王芳芳 張 冰
胸部放射學(xué)
輕度認(rèn)知障礙病人miRNA與腦DTI的相關(guān)性研究
王芳芳張冰*
輕度認(rèn)知障礙(MCI)是正常老化與阿爾茨海默?。ˋD)之間的過渡狀態(tài),多數(shù)進(jìn)展為AD。微小RNA (miRNA)可以通過影響Aβ生成、免疫炎癥反應(yīng)、突觸可塑性等多種病理生理過程來影響AD的進(jìn)程。但外周血miRNA反映的輕微病理改變是否與AD源性MCI腦內(nèi)的特異性損傷有關(guān)目前尚不清楚。腦MR擴(kuò)散張量成像(DTI)是檢測神經(jīng)纖維連接完整性損傷的敏感和特異的方法,有研究發(fā)現(xiàn)腦內(nèi)特異性的纖維束損傷模式可以預(yù)測MCI向AD進(jìn)展。也有研究證實(shí)認(rèn)知障礙相關(guān)miRNA危險(xiǎn)基因攜帶者腦中額葉-紋狀體中的DTI-FA值下降。因此,結(jié)合DTI與miRNA相關(guān)的病理改變有可能成為早期診斷AD源性MCI的特異性方法。
輕度認(rèn)知障礙;阿爾茨海默病;miRNA;擴(kuò)散張量成像
Int J Med Radiol,2016,39(4):361-365
輕度認(rèn)知障礙(mild cognitive impairment,MCI)是正常老化和癡呆的過渡階段,其中以記憶損害為主的遺忘型MCI(amnestic MCI,aMCI)5年內(nèi)有80%可轉(zhuǎn)化為阿爾茨海默?。ˋlzheimer's disease,AD)[1],是AD源性MCI的主要類型,因此是早期診斷AD的重點(diǎn)。然而目前國際公認(rèn)的簡明智能狀態(tài)量表(mini mental statue examination,MMSE)對診斷MCI的特異性和敏感性均不高,因此探尋AD前驅(qū)階段MCI的神經(jīng)生物標(biāo)志物成為近年神經(jīng)科學(xué)研究的熱點(diǎn)。
AD的發(fā)病機(jī)制尚不清楚,其中淀粉樣蛋白(Aβ42)在腦內(nèi)沉積后形成老年斑被公認(rèn)為AD的主要病理特征。新的AD診斷標(biāo)準(zhǔn)將Aβ作為核心的生物學(xué)靶標(biāo),目前可應(yīng)用于臨床的Aβ檢測方法有兩種:腦脊液Aβ42和淀粉樣蛋白成像(PiB-PET),可以間接反映Aβ在腦內(nèi)沉積的程度。但PET具有輻射損傷且費(fèi)用昂貴,而腦脊液檢測病人較難接受,因此尋找簡單無創(chuàng)且易于接受的檢測方法成為關(guān)注熱點(diǎn)。微小RNA(microRNA,miRNA或miR)是Aβ的上游調(diào)控分子,可以通過多種途徑影響AD的病理進(jìn)程,在AD源性MCI的發(fā)生發(fā)展過程中起著重要作用。而且miRNA在外周血中即可檢測,逐漸成為AD研究中有前景的生物標(biāo)志物之一[2]。外周血miRNA反映的輕微病理改變是否與AD源性MCI腦內(nèi)的特異性損傷有關(guān)還需深入探討。
腦MR擴(kuò)散張量成像 (diffusion tensor imaging,DTI)是檢測神經(jīng)纖維連接損傷的高度敏感和特異的方法。已經(jīng)有研究發(fā)現(xiàn)腦內(nèi)特異性的纖維束損傷模式可以預(yù)測MCI向AD進(jìn)展。有研究證實(shí)認(rèn)知障礙相關(guān)miRNA危險(xiǎn)基因攜帶者腦中額葉-紋狀體中的DTI上的各向異性分?jǐn)?shù) (fractional anisotropy,F(xiàn)A)值下降。因此,結(jié)合DTI與miRNA相關(guān)的病理改變有可能成為早期診斷AD源性MCI的方法。
miRNA是一大家族小分子非編碼單鏈RNA,長度20~25個(gè)堿基,由一段具有發(fā)夾環(huán)結(jié)構(gòu),長度為70~90個(gè)堿基的單鏈RNA前體經(jīng)Dicer酶剪切以后形成。在轉(zhuǎn)錄水平或轉(zhuǎn)錄后水平調(diào)節(jié)基因表達(dá)。miRNA與靶信使RNA(message RNA,mRNA)的3'非翻譯區(qū)配對來發(fā)揮功能,導(dǎo)致轉(zhuǎn)錄抑制、mRNA不穩(wěn)定或降解,從而影響疾病的病理生理過程。在AD病理生理過程中,miRNA可以通過影響Aβ生成、免疫炎癥反應(yīng)、突觸可塑性等多種病理生理過程來影響AD的進(jìn)程(表1)。
表1 參與AD的病理進(jìn)程的miRNA
1.1miR-29家族調(diào)控Aβ42生成Aβ為AD的主要病理特征,AD病人腦內(nèi)存在高水平的Aβ42甚至沉積形成老年斑,是由于Aβ42生成速度明顯大于其降解的速度,存在降解障礙,或者外周與腦內(nèi)的運(yùn)輸功能障礙,即外周進(jìn)入腦內(nèi)多于腦內(nèi)向外周的清除[10]。Aβ42的生成和代謝與相關(guān)酶的活性有關(guān)。有研究發(fā)現(xiàn),在AD小鼠模型腦中,Aβ42沉積形成斑塊前,調(diào)控Aβ42生成的限速酶淀粉蛋白前體β位分解酶1(β-site APP-cleaving enzyme-1,BACE1)就明顯高于正常小鼠,而且BACE1改變的時(shí)間明顯早于Aβ含量的升高和行為學(xué)異常出現(xiàn)的時(shí)間[11]。BACE1在轉(zhuǎn)錄水平和轉(zhuǎn)錄后水平受多種因素調(diào)控。其中miR-29可結(jié)合BACE1 mRNA的3′端非編碼序列,降解其RNA,抑制RNA轉(zhuǎn)錄成蛋白,從而影響Aβ水平[12-13]。miR-29家族包括miR-29a、miR-29b 和miR-29c。尸體解剖證實(shí),在腦灰質(zhì)中miR-29與淀粉樣斑塊的程度明顯相關(guān)[14]。在AD病人腦中miR-29a顯著下調(diào)[15]。miR-29b被證實(shí)是神經(jīng)細(xì)胞調(diào)亡的抑制劑,比其他miRNA更加具有AD特異性的改變[13]。在miR-29c的轉(zhuǎn)基因鼠中,BACE1水平明顯下調(diào)[12]。
由此推測,AD病人腦中miR-29的變化早于BACE1,更早于Aβ42的改變和行為學(xué)異常,即在MCI階段miR-29就可能改變,miR-29家族 (miR-29a/b/c)可能作為診斷MCI特異性的一個(gè)指標(biāo),可預(yù)警Aβ42介導(dǎo)的AD早期病理變化。
1.2miR-146a和miR-125b參與AD中免疫炎癥反應(yīng)McGeer等[16]研究發(fā)現(xiàn)AD病人腦內(nèi)會(huì)發(fā)生免疫炎癥反應(yīng),miRNA可能介導(dǎo)這個(gè)過程。在人類和小鼠大腦中,miR-146a含量豐富,在調(diào)節(jié)固有免疫和特異性免疫炎癥反應(yīng)信號通路中發(fā)揮重要作用。在炎癥因子和淀粉樣蛋白刺激的原代培養(yǎng)的神經(jīng)元中[17],發(fā)現(xiàn)多種miRNA的表達(dá)明顯增加,miR-125b 和miR-146a是其最主要兩個(gè)成員。它們均參與轉(zhuǎn)錄因子NF-κB的調(diào)控,從而影響免疫和炎癥相關(guān)蛋白的表達(dá)過程。對NF-κB特異性敏感的miR-146a與腦內(nèi)重要的免疫抑制分子——補(bǔ)體因子H(complement factor H,CFH)的3'非翻譯區(qū)高度互補(bǔ),在AD病人大腦中的炎癥反應(yīng)中發(fā)揮重要作用[5]。在AD大腦中miR-146a表達(dá)上調(diào)與CFH的表達(dá)下調(diào)相匹配,這種情況也出現(xiàn)在IL-1β、Aβ42、氧化應(yīng)激的神經(jīng)細(xì)胞培養(yǎng)中。
1.3miR-137等參與神經(jīng)環(huán)路-突觸可塑性調(diào)節(jié)
神經(jīng)環(huán)路的形成依賴于不斷的突觸活動(dòng)和重塑。突觸是神經(jīng)元與靶細(xì)胞傳遞信息的重要結(jié)構(gòu),因此它是神經(jīng)系統(tǒng)執(zhí)行各種功能的基本結(jié)構(gòu),如學(xué)習(xí)和記憶功能[18]。突觸可塑性是學(xué)習(xí)記憶的神經(jīng)生物學(xué)基礎(chǔ)[19]。突觸形態(tài)結(jié)構(gòu)的變化是MCI/AD早期神經(jīng)病理改變之一。多項(xiàng)研究證實(shí)miR-137通過突觸調(diào)節(jié)與神經(jīng)發(fā)生、神經(jīng)成熟等密切相關(guān)[20]。其他研究也發(fā)現(xiàn)很多與突觸調(diào)節(jié)密切相關(guān)的miRNA:如Edbauer等[21]利用單個(gè)miRNA基因敲除小鼠研究發(fā)現(xiàn)miR-125b和miR-132均能刺激突觸生長,增加樹突棘分支,增加突觸數(shù)、密度,增強(qiáng)突觸傳遞;Schratt等[22]發(fā)現(xiàn)miR-134、miR-137和miR-138具有負(fù)性調(diào)節(jié)突觸可塑性的生物學(xué)特性,從而影響學(xué)習(xí)和記憶功能。
表2 AD病程中FA下降和MD升高的神經(jīng)環(huán)路微結(jié)構(gòu)
DTI是檢測腦微結(jié)構(gòu)改變的高度敏感的方法,是唯一能夠同時(shí)顯示神經(jīng)元及其突觸完整性和解剖連接病理改變的磁共振方法,明顯早于腦萎縮出現(xiàn)的時(shí)間[23]。反映細(xì)胞外水分子擴(kuò)散特性的DTI參數(shù)主要為平均擴(kuò)散系數(shù) (mean diffusivity,MD)和FA。MD的升高代表了無方向性擴(kuò)散特征,即神經(jīng)元及神經(jīng)纖維髓鞘橫向發(fā)展的破壞(如脫髓鞘),F(xiàn)A值的下降代表了神經(jīng)纖維縱向發(fā)展的破壞(如華勒氏變性)[24-25]。與記憶功能密切相關(guān)的海馬旁白質(zhì)和后扣帶回是認(rèn)知神經(jīng)環(huán)路的重要節(jié)點(diǎn),在MCI中,其FA下降而MD升高[25-26],并且楔前葉的FA值降低可以作為正常認(rèn)知(normal cognitive,NC)者向aMCI的轉(zhuǎn)化標(biāo)志之一[26]。此外,薈萃分析發(fā)現(xiàn),在AD病人中,MD升高和FA降低廣泛存在于腦內(nèi)主要纖維束,累及除了頂葉白質(zhì)、枕葉和內(nèi)囊以外的所有腦區(qū),與MCI中的這種纖維束損傷模式相似[D2],只是程度較輕[27],見表2。
3.1AD/MCI病人中miRNA與DTI參數(shù)變化的潛在聯(lián)系如前所述,miRNA可以通過多種病理途徑影響AD的進(jìn)程,Aβ42寡聚體在細(xì)胞外沉積形成老年斑,并直接與神經(jīng)元細(xì)胞膜結(jié)合而破壞細(xì)胞結(jié)構(gòu),進(jìn)而導(dǎo)致腦微結(jié)構(gòu)破壞。主要影響海馬和皮質(zhì)區(qū)域,造成神經(jīng)元及其軸突早期的功能障礙,這也被多種影像檢查結(jié)果證實(shí)[39-40]。MCI病人的認(rèn)知水平衰退與腦內(nèi)Aβ沉積程度也明顯相關(guān)[10]。有研究證實(shí)MCI中Aβ沉積陽性者與陰性者相比,穹窿和胼胝體的FA下降,伴隨MD升高,說明這些纖維束微結(jié)構(gòu)破壞與淀粉樣蛋白沉積有關(guān)[41]。更有研究[42]發(fā)現(xiàn),在MCI病程中的更早期,即無癥狀的臨床前期,匹茲堡復(fù)合物B(PiB)陽性但認(rèn)知功能正常的老年人腦DTI上FA升高而MD降低,這一改變與MCI期改變相反,研究認(rèn)為與認(rèn)知代償有關(guān)。由此可見,DTI可以反映Aβ介導(dǎo)的神經(jīng)環(huán)路的微結(jié)構(gòu)損傷。提示Aβ僅微量改變時(shí),DTI就具有檢測輕微病理異常的能力,即DTI可以檢測出腦內(nèi)尚未出現(xiàn)明顯Aβ沉積的MCI病人腦內(nèi)微結(jié)構(gòu)改變,而miR-29調(diào)控Aβ代謝,因此,miR-29可能在疾病最早階段出現(xiàn)變化。
3.2外周血miRNA通過其調(diào)控基因與DTI建立直接關(guān)系外周血miRNA有直接檢測濃度和其調(diào)控基因表達(dá)兩種檢測方法。有研究證實(shí)在MCI病人血清中AD特異性miRNA是非常早期的生物標(biāo)志物,研究也發(fā)現(xiàn)miRNA的遺傳變異型與AD病理過程相關(guān),但研究結(jié)果尚未統(tǒng)一。Bettens等[43]發(fā)現(xiàn)BACE1 mRNA 3'端非編碼序列和miR-29基因簇所有常見的突變位點(diǎn)與AD發(fā)病風(fēng)險(xiǎn)無關(guān)。但也有研究證實(shí)miR-146a的啟動(dòng)子區(qū)域的rs57095239位點(diǎn)的基因多態(tài)性與AD發(fā)病風(fēng)險(xiǎn)和認(rèn)知功能下降的速度相關(guān),參與AD的遺傳易感性,并且AA等位基因型能夠增加miR-146a的表達(dá),影響AD發(fā)病機(jī)制中重要的促炎細(xì)胞因子[44]。由此推測miRNA突變基因可能會(huì)影響其攜帶者腦內(nèi)的纖維束微結(jié)構(gòu),即DTI 上FA值和MD值都可能變化。這種推測在精神分裂癥中得到了證實(shí),有文獻(xiàn)報(bào)道 miR-137的rs1625579突變位點(diǎn)與精神分裂癥病人的認(rèn)知障礙密切相關(guān)[45-46],其攜帶者全腦DTI-FA值彌漫下降,而在保護(hù)性基因攜帶者腦內(nèi)FA值則與正常對照組沒有差別[47]。另外,miR-137的TT等位基因比GA等位基因在額葉-紋狀體中的FA值下降的更為明顯,并且比GG等位基因者有更差的記憶力與處理事情的速度,因此認(rèn)為額葉-紋狀體白質(zhì)完整性下降可能是精神分裂癥病人注意力、處理速度及精神分裂癥狀變差的結(jié)構(gòu)基礎(chǔ)[48]。
目前的研究顯示,miRNA和腦微結(jié)構(gòu)改變存在著潛在聯(lián)系。而MCI病人的基因影像表型研究還屬于空白領(lǐng)域,根據(jù)研究推測MCI病人中miRNA的改變可能與特定腦結(jié)構(gòu)和功能改變有關(guān)。miRNA可以通過多種途徑參與AD的發(fā)病過程,因此用miRNA和DTI的相關(guān)性來研究AD源性MCI的轉(zhuǎn)化是一項(xiàng)非常新穎和實(shí)用的技術(shù),并有可能成為AD早期診斷的一種新型生物標(biāo)志物。
[1] Petersen RC,Roberts RO,Knopman DS,et al.Mild cognitive impairment:ten years later[J].Arch Neurol,2009,66:1447-1455.
[2] Buckholtz NS.Perspective:in search of biomarkers[J].Nature,2011,475:S8.
[3]Yelamanchili SV,F(xiàn)ox HS.Defining larger roles for“Tiny”RNA molecules:role of miRNAs in neurodegeneration research[J].J Neuroimmune Pharmacol,2010,5:63-69.
[4]Hebert SS,Horre K,Nicolai L,et al.Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/beta-secretase expression[J].Proc Natl Acad Sci U S A,2008,105:6415-6420.
[5] Lukiw WJ,Zhao Y,Cui JG.An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells[J].J Biol Chem,2008,283:31315-31322.
[6]Li YY,Cui JG,Hill JM,et al.Increased expression of miRNA-146a in Alzheimer's disease transgenic mouse models[J].Neurosci Lett,2011,487:94-98.
[7]Vo N,Klein ME,Varlamova O,et al.A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis[J].Proc Natl Acad Sci USA,2005,102:16426-16431.
[8]Bekris LM,Lutz F,Montine TJ,et al.MicroRNA in Alzheimer's disease:an exploratory study in brain,cerebrospinal fluid and plasma[J].Biomarkers,2013,18:455-466.
[9]Hebert SS,Papadopoulou AS,Smith P,et al.Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration[J].Hum Mol Genet,2010,19:3959-3969.
[10]Querfurth HW,Laferla FW.Alzheimer's disease[J].N Engl J Med,2010,362:329-344.
[11]Luo Y,Niu F,Sun Z,et al.Altered expression of A beta metabolism-associated molecules from D-galactose/AlCl3induced mouse brain[J].Mech Ageing Dev,2009,130:248-252.
[12]Zong Y,Wang H,Dong W,et al.miR-29c regulates BACE1 protein expression[J].Brain Res,2011,1395:108-115.
[13]Delay C,Mandemakers W,Hebert SS.MicroRNAs in Alzheimer's disease[J].Neurobiol Dis,2012,46:285-290.
[14]Wang WX,Huang Q,Hu Y,et al.Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex:white matter versus gray matter[J].Acta Neuropathol,2011,121:193-205.
[15]Shioya M,Obayashi S,Tabunoki H,et al.Aberrant microRNA expression in the brains of neurodegenerative diseases:miR-29a decreased in Alzheimer disease brains targets neurone navigator 3[J].Neuropathol Appl Neurobiol,2010,36:320-330.
[16]McGeer PL,Rogers J,McGeer EG.Inflammation,anti-inflammatory agents and Alzheimer disease:the last 12 years[J].J Alzheimers Dis,2006,9:271-276.
[17]Lukiw WJ,Alexandrov PN.Regulation of complement factor H(CFH)by multiple miRNAs in Alzheimer's disease(AD)brain[J].Mol Neurobiol,2012,46:11-19.
[18]Luo Z.Synapse formation and remodeling[J].Sci China Life Sci,2010,53:315-321.
[19]Pliássova A,Lopes JP,Lemos C,et al.The association of amyloid-beta protein precursor with alpha-and beta-secretases in mouse cerebral cortex synapses is altered in early Alzheimer's disease[J].Mol Neurobiol,2015.DOI:10.1007/s12035-015-9491-9.
[20]Smrt RD,Szulwach KE,Pfeiffer RL,et al.MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1 [J].Stem Cells,2010,28:1060-1070.
[21]Edbauer D,Neilson JR,F(xiàn)oster KA,et al.Regulation of synapticstructure and function by FMRP-associated microRNAs miR-125b and miR-132[J].Neuron,2010,65:373-384.
[22]Schratt GM,Tuebing F,Nigh EA,et al.A brain-specific microRNA regulates dendritic spine development[J].Nature,2006,439:283-289.
[23]Canu E,McLaren DG,F(xiàn)itzgerald ME,et al.Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease[J].J Alzheimers Dis,2010,19:963-976.
[24]Fellgiebel A,Dellani PR,Greverus D,et al.Predicting conversion to dementia in mild cognitive impairment by volumetric and diffusivity measurements of the hippocampus[J].Psychiatry Res,2006,146:283-287.
[25]Kantarci K,Avula R,Senjem ML,et al.Dementia with Lewy bodies and Alzheimer disease Neurodegenerative patterns characterized by DTI[J].Neurology,2010,74:1814-1821.
[26]Zhuang L,Sachdev PS,Trollor JN,et al.Microstructural white matter changes in cognitively normal individuals at risk of amnestic MCI[J]. Neurology,2012,79:748-754.
[27]Sexton CE,Kalu UG,F(xiàn)ilippini N,et al.A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease[J].Neurobiol Aging,2011,32:e5-18
[28]Bosch B,Arenaza-Urquijo EM,Rami L,et al.Multiple DTI index analysis in normal aging,amnestic MCI and AD.Relationship with neuropsychological performance[J].Neurobiol Aging,2012,33:61-74.
[29]Douaud G,Jbabdi S,Behrens TE,et al.DTI measures in crossingfibre areas:increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease[J].Neuroimage,2011,55:880-890.
[30]Acosta-Cabronero J,Williams GB,Pengas G,et al.Absolute diffusivities define the landscape of white matter degeneration in Alzheimer's disease[J].Brain,2010,133:529-539.
[31]Serra L,Cercignani M,Lenzi D,et al.Grey and white matter changes at different stages of Alzheimer's disease[J].J Alzheimers Dis,2010,19:147-159.
[32]Canu E,McLaren DG,F(xiàn)itzgerald ME,et al.Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease[J].J Alzheimers Dis,2010,19:963-976.
[33]Salat DH,Tuch DS,van der Kouwe AJ,et al.White matter pathology isolates the hippocampal formation in Alzheimer's disease[J].Neurobiol Aging,2010,31:244-256.
[34]Fayed N,Davila J,Oliveros A,et al.Utility of different MR modalities in mild cognitive impairment and its use as a predictor of conversion to probable dementia[J].Acad Radiol,2008,15:1089-1098.
[35]Arenaza-Urquijo EM,Bosch B,Sala-Llonch R,et al.Specific anatomic associations between white matter integrity and cognitive reserve in normal and cognitively impaired elders[J].Am J Geriatr Psychiatry,2011,19:33-42.
[36]van Bruggen T,Stieltjes B,Thomann PA,et al.Do Alzheimer-specific microstructural changes in mild cognitive impairment predict conversion[J].Psychiatry Res,2012,203:184-193.
[37]Douaud G,Menke RA,Gass A,et al.Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease[J].J Neurosci,2013,33:2147-2155.
[38]Kantarci K,Petersen RC,Boeve BF,et al.DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment[J].Neurology,2005,64:902-904.
[39]張冰,張鑫,李茗,等.額顳葉變性亞型與阿爾茨海默病的腦灰質(zhì)萎縮模式的結(jié)構(gòu)MRI研究[J].中華放射學(xué)雜志,2012,46:586-592.
[40]Jack CR,Knopman DS,Jagust WJ,et al.Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade[J]. Lancet Neurol,2010,9:119-128.
[41]Chao LL,Decarli C,Kriger S,et al.Associations between white matter hyperintensities and beta amyloid on integrity of projection,association,and limbic fiber tracts measured with diffusion tensor MRI [J].PLoS One,2013,8:e65175.
[42]Racine AM,Adluru N,Alexander AL,et al.Associations between white matter microstructure and amyloid burden in preclinical Alzheimer's disease:a multimodal imaging investigation[J].Neuroimage Clin,2014,4:604-614.
[43]Bettens K,Brouwers N,Engelborghs S,et al.APP and BACE1 miRNA genetic variability has no major role in risk for Alzheimer disease[J].Hum Mutat,2009,30:1207-1213.
[44]Cui L,Li Y,Ma G,et al.A functional polymorphism in the promoter region of microRNA-146a is associated with the risk of Alzheimer disease and the rate of cognitive decline in patients[J].PLoS One,2014,9:e89019.
[45]Green MJ,Cairns MJ,Wu J,et al.Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia[J].Mol Psychiatry,2013,18:774-780.
[46]Cummings E,Donohoe G,Hargreaves A,et al.Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137[J].Neurosci Lett,2013,532:33-38.
[47]Lett TA,Chakravarty MM,F(xiàn)elsky D,et al.The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia[J].Mol Psychiatry,2013,18:443-450.
[48]Kuswanto CN,Sum MY,Qiu A,et al.The impact of genome wide supported microRNA-137(MIR137)risk variants on frontal and striatal white matter integrity,neurocognitive functioning,and negative symptoms in schizophrenia[J].Am J Med Genet B Neuropsychiatr Genet,2015,168:317-326.
(收稿2015-09-23)
The research progress of the correlation between miRNA and cerebral DTI in patients with mild cognitiveimpairment
WANG Fangfang,ZHANG Bing.Department of Radiology,The Affiliated Drum Tower Hospital of Nanjing University Medical School,Nanjing 210008,China
Mild cognitive impairment(MCI)is a transitional state between normal aging and Alzheimer's disease (AD),and most MCI will progress to AD.The miRNA can influence the progress of the AD through a variety of pathological processes,including Aβ generation,immune inflammatory response and synaptic plasticity.However,it is still unknown whether the mild alteration of miRNA in peripheral blood is related to the specificity damage in the brain with MCI due to AD.The magnetic resonance diffusion tensor imaging(DTI)is a sensitive and specific method to detect the integrity of the neuronal fibers.It has been reported that the unique disrupted mode of neuronal fibers integrity could predict the MCI progress to AD.Further,it has been demonstrated that the DTI-FA value decreased in the frontal-striatum in miRNA gene carriers with cognitive impairment,which was associated with the level of cognitive impairment.Therefore,combining miRNA associated pathological changes with brain magnetic resonance DTI may become a specific method for early diagnosis of MCI due to AD.
Mild cognitive impairment;Alzheimer's disease;miRNA;Diffusion tensor imaging
國家自然科學(xué)基金(81300925)
10.19300/j.2016.Z3703
R734.2,R445
A
南京大學(xué)醫(yī)學(xué)院附屬鼓樓醫(yī)院醫(yī)學(xué)影像科,南京210008
張冰,E-mail:zhangbing_nanjing@vip.163.com
*審校者