• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      基于憶阻的脈沖BAM神經網絡的拉格朗日穩(wěn)定性

      2016-08-04 07:48:18易書明蹇繼貴
      三峽大學學報(自然科學版) 2016年3期
      關鍵詞:不等式脈沖

      易書明 蹇繼貴

      (三峽大學 理學院, 湖北 宜昌 443002)

      ?

      基于憶阻的脈沖BAM神經網絡的拉格朗日穩(wěn)定性

      易書明蹇繼貴

      (三峽大學 理學院, 湖北 宜昌443002)

      摘要:本文研究了一類帶有時滯的憶阻脈沖BAM(Bidirectional Associative Memory)神經網絡的Lagrange穩(wěn)定性.利用Lyapunov函數和不等式方法,得到時滯憶阻脈沖BAM神經網絡的Lagrange穩(wěn)定性的充分條件,根據系統(tǒng)自身參數給出了其全局指數吸引集的估計.最后,通過數值實例驗證了理論的正確性.

      關鍵詞:BAM神經網絡;憶阻器;脈沖;拉格朗日穩(wěn)定性;李雅普諾夫函數;不等式

      雙向聯想記憶(Bidirectional Associative Memory, BAM)神經網絡模型最早由Kosko[1-3]提出,這類網絡在模式識別、信號處理和人工智能等方面得到廣泛應用.目前對BAM神經網絡的動力學行為如平衡點的存在性、唯一性和全局穩(wěn)定性的研究出現了大量成果[4-11].

      眾所周知,脈沖現象影響著神經網絡的穩(wěn)定性[12-13],脈沖的存在意味著狀態(tài)軌跡不會一成不變.在文獻[14]中,關治洪教授等討論了時滯脈沖Hopfield神經網絡的平衡點的存在性、唯一性和全局穩(wěn)定性.同時,關于時滯脈沖神經網絡的漸近或指數穩(wěn)定也被廣泛研究[15-16].

      20世紀70年代,蔡少棠教授[17]從邏輯和公理的觀點指出,自然界應該還存在一個電路元件,它表示磁通與電荷的關系,這就是憶阻器.隨著科學的發(fā)展,惠普公司在2008年做出了納米憶阻器,引起全球對憶阻研究的廣泛關注[18-19].憶阻器是模擬人工神經網絡突觸的最佳原件,因此,許多研究者對基于憶阻的神經網絡進行了研究[20-23].在文獻[24-25]中,吳愛龍和曾志剛教授考慮了一類含有憶阻突觸和多重滯后的神經網絡,研究了它的有界性.在文獻[26]中,張國東博士等研究了一類憶阻遞歸神經網絡的Lagrange穩(wěn)定性.而對于帶有時滯的憶阻脈沖BAM神經網絡的Lagrange穩(wěn)定性的研究成果還沒有發(fā)現,因此,本文建立一種新的時滯憶阻脈沖BAM神經網絡,并運用不等式技巧討論其Lagrange穩(wěn)定性和全局指數吸引集.

      考慮如下憶阻脈沖BAM神經網絡:

      (1)

      假設系統(tǒng)(1)的初始條件為

      (2)

      其中φi(s),ψj(s)是定義在[-τ,0]上的連續(xù)函數.令

      考慮如下兩種函數集合B={p(x)|p(x)∈C(R,R),?ξ>0,|p(x)|≤ξ,?x∈R},S={p(x)|p(x),p(y)∈C(R,R),?ζ>0,|p(x)-p(y)|≤ζ|x-y|,?x,y∈R},令

      定義1[11]稱系統(tǒng)(1)是一致有界的.若?H>0,?K=K(φ,ψ)>0,使得‖(xT(t),yT(t))‖≤K(φ,ψ)對所有(φ,ψ)∈CH,t≥0成立.

      定義2[27]稱系統(tǒng)(1)是Lagrange全局指數穩(wěn)定的,若存在正定徑向無界的函數V(x,y),函數K(φ,ψ)∈C,l>0,α>0,使得對系統(tǒng)(1)的任意解x(t)=x(t;φ,ψ),y(t)=y(t;φ,ψ),V(x,y)>l,t≥0,有

      (3)

      緊集Ω:={x∈Rn,y∈Rm|V(x,y)≤l}稱為系統(tǒng)(1)的全局指數吸引集.

      引理1[27]設G∈C([t,+∞],R),存在正常數α和β使得

      (4)

      那么有

      (5)

      1主要成果

      證:構造正定徑向無界的Lyapunov函數

      當t≠tk時,

      由引理1可得

      當t=tk時

      則有

      綜上所述,對任意t>0有

      由定義2知,系統(tǒng)(1)是Lagrange全局指數穩(wěn)定的,且Ω1是(1)的全局指數吸引集.

      證:構造正定徑向無界的Lyapunov函數

      當t≠tk時

      由上式可以得到

      由引理2可以得出

      其中λ是方程λ=L2-L3eλτ的唯一正根.

      當t=tk時,

      綜上所述,對任意t>0有

      由定義2知,系統(tǒng)(1)是Lagrange全局指數穩(wěn)定的,且Ω2是(1)的全局指數吸引集.

      注1:在本文的條件下,定理1和定理2通過選取的特定Lyapunov函數得到的結果與時滯無關.因此,無論有限時滯,還是無限時滯,都不會影響定理的正確性.

      2仿真實例

      同時,取初始條件x1(0)=0.7,x2(0)=1,y1(0)=1.2,y2(0)=0.9,圖1表示x1(t),x2(t),y1(t),y2(t)隨時間t變化的狀態(tài)圖,圖2~5顯示系統(tǒng)(1)分別在三維相空間內的界估計.

      圖1 x1(t),x2(t),y1(t),y2(t)隨時間t變化的狀態(tài)圖

      圖2 系統(tǒng)(1)在坐標系(x1,x2,y1)內的界估計

      圖3 系統(tǒng)(1)在坐標系(x1,x2,y2)內的界估計

      圖4 系統(tǒng)(1)在坐標系(x1,y1,y2)內的界估計

      圖5 系統(tǒng)(1)在坐標系(x2,y1,y2)內的界估計

      3結語

      本文運用Lyapunov函數和不等式方法研究了時滯脈沖的憶阻BAM神經網絡的Lagrange穩(wěn)定性,得到了Lagrange全局指數穩(wěn)定的充分條件,并對其全局指數吸引集進行界估計.最后,通過數值實驗驗證了理論的正確性.

      參考文獻:

      [1]Kosko B.Adaptive Bidirectional Associative Memories[J].Appl.Opt.,1987,26:4947-4960.

      [2]Kosko B.Bidirectional Associative Memories[J].IEEE Trans.Syst.Man Cybern,1988,18:49-60.

      [3]Kosko B.Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence[J].prentice hall,1992.

      [4]Wang B X,Jian J G.Stability and Hopf Bifurcation Analysis on a Four-neuron Bam Neural Network with Distributed Delays[J].Commun Non-linear Sci.Numer.Simulat.,2010,15:189-204.

      [5]Jian J G, Wang B X.Stability Analysis in Lagrange Sense for a Class of Bam Neural Networks of Neutral Type with Multiple Time-varying Delays[J].Neurocomputing,2015,149:930-939.

      [6]Jian J G,Wang B X.Global Lagrange Stability for Neutral-type Cohen-grossberg BAM Neural Networks with Mixed Time-varying Delays[J].Math.Comput.Simul.,2015,116:1-25.

      [7]Zhao Z H,Jian J G.Attracting and Quasi-invariant Sets for Bam Neural Networks of Neutral-type with Time-varying and Infinite Distributed Delays[J].Neurocomputing,2014, 140:265-272.

      [8]Zhao Z H, Jian J G.Positive Invariant Sets and Global Exponential Attractive Sets of Bam Neural Networks with Time-varying and Infinite Distributed Delays[J].Neurocomputing,2014, 142:447-457.

      [9]Zhao Z H,Jian J G,Wang B X.Global Attracting Sets for Neutral Type Bam Neural Networks with Time-varying and Inifnite Distributed Delays[J].Nonlinear Analysis: HS.,2015,15:63-73.

      [10] Jian J G,Wang B X.Global Lagrange Stability for Neutral-type Cohen-Grossberg BAM Neural Networks with Mixed Time-varying Delays[J].Math.and Comput.Simulat.,2015,116:1-25.

      [11] Li L L,Jian J G.Exponential P-convergence Analysis for Stochastic BAM Neural Networks with Time-varying and Infinite Distributed Delays[J].Appl.Math.Comput.,2015,266:860-873.

      [12] Li X D.Existence and Global Exponential Stability of Periodic Solution for Impulsive Cohen-grossberg-type BAM Neural Networks with Continuously Distributed Delays[J].Appl.Math.Comput,2009,215(1):292-307.

      [13] Zhang Y,Sun J.Stability of Impulsive Neural Networks with Time Delays[J].Phys.Lett.A,2005,348(1):44-50.

      [14] Guan Z H,Chen G R.On Delayed Impulsive Hopfield Neural Networks[J].Neural Networks,1999,12:273-280.

      [15] Song Q K,Cao J D.Impulsive E?ects on Stability of Fuzzy Cohen-grossberg Neural Networks with Time-varying Delays[J].IEEE Trans.Syst.Man Cybern.,Part B: Cybern.,2007,37(3):733-741.

      [16] Zhu Q X, Cao J D.Stability Analysis of Markovian Jump Stochastic Bam Neural Networks with Impulse Control and Mixed Time Delays[J].IEEE Trans.Neural Netw.Learning Syst.,2012,23(3):467-479.

      [17] Chua L O.Memristor-the Missing Circuit Element[J].IEEE Trans.Circ.Theory,1971,18(5):507-519.

      [18] Corinto F,Ascoli A,Gilli M.Nonlinear Dynamics of Memristor Oscillators[J].IEEE Trans.Circ.Syst.I,Reg.Papers,2011,58(6):1323-1336.

      [19] Ho Y,Huang G,Li P.Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories[J].IEEE Trans.Circ.Syst.I, Reg.Papers,2011,58(4):724-736.

      [20] Chen J J,Zeng Z G,Jiang P.Global Mittag-Leffier Stability and Synchronization of Memristor-based Fractional-order Neural Networks[J]. Neural Netw.,2014,51:1-8.

      [21] Cai Z,Huang L.Functional Differential Inclusions and Dynamic Behaviors for Memristor-based BAM Neural Networks with Time-varying Delays[J]. Commun.Nonlinear Sci.Numer.Simul.,2014,19: 1279-1300.

      [22] Chen J J,Zeng Z G,Jiang P.On the Periodic Dynamics of Memristor-based Neural Networks with Time-varying Delays[J]. Info.Sci.,2014,279: 358-373.

      [23] Jiang M H,Mei J,Hu J H.New Results on Exponential Synchronization of Memristor-based Chaotic Neural Networks[J]. Neurocomputing,2015,156:60-67.

      [24] Wu A L,Zeng Z G.Lagrange Stability of Neural Networks with Memristive Synapses and Multiple Delays[J].Info.Sci.,2012,280:135-151.

      [25] Wu A I,Zeng Z G.Lagrange Stability of Memristive Neural Networks With Discrete and Distributed Delays[J]. Ieee Transactions on Neural Networks and Learning Systems, 2014,25(4):690-703.

      [26] Zhang G D,Shen Y,Xu C J.Global Exponential Stability in a Lagrange Sense for Memristive Recurrent Neural Networks with Time-varying Delays[J].Neurocomputing 2015,149:1330-1336.

      [27] Liao X X,Luo Q,Zeng Z G,et al. Global Exponential Stability in Lagrange Sense for Recurrent Neural Networks with Time Delays[J],Nonlinear Anal.:RWA.,2008,9:1535-1557.

      [28] Jian J G,Kong D M,Luo H G.Exponential Stability of Differential Systems with Separated Variables and Time Delays[J].Journal of Central South University,2005,36(2):282-287.

      [責任編輯張莉]

      DOI:10.13393/j.cnki.issn.1672-948X.2016.03.022

      收稿日期:2016-03-08

      基金項目:國家自然科學基金(61273183,61304162,61174216)

      通信作者:蹇繼貴(1965-),男,教授,博士,主要從事系統(tǒng)的穩(wěn)定性,神經網絡理論,非線性系統(tǒng)控制等研究.E-mail:jiguijian@ctgu.edu.cn

      中圖分類號:O231.2

      文獻標識碼:A

      文章編號:1672-948X(2016)03-0098-06

      Lagrange Stability for Memristive BAM Neural Networks with Impulse

      Yi Shuming Jian Jigui

      (College of Science, China Three Gorges Univ., Yichang 443002, China)

      AbstractThis paper investigates Lagrange stability for a class of memristive BAM impulse neural networks with multiple time-varying delays and finds the global exponential attractive sets of it.By applying inequality techniques and Lyapunov function, some easily verifiable delay-independent criteria for the Lagrange stability and global exponential attractive sets of memristive BAM impulse neural networks are obtained by constructing appropriate Lyapunov functions. Finally, an example with numerical simulations is given to illustrate the results obtained.

      KeywordsBAM neural networks;memristor;impulse;Lagrange stability;Lyapunov function;inequality

      猜你喜歡
      不等式脈沖
      他們使阿秒光脈沖成為可能
      脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
      上下解反向的脈沖微分包含解的存在性
      黃芩苷脈沖片的制備
      中成藥(2017年12期)2018-01-19 02:06:54
      簡析高中數學不等式易錯題型及解題技巧
      亞太教育(2016年31期)2016-12-12 19:54:32
      中學不等式的常用證明方法
      青年時代(2016年20期)2016-12-08 17:28:15
      高中數學不等式易錯題型及解題技巧
      用概率思想研究等式與不等式問題
      一道IMO試題的完善性推廣
      新一代(2016年15期)2016-11-16 17:39:28
      淺談構造法在不等式證明中的應用
      太和县| 沂源县| 赞皇县| 灵山县| 丰台区| 金昌市| 泸定县| 江西省| 绥中县| 子长县| 筠连县| 大田县| 滦平县| 老河口市| 平顺县| 四会市| 山西省| 奉化市| 建水县| 浮梁县| 武功县| 靖西县| 沁源县| 商水县| 泽普县| 武功县| 巴东县| 盐津县| 屏东市| 肥东县| 年辖:市辖区| 乐安县| 腾冲县| 甘泉县| 永修县| 阿克苏市| 土默特右旗| 河南省| 日照市| 洞口县| 郸城县|