• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      一類存在參數(shù)攝動的線性隨機系統(tǒng)的魯棒間歇故障診斷方法

      2016-08-11 06:18:29鄢镕易何瀟周東華
      自動化學(xué)報 2016年7期
      關(guān)鍵詞:魯棒時變間歇

      鄢镕易  何瀟  周東華,2

      一類存在參數(shù)攝動的線性隨機系統(tǒng)的魯棒間歇故障診斷方法

      鄢镕易1何瀟1周東華1,2

      間歇故障(Intermittent faults,IFs)具有隨機性,其檢測要求在本次間歇故障消失之前檢測出間歇故障的發(fā)生,在下一次間歇故障發(fā)生之前檢測出間歇故障的消失.本文針對一類存在未知時變參數(shù)攝動的離散線性隨機動態(tài)系統(tǒng),研究了其魯棒間歇故障檢測與分離問題.基于降維未知輸入觀測器,通過引入滑動時間窗口,本文設(shè)計了一組與未知時變攝動解耦的結(jié)構(gòu)化截斷殘差,并提出其存在的一個充分條件.與傳統(tǒng)殘差相比,截斷殘差信號更為顯著地反映了間歇故障的發(fā)生和消失.為滿足間歇故障的檢測要求,本文提出兩個假設(shè)檢驗分別用于檢測間歇故障的發(fā)生時刻和消失時刻,并給出了一個詳細算法.最后,在沿參考軌道運行的衛(wèi)星模型上對所述方法進行了仿真實驗,結(jié)果表明該方法能夠有效檢測出間歇故障的所有發(fā)生時刻和消失時刻,并準(zhǔn)確實現(xiàn)故障分離.

      間歇故障,魯棒故障診斷,時變參數(shù)攝動,降維未知輸入觀測器,假設(shè)檢驗

      引用格式鄢镕易,何瀟,周東華.一類存在參數(shù)攝動的線性隨機系統(tǒng)的魯棒間歇故障診斷方法.自動化學(xué)報,2016,42(7): 1004-1013

      間歇故障(Intermittent faults,IFs)是實際工業(yè)系統(tǒng)中一種普遍存在的故障類型[1[5],約90%的數(shù)字電路系統(tǒng)崩潰由間歇故障引起;混合電路中,間歇故障發(fā)生頻率是持續(xù)故障的10~30倍[6].在航空航天系統(tǒng)中,元器件老化、高負荷振動、裝配不良等因素都有可能導(dǎo)致間歇故障NFF(No-fault-found)發(fā)生[7].在機械傳動系統(tǒng)中,器件磨損、載荷過重以及閥門、氣缸密閉性不良都會引起間歇故障[8-10].電力電氣系統(tǒng)發(fā)生間歇故障的原因包括外部環(huán)境污染、電氣接觸點腐蝕和松動等[11-13].間歇故障的發(fā)生會降低系統(tǒng)可靠性和安全性,增加維護維修成本[14].據(jù)統(tǒng)計,在軍工系統(tǒng)中,間歇故障導(dǎo)致的不必要維護維修、元部件過早更換等問題會直接引起巨額經(jīng)濟損失,降低戰(zhàn)備完好率[6,15].隨著計算機、電子、通信等技術(shù)飛速發(fā)展,在數(shù)字化裝置廣泛普及的工業(yè)背景下,間歇故障診斷對有效避免災(zāi)難性事故發(fā)生,提高系統(tǒng)可靠性、可維修性和保障性,降低生產(chǎn)成本具有十分重要的現(xiàn)實意義[6,15].

      與持續(xù)故障不同,間歇故障具有一定隨機性,持續(xù)時間有限,故障幅值未知,無需外部補償措施失,且通常即可自行消會重復(fù)發(fā)生[16].在故障初期,間歇故障往往以類似小噪聲擾動形式出現(xiàn);隨著系統(tǒng)運行時間增加,其持續(xù)時間和幅值逐漸增加,呈現(xiàn)出明顯的間歇性;在很多情況下,間歇故障能夠進一步演化為永久性故障,造成系統(tǒng)失效[12].考慮到間歇故障的特點,間歇故障診斷要求在每次故障消失(發(fā)生)之前檢測出間歇故障的發(fā)生(消失)[2],并能準(zhǔn)確定位間歇故障.因此,盡管眾多研究學(xué)者對持續(xù)故障提出了很多行之有效的方法[12,16-18],卻很難滿足上述間歇故障診斷要求.

      現(xiàn)階段,間歇故障診斷研究主要采用定性分析方法[1-2,4,12,15-16,19].文獻[12]通過構(gòu)建實驗平臺模擬間歇故障對嵌入式系統(tǒng)的影響,結(jié)果表明間歇故障在整個使用周期中都可能出現(xiàn).文獻[16]驗證了Petri網(wǎng)模型用于描述計算機系統(tǒng)接口間歇故障的有效性.現(xiàn)有文獻中,基于定量分析方法的間歇故障診斷理論研究成果十分有限[1-2].文獻[17]基于雙線性奉獻觀測器研究了感應(yīng)電機傳感器間歇故障檢測問題,結(jié)果表明上述殘差需要充分時間衰減才能進行下一次間歇故障檢測.文獻[20]針對一類滿足Bernouli分布且均值、方差已知的執(zhí)行器間歇故障,在均方穩(wěn)定框架下研究了其容錯控制問題.但上述方法都只考慮間歇故障發(fā)生時刻的檢測,卻沒有檢測消失時刻,不滿足其檢測要求.文獻[2]針對一類線性連續(xù)隨機動態(tài)系統(tǒng),在不考慮測量噪聲條件下,研究了間歇故障發(fā)生時刻和消失時刻的檢測問題.然而,在實際工業(yè)環(huán)境中,不僅難以獲得精確的系統(tǒng)解析模型,而且存在大量測量噪聲,因此,考慮存在測量噪聲條件下,研究帶有時變參數(shù)攝動的線性隨機系統(tǒng)的間歇故障診斷問題是十分必要的.

      針對一類帶有時變參數(shù)攝動的線性離散隨機動態(tài)系統(tǒng),本文研究了其魯棒間歇故障檢測與分離問題,其主要創(chuàng)新點包括:1)基于降維未知輸入觀測器,通過引入滑動時間窗口,設(shè)計了一組結(jié)構(gòu)化截斷殘差,使其與未知時變攝動解耦且對特定方向的間歇故障敏感,以實現(xiàn)故障定位;2)考慮測量噪聲的影響,分析了新殘差信號的統(tǒng)計特性,并提出兩個假設(shè)檢驗分別用于檢測間歇故障的發(fā)生時刻和消失時刻;3)針對結(jié)構(gòu)化殘差的存在性問題,本文給出了該問題可解的一個充分條件.

      1 問題描述

      考慮一類存在時變參數(shù)攝動的線性隨機系統(tǒng)

      對上述系統(tǒng)和間歇故障,給出如下假設(shè).

      假設(shè)2.1)同一時刻僅有一個故障方向發(fā)生間歇故障;2)每一間歇故障都有已知幅值下界即每個間歇故障的持續(xù)時間/間隔時間具有最小值令假設(shè) ττeˉ先驗τe已知. τe

      2 魯棒間歇故障診斷方法

      本節(jié)針對系統(tǒng)(1)所示一類存在未知時變參數(shù)攝動的線性離散隨機動態(tài)系統(tǒng)的間歇故障檢測與分離問題,提出了一種魯棒故障診斷方法.

      2.1魯棒殘差設(shè)計

      對系統(tǒng)(1)進行如下改寫

      系統(tǒng)(4)改寫為如下l組系統(tǒng)模型,其中第s(s∈ lll)組系統(tǒng)為

      定理1.對系統(tǒng)(3)所示一類存在未知時變參數(shù)攝動的線性離散隨機動態(tài)系統(tǒng),設(shè)計l組殘差生成器(6),使其滿足條件1所示要求的一個充分條件是系統(tǒng)(3)滿足:具有穩(wěn)定不變零點.

      證明.通過線性變換,顯然,系統(tǒng)(4)等價于系統(tǒng)(3).對系統(tǒng)(4),為實現(xiàn)間歇故障分離,設(shè)計滿足式(7)所示要求的l組殘差,當(dāng)滿足時,對第組系統(tǒng)(6),根據(jù)文獻[16],可以采用如下算式計算式(6)中參數(shù)

      使得rs(k)對未知時變參數(shù)攝動和間歇故障ms(k)解耦.顯然,由于p=n-1,dim[rs(k)]=1.為簡化表示,令根據(jù)文獻[16],條件2)滿足時,殘差生成器(6)穩(wěn)定,其極點能夠在單位圓內(nèi)任意配置.下文中,僅以情況為例進行分析.由式(6)和式(7),可得降維估計誤差為

      引入滑動時間窗口?ks,構(gòu)造新的標(biāo)量截斷殘差

      綜上所述,若條件1)~3)滿足,基于殘差生成器(6),能夠?qū)ο到y(tǒng)(3)設(shè)計l組滿足條件1要求的結(jié)構(gòu)化魯棒殘差.

      圖1 間歇故障與滑動時間窗口的相對位置關(guān)系Fig.1 Relative positions between the intermittent fault and the sliding-time window

      2.2魯棒殘差統(tǒng)計特性分析

      為簡化表示,記

      2.3魯棒間歇故障診斷方法

      間歇故障診斷要求在本次間歇故障消失之前確定間歇故障的發(fā)生時刻,在下一次間歇故障發(fā)生之前確定本次間歇故障的消失時刻,并準(zhǔn)確定位故障.因此,針對間歇故障的發(fā)生和消失,本節(jié)提出兩個假設(shè)檢驗分別檢測,并給出魯棒間歇故障診斷算法.

      2.3.1間歇故障發(fā)生時刻的檢測

      2.3.2間歇故障消失時刻的檢測

      2.3.3魯棒間歇故障分離策略

      2.3.4魯棒間歇故障診斷算法

      根據(jù)上述分析并參考文獻[22]給出的算法,本節(jié)給出如下魯棒間歇故障診斷算法.

      步驟1.對系統(tǒng)(1)進行線性變換得系統(tǒng)(4).

      步驟3.由式(4)整理得到式(5)所示l組系統(tǒng);驗證每組系統(tǒng)是否滿足若滿足則繼續(xù);若不滿足,對式(4)進行線性變換使式(5)滿足上述條件.

      步驟7.根據(jù)式(7)計算Gs和Hs.

      步驟12.根據(jù)式(13)和式(17)檢測間歇故障的發(fā)生和消失,并根據(jù)分離策略定位故障方向.

      3 仿真驗證

      為驗證上述方法有效性,考慮在橢圓參考軌道運行的某衛(wèi)星的間歇故障診斷問題[23],其受到未知參數(shù)攝動和間歇故障影響的動力學(xué)模型為

      仿真中,ai(k)服從[-1,1]的均勻分布為獨立零均值高斯白噪聲,其協(xié)方差分別為Rw=采用狀態(tài)反饋跟蹤控制律Kx=[60,7,0,8,0,0;0,-8,2,3,0,0;0,0,0,0,-14,3]使衛(wèi)星沿參考軌道運行.

      易知,系統(tǒng)(20)滿足定理1所示條件,因此,基于降維未知輸入觀測器,能夠設(shè)計3組殘差生成器,使得對未知攝動間歇故障ms(k)解耦,而對間歇故障mj(k)(j 6=s)敏感.根據(jù)上述算法,3組標(biāo)量殘差生成器參數(shù)為

      設(shè)計第三組殘差生成器時,可得

      圖2 正常運行時的系統(tǒng)輸出Fig.2 Normal output of the satellite system(20)

      圖3 在k=500時發(fā)生間歇m3(k)的系統(tǒng)輸出Fig.3 Output of system(20)subject to the IF m3(k)

      當(dāng)沒有故障發(fā)生時,衛(wèi)星系統(tǒng)運動狀態(tài)如圖2所示.可以看出,由于系統(tǒng)動力參數(shù)存在未知時變攝動以及受到隨機噪聲影響,衛(wèi)星的位移和速度出現(xiàn)波動.以 FF3方向發(fā)生間歇故障為例,本文給出了該衛(wèi)星在間歇故障m3(k)影響下的運動狀態(tài).如圖3所示,在k=500(即第5秒)時, FF3方向發(fā)生最小幅值ρ=0.6、最小持續(xù)/間隔時間為0.4s的間歇故障m3(k).間歇故障m3(k)的發(fā)生使系統(tǒng)不能按原定軌跡運行,根據(jù)圖3,無法確定m3(k)的發(fā)生時刻和消失時刻,更不能確定發(fā)生故障的執(zhí)行器通道.

      對上述發(fā)生間歇故障的系統(tǒng)(20),設(shè)計3組殘差生成器(6),利用式(13)和式(17)進行間歇故障診斷.設(shè)定滑動時間窗口選擇為顯然,滿足仿真結(jié)果如圖4~6所示.由條件1可知m3(k)敏感,與m1(k)解耦m3(k)敏感,與m2(k)解耦m2(k)敏感,與m3(k)解耦.從圖4~6可以看出,當(dāng)m3(k)發(fā)生時,殘差能夠快速超過間歇故障發(fā)生時刻的檢測閾值,從而迅速確定本次間歇故障的發(fā)生時刻;間歇故障消失之后,殘差能夠在下一次間歇故障發(fā)生之前衰減到消失時刻的檢測閾值之下,從而確定本次間歇故障的消失時刻.由于與間歇故障m3(k)解耦,因此,其一直位于閾值范圍內(nèi).根據(jù)分離策略,我們可以判斷 FF3方向發(fā)生間歇故障,其發(fā)生時刻、消失時刻及實際檢測值如表1所示,檢測結(jié)果如圖7所示.可以看出,本文方法能夠迅速檢測出間歇故障的發(fā)生時刻和消失時刻并準(zhǔn)確定位故障.

      圖4 初始殘差信號r1(k)和新殘差信號r1(k,?k1)Fig.4 Comparing r1(k,?k1)with r1(k)

      圖5 初始殘差信號r2(k)和新殘差信號r2(k,?k2)Fig.5 Comparing r2(k,?k2)with r2(k)

      圖6 初始殘差信號r3(k)和新殘差信號r3(k,?k3)Fig.6 Comparing r3(k,?k3)with r3(k)

      表1 間歇故障發(fā)生(消失)時刻及其實際檢測值Table 1 The detection result of m3(k)by using the proposed method

      為了進一步說明上述方法的有效性,對于發(fā)生相同間歇故障m3(k)的系統(tǒng)(20),基于Kalman濾波器得到系統(tǒng)狀態(tài)估計值設(shè)計殘差信號為選擇構(gòu)造如下的殘差評價函數(shù)其仿真結(jié)果如圖8所示,可以看出,根據(jù)此殘差值無法檢測出間歇故障m3(k)的發(fā)生時刻和消失時刻.

      4 結(jié)論

      本文針對一類存在未知時變參數(shù)攝動的線性離散隨機動態(tài)系統(tǒng)的間歇故障診斷問題,提出一種魯棒診斷方法.基于降維未知輸入觀測器,通過引入滑動時間窗口,本文設(shè)計了一組對系統(tǒng)未知參數(shù)攝動解耦的新的結(jié)構(gòu)化標(biāo)量殘差,該組殘差對間歇故障發(fā)生和消失更為敏感.基于對其統(tǒng)計特性的分析,根據(jù)間歇故障與滑動時間窗口相對位置關(guān)系,本文提出兩個假設(shè)檢驗用于檢測間歇故障的發(fā)生時刻和消失時刻.并利用結(jié)構(gòu)化殘差集,準(zhǔn)確實現(xiàn)故障定位.通過沿參考軌道運行的某衛(wèi)星系統(tǒng)的仿真實驗,驗證了本文方法的有效性.

      圖7 間歇故障檢測結(jié)果Fig.7 The detection result of m3(k)by using the proposed method

      圖8 基于Kalman濾波方法的殘差信號Fig.8 The Kalman filter based residual

      References

      1 Zhou Dong-Hua,Shi Jian-Tao,He Xiao.Review of intermittent fault diagnosis techniques for dynamic systems.Acta Automatica Sinica,2014,40(2):161-171(周東華,史建濤,何瀟.動態(tài)系統(tǒng)間歇故障診斷技術(shù)綜述.自動化學(xué)報,2014,40(2):161-171)

      2 Chen M Y,Xu G B,Yan R Y,Ding S X,Zhou D H.Detecting scalar intermittent faults in linear stochastic dynamic systems.International Journal of Systems Science,2015,46(8):1337-1348

      3 Correcher A,Garc′?a E,Morant F,Quiles E,Blasco-Gimenez R.Intermittent failure diagnosis in industrial processes.In:Proceedings of the 2003 IEEE International Symposium on Industrial Electronics.Rio de Janeiro,Brazil:IEEE,2003. 723-728

      4 Rashid L,Pattabiraman K,Gopalakrishnan S.Characterizing the impact of intermittent hardware faults on programs. IEEE Transactions on Reliability,2015,64(1):297-310

      5 Shivakumar P,Kistler M,Keckler S W,Burger D,Alvisi L.Modeling the impact of device and pipeline scaling on the soft error rate of processor elements.Computer Science Department,University of Texas at Austin,2002.

      6 Zhou Dong-Hua,Wei Mu-Heng,Si Xiao-Sheng.A survey on anomaly detection,life prediction and maintenance decision for industrial processes.Acta Automatica Sinica,2013,39(6):711-722(周東華,魏慕恒,司小勝.工業(yè)過程異常檢測、壽命預(yù)測與維修決策的研究進展.自動化學(xué)報,2013,39(6):711-722)

      7 Sorensen B A,Kelly G,Sajecki A,Sorensen P W.An analyzer for detecting intermittent faults in electronic devices. In:Proceedings of AUTOTESTCON′94 IEEE Conference on Systems Readiness Technology— “Cost Effective Support into the Next Century”.Anaheim,USA:IEEE,1994. 417-421

      8 Yesilyurt I,Gu F S,Ball A D.Gear tooth stiffness reduction measurement using modal analysis and its use in wear fault severity assessment of spur gears.NDT and E International,2003,36(5):357-372

      9 Zanardelli W G,Strangas E G,Aviyente S.Identification of intermittent electrical and mechanical faults in permanent-magnet AC drives based on time-frequency analysis.IEEE Transactions on Industry Applications,2007,43(4):971-980

      10 Ma Jie,Li Gang,Chen Mo.Nonlinear fault reconstruction based fault prognosis for rotating machinery.Acta Automatica Sinica,2014,40(9):2045-2049(馬潔,李剛,陳默.基于非線性故障重構(gòu)的旋轉(zhuǎn)機械故障預(yù)測方法.自動化學(xué)報,2014,40(9):2045-2049)

      11 Hamel A,Gaudreau A,Cote M.Intermittent arcing fault on underground low-voltage cables.IEEE Transactions on Power Delivery,2004,19(4):1862-1868

      12 Correcher A,Garc′?a E,Morant F,Quiles E,Rodriguez L. Intermittent failure dynamics characterization.IEEE Transactions on Reliability,2012,61(3):649-658

      13 Kim C J.Electromagnetic radiation behavior of low-voltage arcing fault.IEEE Transactions on Power Delivery,2009,24(1):416-423

      14 Zhou Dong-Hua,Chen Mao-Yin,Xu Zheng-Guo.The Reliabibility Prediction and Optimal Maintenance Technology. Hefei:Press of University of Science and Technology of China,2013.(周東華,陳茂銀,徐正國.可靠性預(yù)測與最優(yōu)維護技術(shù).合肥:中國科學(xué)技術(shù)大學(xué)出版社,2013.)

      15 Xu Gui-Bin.Researches on Fault Diagnosis and Prediction in Dynamic Systems[Master dissertation],Tsinghua University,China,2011.(徐貴斌.動態(tài)系統(tǒng)故障診斷及預(yù)測研究[碩士學(xué)位論文],清華大學(xué),中國,2011.)

      16 Krasnobaev V A,Krasnobaev L A.Application of Petri nets for the modeling of detection and location of intermittent faults in computers.Automation and Remote Control,1989,49(9):1198-1204

      17 Bennett S M,Patton R J,Daley S,Newton D A.Torque and flux estimation for a rail traction system in the presence of intermittent sensor faults.In:Proceedings of United Kingdom Automatic Control Council International Conference on Control′96.Exeter University,UK:IET,1996.72-77

      18 Wang Y,Xu G H,Zhang Q,Liu D,Jiang K S.Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions. Journal of Sound and Vibration,2015,348:381-396

      19 Zhou C J,Huang X F,Xiong N X,Qin Y Q,Huang S. A class of general transient faults propagation analysis for networked control systems.IEEE Transactions on Systems,Man,and Cybernetics:Systems,2015,45(4):647-661

      20 Gu Zhou,Zhang Jian-Hua,Du Li-Long.Fault tolerant control for a class of time-delay systems with intermittent actuators failure.Control and Decision,2011,26(12):1829-1834(顧洲,張建華,杜黎龍.一類具有間歇性執(zhí)行器故障的時滯系統(tǒng)的容錯控制.控制與決策,2011,26(12):1829-1834)

      21 Edelmayer A,Bokor J,Szigeti F,Keviczky L.Robust detection filter design in the presence of time-varying system perturbations.Automatica,1997,33(3):471-475

      22 Kudva P,Viswanadham N,Ramakrishna A.Observers for linear systems with unknown inputs.IEEE Transactions on Automatic Control,1980,25(1):113-115

      23 Meskin N,Khorasani K.Fault detection and isolation of discrete-time Markovian jump linear systems with application to a network of multi-agent systems having imperfect communication channels.Automatica,2009,45(9):2032-2040

      鄢镕易清華大學(xué)自動化系博士研究生.主要研究方向為間歇故障診斷與容錯控制,高速列車故障診斷與容錯控制.

      E-mail:yry10@mails.tsinghua.edu.cn

      (YAN Rong-YiPh.D.candidate in the Department of Automation,Tsinghua University.His research interest covers fault diagnosis and tolerance control of intermittent faults,fault diagnosis for the information control system of high-speed trains.)

      何瀟清華大學(xué)自動化系副教授.主要研究方向為網(wǎng)絡(luò)化系統(tǒng)的魯棒濾波、故障診斷與容錯控制,無人機(群)智能自主控制中的安全性問題,高速列車信息控制系統(tǒng)的故障診斷.

      E-mail:hexiao@tsinghua.edu.cn

      (HE XiaoAssociate professor in the Department of Automation,Tsinghua University.His research interest covers robust estimation,fault diagnosis and tolerant control of networked systems,safety problems in intelligent autonomous control of unmanned aerial vehicles,fault diagnosis for the information control system of high-speed trains.)

      周東華山東科技大學(xué)電氣與自動化工程學(xué)院教授,清華大學(xué)自動化系教授.主要研究方向為動態(tài)系統(tǒng)的故障診斷與容錯控制,故障預(yù)測與智能維護技術(shù).本文通信作者.

      E-mail:zdh@mail.tsinghua.edu.cn

      (ZHOUDong-HuaProfessor at the College of Electrical Engineering and Automation,Shandong University of Science and Technology,and the Department of Automation,Tsinghua University.His research interest covers fault diagnosis and tolerant control,fault prediction and intelligent maintenance. Corresponding author of this paper.)

      Robust Diagnosis of Intermittent Faults for Linear Stochastic Systems Subject to Time-varying Perturbations

      YAN Rong-Yi1HE Xiao1ZHOU Dong-Hua1,2

      Since intermittent faults(IFs)have an intermittency property,the detection of IFs requires:the current appearing time of an IF must be detected before its disappearing time;the current disappearing time of an IF must be detected before the subsequent appearing time.In this paper,the robust detection problem of IFs for a class of linear discrete-time stochastic systems subject to unknown time-varying perturbations is investigated.Based on reducedorder unknown input observers(UIOs),a novel set of structured truncated residuals is designed to detect and isolate IFs by introducing sliding-time windows,and a sufficient condition is proposed for the existence of the residual generators. Compared to traditional residuals,the novel truncated residuals,which get decoupled from time-varying perturbations,are more sensitive to the IFs.Based on the analysis of these novel residuals,two hypothesis tests are proposed to detect all the appearing times and the disappearing times of an IF.In addition,a detailed algorithm is provided to perform the given scheme.Finally,simulation results on a model of a satellite moving in a circular reference orbit are presented to illustrate the effectiveness of the proposed method.

      Intermittent faults(IFs),robust fault diagnosis,unknown time-varying perturbations,reduced-order unknown input observer,hypothesis tests

      10.16383/j.aas.2016.c150756

      Yan Rong-Yi,He Xiao,Zhou Dong-Hua.Robust diagnosis of intermittent faults for linear stochastic systems subject to time-varying perturbations.Acta Automatica Sinica,2016,42(7):1004-1013

      2015-11-11錄用日期2016-03-20
      Manuscript received November 11,2015;accepted March 20,2016
      國家自然科學(xué)基金(61490701,61290324,61473163,61522309),山東省泰山學(xué)者優(yōu)勢特色學(xué)科人才團隊支持計劃(魯政辦字[2015]73),清華大學(xué)自主科研項目(025-陳茂銀-Z09)資助
      Supported by National Natural Science Foundation of China (61490701,61290324,61473163,61522309),Research Fund for the Taishan Scholar Project of Shandong Province([2015]73),and Tsinghua University Initiative Scientific Research Program (025-CMY-Z09)
      本文責(zé)任編委鐘麥英
      Recommended by Associate Editor ZHONG Mai-Ying
      1.清華大學(xué)自動化系北京1000842.山東科技大學(xué)電氣與自動化學(xué)院青島266590
      1.Department of Automation,Tsinghua University,Beijing 1000842.College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590

      猜你喜歡
      魯棒時變間歇
      間歇供暖在散熱器供暖房間的應(yīng)用
      煤氣與熱力(2022年4期)2022-05-23 12:44:46
      基于學(xué)習(xí)的魯棒自適應(yīng)評判控制研究進展
      目標(biāo)魯棒識別的抗旋轉(zhuǎn)HDO 局部特征描述
      基于時變Copula的股票市場相關(guān)性分析
      智富時代(2017年4期)2017-04-27 17:08:47
      管群間歇散熱的土壤溫度響應(yīng)與恢復(fù)特性
      煙氣輪機復(fù)合故障時變退化特征提取
      基于Cauchy魯棒函數(shù)的UKF改進算法
      基于MEP法的在役橋梁時變可靠度研究
      目標(biāo)軌跡更新的點到點魯棒迭代學(xué)習(xí)控制
      間歇精餾分離喹啉和異喹啉的模擬
      伊宁县| 白朗县| 叙永县| 司法| 临漳县| 诏安县| 高尔夫| 梨树县| 大关县| 云阳县| 城固县| 应城市| 东乡| 湖州市| 金昌市| 双城市| 郸城县| 富蕴县| 无锡市| 油尖旺区| 从化市| 淅川县| 新沂市| 涞源县| 卢湾区| 宣武区| 牟定县| 临朐县| 泸定县| 阿拉善左旗| 游戏| 竹山县| 邛崃市| 长宁区| 澳门| 潜山县| 临清市| 巴彦县| 依兰县| 古交市| 岳池县|