生物量顯著降低,繼而總生物量下降,而土壤氮含量可以緩解玉米對(duì)大豆的影響,減弱種間的競(jìng)爭(zhēng)關(guān)系。套作大豆主莖長(zhǎng)和第一節(jié)間長(zhǎng)顯著高于凈作,分別高出6.2和2.7 cm,伸長(zhǎng)生長(zhǎng)能力強(qiáng),導(dǎo)致莖稈細(xì)長(zhǎng)柔弱,加劇倒伏, 倒伏后,大豆主莖貼地生長(zhǎng)。玉米收獲后,套作大豆具有充分的生長(zhǎng)空間,迅速恢復(fù)生長(zhǎng),伸長(zhǎng)生長(zhǎng)減弱,橫向生長(zhǎng)加強(qiáng),分枝能力加強(qiáng),且分枝垂直向上生長(zhǎng),從而接收更好的光熱條件,分枝數(shù)增多,分枝上結(jié)莢和鼓粒更充分,莢殼、籽粒重顯著高于凈作。套作大豆分枝數(shù)顯著低于凈作大豆,僅為凈作的一半,但前作施氮有利于套作大豆分枝的形成,減弱玉米的競(jìng)爭(zhēng)作用。而大豆收獲時(shí)期的套作生物量大于凈作,套作大豆與凈作大豆農(nóng)藝性狀發(fā)生了改變,差異仍呈顯著。套作對(duì)分枝的發(fā)生和分枝產(chǎn)量的形成極為有利,套作分枝籽粒占籽??傊氐?8.9%,而凈作分枝籽粒僅占籽??傊氐?5.8%。而凈/套作在主莖產(chǎn)量上差異并不顯著,說明分枝能力是大豆產(chǎn)量的保證。

      4結(jié)論

      在小麥-大豆凈作和小麥/玉米/大豆間套作體系中大豆能充分利用前作小麥的施氮后效,適量的前作施氮量(120 kg/hm2)有利于大豆分枝、結(jié)莢和鼓粒,達(dá)到高產(chǎn)的目的;套作大豆前期雖受玉米的抑制影響,但玉米收獲后能加快生長(zhǎng),促進(jìn)分枝生長(zhǎng),促進(jìn)結(jié)莢和鼓粒,以致套作大豆的產(chǎn)量明顯高于凈作大豆,套作大豆后期的分枝及向上生長(zhǎng)是其生長(zhǎng)恢復(fù)和形成產(chǎn)量?jī)?yōu)勢(shì)的主要機(jī)制。

      References:

      [1]He Z H, Xia X C, Peng S B,etal. Meeting demands increased cereal production in China. Journal of Cereal Science, 2014, 59(3): 235-244.

      [2]Metwally A A, Shafik M M, EI-Habbak K E,etal. Yield and land equivalent ratio of intercropped soybean with maize under different intercropping patterns and high population densities. Egyptian Journal of Agronomy, 2009, 31(2): 199-222.

      [3]Pypers P, Sanginga J M, Kasereka B,etal. Increased productivity through integrated soil fertility management in cassava legume intercropping systems in the highlands of Sud-Kivu, DR Congo. Field Crops Research, 2011, 120(1): 76-85.

      [4]Camille A, Marie-Hélène J, Christophe D. Relay intercropping of legume cover crops in organic winter wheat: Effects on performance and resource availability. Field Crops Research, 2013, 145: 78-87.

      [5]Leihner D E, Ruppenthal M, Hilger T H,etal. Soil conservation effectiveness and crop productivity of forage legume intercropping, contour grass barriers and contour ridging in cassava on Andean Hillsides. Experimental Agriculture, 1996, 32(3): 327-338.

      [6]Fustec J, Lesuffleur F, Mahieu S,etal. Nitrogen rhizodeposition of legumes. Agriculture Sustainable, 2010, 3(1): 869-881.

      [7]Su B Y, Chen S B, Li Y G,etal. Intercropping enhances the farmland ecosystem service. Journal of Ecology, 2013, 33(14): 4505-4514.

      [8]Shen N C. Biotic interactions, ecological knowledge and agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 63: 717-739.

      [9]Yang W Y, Yong T W, Ren W J,etal. Develop relay-planting soybean, revitalize soybean industry. Soybean Science, 2008, 27(1): 1-7.

      [10]Song Y X, Yang W Y, Li Z X,etal. The effects of shading on photosynthetic and fluorescent characteristics of soybean seedling under maize-soybean relay cropping. Chinese Journal of Oil Crop Sciences, 2009, 31(4): 474-479.

      [11]Chen Y X, Liu J, Chen X P,etal. Dry matter accumulation, yield and nitrogen use efficiency of crops rotation and intercropping systems in Sichuan. Journal of China Agricultural University, 2013, 18(6): 68-79.

      [12]Wang X C, Yang W Y, Deng X Y,etal. Differences of dry matter accumulation and distribution of maize and their responses to nitrogen fertilization in maize/soybean and maize/sweet potato relay intercropping system. Plant Nutrition and Fertilizer Science, 2015, 21(1): 46-57.

      [13]Liu W G, Zou J L, Yuan J,etal. Research on the agronomic traits of relay cropping soybean. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 219-223.

      [14]Wang Z, Yang W Y, Wu X Y,etal. Effects on maize plant type and planting width on the early morphological characters and yield of interplanted soybean. Chinese Journal of Applied Ecology, 2008, 19(2): 323-329.

      [15]Ferrise R, Triossi A, Stratonovitch P,etal. Sowing date and nitrogen fertilization effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Research, 2010, 117: 245-257.

      [16]Liang X Q, Xu L, Li H,etal. Influence of N fertilization rates, rainfall, and temperature on nitrate leaching from a rainfed winter wheat field in Taihu watershed. Physics and Chemistry of the Earth, 2011, 36: 395-400.

      [17]Wu P P. Ammonia Volatilization and Nitrous Oxide Emission from Double Rice System in Red Paddy Soil under Different Fertilizing Systems[D]. Nanjing: Nanjing Agricultural University, 2008.

      [18]Guo J H, Liu X J, Zhang Y,etal. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010.

      [19]Kwong K, Volcy L, Pynee K. Nitrogen and phosphorus transport by surface from a silty clay loam soil under sugarcane in the humid tropical environment of Mauritius. Agriculture, Ecosystems & Environment, 2002, 91: 147-157.

      [20]Chen X L, Yang W Y, Chen Z Q,etal. Characteristics of stem between sole-cropping and relay-cropping soybean under different nitrogen applied levels. Soybean Science, 2011, 30(1): 101-104.

      [21]Wan Y. Evaluation of Soybean for Excessive Growth and Its Physiological and Biochemical Mechanism in Relay Strip Intercropping System[D]. Ya’an: Sichuan Agricultural University, 2014.

      [22]Yong T W, Xiang D B, Zhang J,etal. Analysis of the nitrogen uptake and utilization efficiency and N fertilizer residual effect in the wheat-maize-soybean and wheat-maize-sweet potato relay strip intercropping. Acta Prataculturae Sinica, 2011, 20(6): 34-44.

      [23]Chen Y X, Zhou T, Huang W,etal. Phosphorus aftereffects on soybean yield and nutrition status in wheat/maize/soybean intercropping system. Plant Nutrition and Fertilizer Science, 2013, 19(2): 331-339.

      [24]Chen Y X, Chen X H, Tang Y Q,etal. Effect of nitrogen fertilizer on dry matter accumulation and yield in wheat/maize/soybean intercropping systems. Acta Prataculturae Sinica, 2014, 23(1): 73-78.

      [25]Yong T W, Yang W Y, Xiang D B,etal. Effect of maize sowing time and density on the agronomic characters and yield of soybean in relay-planting system of maize and soybean. Soybean Science, 2009, 28(3): 439-444.

      [26]Liu X M, Yong T W, Su B Y,etal. Effect of reduced N application on crop yield in maize-soybean intercropping system. The Crop Journal, 2014, 40(9): 1629-1638.

      [27]Xu T, Yong T W, Yang W Y,etal. Effects of sowing time and density on soybean agronomic traits, dry matter accumulation and yield in maize-soybean relay strip intercropping system. Chinese Journal of Oil Crop Sciences, 2014, 36(5): 593-601.

      [28]Shen X H. Effect of nitrogen amount on rhizosphere soil microorganisms and yield of soybean. Soybean Science, 2014, 33(2): 284-286.

      [29]Zhang C. Study on Variation Yield of Maize-Soybean Belt Intercropping Composition in the Hilly Region of Sichuan Province[D]. Yaan: Sichuan Agricultural University, 2013.[30]Liu Q C, Liu Q H, Ma Z X,etal. A study on the shade tolerance ofLauraceaeobtusiloba. Acta Prataculturae Sinica, 2013, 22(6): 93-99.

      [31]Huang Q C, Li C Y, Wu J M,etal. Influence of shading stress on yield and yield traits of vegetable soybean. Soybean Science, 2012, 31(1): 81-84.

      [32]Wu Q L, Wang Z, Yang W Y. Seedling shading affects morphogenesis and substance accumulation of stem in soybean. Soybean Science, 2007, 26(6): 868-872.

      [33]Zhan J, Luo X H, Su X Z,etal. Effect of planting density on productivity and photosynthetic characteristics ofChamaecristarotundifolia. Acta Prataculturae Sinica, 2011, 20(5): 66-71.

      [34]Yan R R, Wei Z J, Yun X J,etal. Effects of the grazing systems on diurnal variation of photosynthetic characteristic of major plant species of desert steppe. Acta Prataculturae Sinica, 2009, 18(5): 160-167.

      [35]Li R, Wen T, Tang Y P,etal. Effect of shading on photosynthetic and chlorophyll fluorescence characteristics of soybean. Acta Prataculturae Sinica, 2014, 23(6): 198-206.

      [36]Liu W G, Jiang T, She Y H,etal. Preliminary study on physiological response mechanism of stem of soybean seedlings to shade stress. Chinese Journal of Oil Crop Sciences, 2011, 33(2): 141-146.

      參考文獻(xiàn):

      [7]蘇本營, 陳圣賓, 李永庚, 等. 間套作種植提升農(nóng)田生態(tài)系統(tǒng)服務(wù)功能. 生態(tài)學(xué)報(bào), 2013, 33(14): 4505-4514.

      [9]楊文鈺, 雍太文, 任萬軍, 等. 發(fā)展套作大豆, 振興大豆產(chǎn)業(yè). 大豆科學(xué), 2008, 27(1): 1-7.

      [10]宋艷霞, 楊文鈺, 李卓璽, 等. 不同大豆品種幼苗葉片光合及葉綠素?zé)晒馓匦詫?duì)套作遮陰的響應(yīng). 中國油料作物學(xué)報(bào), 2009, 31(4): 474-479.

      [11]陳遠(yuǎn)學(xué), 劉靜, 陳新平, 等. 四川輪套作體系的干物質(zhì)積累、產(chǎn)量及氮素利用效率研究. 中國農(nóng)業(yè)大學(xué)學(xué)報(bào), 2013, 18(6): 68-79.

      [12]王小春, 楊文鈺, 鄧小燕, 等. 玉米/大豆和玉米/甘薯模式下玉米干物質(zhì)積累與分配差異及氮肥的調(diào)控效應(yīng). 植物營養(yǎng)與肥料學(xué)報(bào), 2015, 21(1): 46-57.

      [13]劉衛(wèi)國, 鄒俊林, 袁晉, 等. 套作大豆農(nóng)藝性狀研究. 中國油料作物學(xué)報(bào), 2014, 36(2): 219-223.

      [14]王竹, 楊文鈺, 伍曉燕, 等. 玉米株型和幅寬對(duì)套作大豆初花期形態(tài)建成及產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(2): 323-329.

      [17]吳萍萍. 不同施肥制度下紅壤稻田氨揮發(fā)與氧化亞氮排放的研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2008.

      [20]陳小林, 楊文鈺, 陳忠群, 等. 不同施氮水平下凈、套作大豆莖稈特征比較研究. 大豆科學(xué), 2011, 30(1): 101-104.

      [21]萬燕. 帶狀套作大豆旺長(zhǎng)評(píng)價(jià)及其生理生化機(jī)制研究[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2014.

      [22]雍太文, 向達(dá)兵, 張靜, 等. 小麥/玉米/大豆和小麥/玉米/甘薯套作的氮素吸收利用及氮肥殘效研究. 草業(yè)學(xué)報(bào), 2011, 20(6): 34-44.

      [23]陳遠(yuǎn)學(xué), 周濤, 黃蔚, 等. 小麥/玉米/大豆間套作體系中小麥?zhǔn)┝缀笮?duì)大豆產(chǎn)量、營養(yǎng)狀況的影響. 植物營養(yǎng)與肥料學(xué)報(bào), 2013, 19(2): 331-339.

      [24]陳遠(yuǎn)學(xué), 陳曉輝, 唐義琴, 等. 不同氮用量下小麥/玉米/大豆周年體系的干物質(zhì)積累和產(chǎn)量變化. 草業(yè)學(xué)報(bào), 2014, 23(1): 73-78.

      [25]雍太文, 楊文鈺, 向達(dá)兵, 等. 玉/豆套作模式下玉米播期與密度對(duì)大豆農(nóng)藝性狀及產(chǎn)量的影響. 大豆科學(xué), 2009, 28(3): 439-444.

      [26]劉小明, 雍太文, 蘇本營, 等. 減量施氮對(duì)玉米-大豆套作系統(tǒng)中作物產(chǎn)量的影響. 作物學(xué)報(bào), 2014, 40(9): 1629-1638.

      [27]徐婷, 雍太文, 楊文鈺, 等. 播期和密度對(duì)玉米大豆套作模式下大豆植株、干物質(zhì)積累和產(chǎn)量的影響. 中國油料作物學(xué)報(bào), 2014, 36(5): 593-601.

      [28]申曉慧. 不同氮肥施用量對(duì)大豆根際土壤微生物數(shù)量及產(chǎn)量的影響. 大豆科學(xué), 2014, 33(2): 284-286.

      [29]張超. 川中丘區(qū)玉米-大豆帶狀套作復(fù)合群體產(chǎn)量變化規(guī)律研究[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2013.

      [30]劉慶超, 劉慶華, 馬宗驤, 等. 三椏烏藥耐陰性研究. 草業(yè)學(xué)報(bào), 2013, 22(6): 93-99.

      [31]黃其椿, 李初英, 吳建明, 等. 不同遮光處理對(duì)菜用大豆產(chǎn)量的影響. 大豆科學(xué), 2012, 31(1): 81-84.

      [32]吳其林, 王竹, 楊文鈺. 苗期遮陰對(duì)大豆莖稈形態(tài)和物質(zhì)積累的影響. 大豆科學(xué), 2007, 26(6): 868-872.

      [33]詹杰, 羅旭輝, 蘇小珍, 等. 不同留株密度對(duì)圓葉決明生產(chǎn)性能及光合特性的影響. 草業(yè)學(xué)報(bào), 2011, 20(5): 66-71.

      [34]閆瑞瑞, 衛(wèi)智軍, 運(yùn)向軍, 等. 放牧制度對(duì)短花針茅荒漠草原主要植物種光合特性日變化影響的研究. 草業(yè)學(xué)報(bào), 2009, 18(5): 160-167.

      [35]李瑞, 文濤, 唐艷萍, 等. 遮陰對(duì)大豆幼苗光合和熒光特性的影響. 草業(yè)學(xué)報(bào), 2014, 23(6): 198-206.

      [36]劉衛(wèi)國, 蔣濤, 佘躍輝, 等. 大豆苗期莖稈對(duì)蔭蔽脅迫響應(yīng)的生理機(jī)制初探. 中國油料作物學(xué)報(bào), 2011, 33(2): 141-146.

      DOI:10.11686/cyxb2015567

      *收稿日期:2015-12-15;改回日期:2016-02-16

      基金項(xiàng)目:國家自然科學(xué)基金國際(地區(qū))合作與交流項(xiàng)目(31210103906)和國家玉米產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-02-24)資助。

      作者簡(jiǎn)介:王佳銳(1992-),女,遼寧朝陽人,在讀碩士。E-mail:279324949@qq.com *通信作者Corresponding author. E-mail:cyxue2002@aliyun.com

      * 1Relationship between nitrogen after-effects and the yield and agronomic traits of monocropped and intercropped soybean

      WANG Jia-Rui, WANG Ke, ZHAO Ya-Ni, XU Kai-Wei, ZHOU Tao, CHEN Yuan-Xue*

      CollegeofResourceSciences,SichuanAgriculturalUniversity,Chengdu611130,China

      Abstract:A field experiment was conducted to study the after-effects of nitrogen applied at different rates (0, 60, 120, 180 kg/ha) to wheat on the yields and agronomic traits of a subsequent soybean monoculture (wheat-soybean cropping system) and soybean intercrop (wheat/maize/soybean intercropping system) in the 2013-2014 growing season. The results showed that soybean in both monoculture and intercropping systems made full use of the after-effect of nitrogen applied to wheat. The biomass and grain yield of soybean first increased and then decreased as the rate of nitrogen application to wheat increased. The highest biomass and grain yield of monocropped soybean and the highest yield of intercropped soybean (4133 kg/ha) were in the N120treatment. The biomass of monocropped soybean was 62.3% higher than that of intercropped soybean at the branching stage, but the biomass of intercropped soybean was 57.9% higher than that of monocropped soybean at the harvest stage. Compared with monocropped soybean, intercropped soybean showed 63.9% higher grain number per plant and 55.9% higher yield. The 100-grain weight did not differ significantly between intercropped and monocropped soybean. The grain yield from the main stem and branches accounted for 54.2% and 45.8%, respectively, of the total yield of monocropped soybean. However, grain yield from the branches accounted for 68.9% of the total grain yield of intercropped soybean. Although the lodging rate was 5.2% higher for intercropped soybean than for monocropped soybean, the empty sticks rate was 78.0% lower and the blighted pod rate was 25.4% lower for intercropped than for monocropped soybean. The percentage of branch grain yield increased with increasing nitrogen application to wheat. The main stem length of intercropped soybean (average, 39.5 cm) was 6.2 cm longer than that of monocropped soybean (average, 33.3 cm) at the branching stage while that of monocropped soybean (average, 84.8 cm) was 10.4 cm longer than that of intercropped soybean (average, 74.4 cm) at the harvest stage. The length of the first stem was greater in intercropped soybean (8.3, 6.6 cm) than in monocropped soybean (5.6, 4.6 cm) at both branching and harvest stages. The average number of branches was higher in monocropped soybean (1.9) than in intercropped soybean (0.7) at the branching stage, while that of intercropped soybean (6.1) was higher than that of monocropped soybean (3.5) at the harvest stage. The number of branches significantly increased with increasing nitrogen application to the former wheat crop. These results indicated that the soybean was able to utilize the residual N from nitrogen applied to wheat in both the wheat-soybean and wheat/maize/soybean systems. Although growth of intercropped soybean can be affected by maize, intercropped soybean can recover rapidly and resume rapid growth after the maize is harvested. The number of branches, pods, and filled pods as well as the grain yield can be increased through adjusting the amount of nitrogen applied to former crops.

      Key words:soybean; monoculture; intercropping; yield; agronomic

      http://cyxb.lzu.edu.cn

      王佳銳, 王科, 趙亞妮, 徐開未, 周濤, 陳遠(yuǎn)學(xué). 小麥?zhǔn)┑笮Ш头N植方式對(duì)大豆產(chǎn)量及農(nóng)藝性狀的影響. 草業(yè)學(xué)報(bào), 2016, 25(7): 158-167.

      WANG Jia-Rui, WANG Ke, ZHAO Ya-Ni, XU Kai-Wei, ZHOU Tao, CHEN Yuan-Xue. Relationship between nitrogen after-effects and the yield and agronomic traits of monocropped and intercropped soybean. Acta Prataculturae Sinica, 2016, 25(7): 158-167.

      猜你喜歡
      套作農(nóng)藝性狀大豆
      注意防治大豆點(diǎn)蜂緣蝽
      從大豆種植面積增長(zhǎng)看我國糧食安全
      巴西大豆播種順利
      大豆的營養(yǎng)成分及其保健作用
      桑園全年免耕周年套作技術(shù)進(jìn)行專家測(cè)產(chǎn)
      遠(yuǎn)離套作之嫌,力創(chuàng)真我之文—以2019年浙江高考考場(chǎng)作文為例
      新型緩釋肥在全膜雙壟溝播玉米上的應(yīng)用效果研究
      武運(yùn)粳24號(hào)水稻機(jī)插精確定量高產(chǎn)栽培技術(shù)研究
      不同夾心肥料對(duì)玉米生長(zhǎng)的影響
      從農(nóng)藝性狀及化學(xué)成分測(cè)定分析遠(yuǎn)志藥材商品品規(guī)和良種選育的合理性
      建瓯市| 通河县| 固镇县| 南投县| 托克托县| 荣成市| 安康市| 克山县| 温州市| 南部县| 通道| 双辽市| 五莲县| 岳西县| 玉林市| 芜湖市| 任丘市| 黄浦区| 岳阳市| 搜索| 平定县| 如东县| 玉山县| 辽源市| 龙门县| 房产| 五家渠市| 喀什市| 台中县| 武汉市| 台山市| 平果县| 怀安县| 子洲县| 兴仁县| 南城县| 宁城县| 南涧| 武冈市| 随州市| 鄢陵县|