郭新穎(蘭州財(cái)經(jīng)大學(xué)統(tǒng)計(jì)學(xué)院,甘肅蘭州730020)
ARIMA模型與指數(shù)平滑法對(duì)山東省GDP的實(shí)證分析
郭新穎
(蘭州財(cái)經(jīng)大學(xué)統(tǒng)計(jì)學(xué)院,甘肅蘭州730020)
文借助Eviews6.0和Excel軟件,建立了ARIMA(1,2,1)預(yù)測(cè)模型和三次指數(shù)平滑預(yù)測(cè)模型,對(duì)山東省1978年到2010年國(guó)內(nèi)生產(chǎn)總值(GDP)數(shù)據(jù)進(jìn)行分析,并對(duì)2011年到2013年的GDP進(jìn)行預(yù)測(cè)。結(jié)果表明,ARIMA模型預(yù)測(cè)結(jié)果與真實(shí)值相比平均相對(duì)誤差小,結(jié)果更為精確,基本符合事實(shí)。因此,選擇ARIMA(1,2,1)模型作為最優(yōu)模型為有關(guān)部門制定經(jīng)濟(jì)發(fā)展戰(zhàn)略、經(jīng)濟(jì)發(fā)展規(guī)劃提供重要依據(jù)。
經(jīng)濟(jì)統(tǒng)計(jì);ARIMA模型;指數(shù)平滑法;GDP預(yù)測(cè)
改革開(kāi)放以來(lái),隨著工業(yè)化、城市化和國(guó)際化進(jìn)程的不斷加快,山東省經(jīng)濟(jì)飛速發(fā)展。2013年,全省GDP實(shí)現(xiàn)54684.3億元,比上年增長(zhǎng)9.6%,人均生產(chǎn)總值56323元,增長(zhǎng)9.0%,被評(píng)為中國(guó)最具綜合競(jìng)爭(zhēng)力的省區(qū)之一。本文選取山東省進(jìn)行研究,從側(cè)面反映我國(guó)國(guó)民經(jīng)濟(jì)的未來(lái)走勢(shì),為政府制定經(jīng)濟(jì)發(fā)展戰(zhàn)略提供依據(jù)。圖1為山東省1978年到2010年GDP數(shù)據(jù)變化時(shí)序圖。
圖1 山東省1978年到2010年GDP時(shí)序圖
從圖1可以看出,山東省1978年到2010年GDP呈現(xiàn)出明顯的趨勢(shì)性,在1978年到2000年緩慢增長(zhǎng),之后又呈現(xiàn)出強(qiáng)勁的增長(zhǎng)趨勢(shì)。因此考慮該序列為非平穩(wěn)時(shí)間序列。用Eviews6.0,進(jìn)行ADF單位根檢驗(yàn)精確判斷其平穩(wěn)性,檢驗(yàn)結(jié)果見(jiàn)表1。
表1 GDP序列的ADF檢驗(yàn)結(jié)果
從結(jié)果看,t=3.647974,分別大于顯著性水平為10%、5%和1%的臨界值,因此不能拒絕該序列存在單位根原假設(shè),該序列可能存在單位根,不滿足平穩(wěn)條件,需要對(duì)序列進(jìn)行差分。經(jīng)測(cè)算,二階差分后的序列基本平穩(wěn)。所以,ARIMA(p,d,q)模型中的d=2,確認(rèn)該模型為二階單整序列。
我們嘗試擬合ARIMA(1,2,1)、ARIMA(1,2,2)、ARIMA(2,2,1)、ARIMA(2,2,2)模型,最終根據(jù)AIC準(zhǔn)則評(píng)價(jià)模型優(yōu)劣,確定最優(yōu)模型。表2為擬合結(jié)果。
表2 各模型AIC值大小
結(jié)果顯示,ARIMA(1,2,1)模型的AIC值最小,對(duì)ARIMA(1,2,1)進(jìn)行回歸,結(jié)果見(jiàn)表3。
表3中,各參數(shù)的p值為0,均小于0.05,參數(shù)估計(jì)有效。因此,二階差分后GDP序列的ARIMA(1,2,1)模型 為 :Δ2GDPt=34.63281-1.361730Δ2GDPt-1+εt-1.66847εt-1。R2=0.75,精度較高,可以用來(lái)做短期預(yù)測(cè)。
表3 回歸結(jié)果
對(duì)ARIMA(1,2,1)模型的殘差序列進(jìn)行白噪聲檢驗(yàn)?zāi)P陀行?,結(jié)果如圖2所示。
圖2 ARIMA(1,2,1)殘差序列白噪聲檢驗(yàn)圖
檢驗(yàn)結(jié)果顯示,自相關(guān)圖都落在兩倍標(biāo)準(zhǔn)差之內(nèi),并且P值都大于0.05,因此可以95%的置信水平接受原假設(shè),認(rèn)為該殘差序列為白噪聲序列,模型通過(guò)檢驗(yàn),可用來(lái)預(yù)測(cè)。
利用ARIMA(1,2,1)模型,對(duì)山東省2011年到2013年GDP進(jìn)行預(yù)測(cè),其預(yù)測(cè)值與真實(shí)值比較結(jié)果見(jiàn)表4。
表4 ARIMA(1,2,1)模型的預(yù)測(cè)值與真實(shí)值得比較數(shù)據(jù)表
由圖1,1978年到2010年GDP序列呈現(xiàn)出二次曲線的增長(zhǎng)趨勢(shì),因此,利用Excel對(duì)該數(shù)據(jù)進(jìn)行三次指數(shù)平滑預(yù)測(cè)。經(jīng)測(cè)算,當(dāng)a=0.1時(shí),MSE3= 4537.87;當(dāng)a=0.6時(shí),MSE3=9962.07;當(dāng)a=0.9時(shí),MSE3=21785.73。
根據(jù)MSE最小原則,選擇a=0.1為平滑系數(shù)。由此得出at=32766.15,bt=2353.11,bt=34.19,預(yù)測(cè)模型為:=32766.15+2353.11T+34.19T2,t=2010。預(yù)測(cè)結(jié)果見(jiàn)表5:
表5 指數(shù)平滑法的預(yù)測(cè)值與真實(shí)值得比較數(shù)據(jù)表
運(yùn)用指數(shù)平滑法與ARIMA模型對(duì)山東省2011年到2013年GDP進(jìn)行預(yù)測(cè),得出兩種預(yù)測(cè)結(jié)果的平均相對(duì)誤差分別為 24.64%與 8.15%。所以,ARIMA(1,2,1)模型預(yù)測(cè)結(jié)果的平均相對(duì)誤差比指數(shù)平滑法小,效果較好,因此選擇ARIMA(1,2,1)模型為最優(yōu)預(yù)測(cè)模型。
比較兩種預(yù)測(cè)方法,都沒(méi)有考慮影響因素的種類和個(gè)數(shù),只考慮了數(shù)據(jù)的過(guò)去值、現(xiàn)在值和誤差值,利用數(shù)據(jù)本身的信息對(duì)未來(lái)進(jìn)行預(yù)測(cè)。指數(shù)平滑預(yù)測(cè)法有原理簡(jiǎn)單,操作簡(jiǎn)便,易于解釋,但只能把過(guò)去存在的發(fā)展趨勢(shì)繼續(xù)運(yùn)用在將來(lái),對(duì)隨機(jī)性信息浪費(fèi)嚴(yán)重。而ARIMA模型預(yù)測(cè)法在預(yù)測(cè)的過(guò)程中既考慮了經(jīng)濟(jì)現(xiàn)象在時(shí)間上的依存性,又考慮了隨機(jī)波動(dòng)的干擾性,雖然過(guò)程較為繁瑣,但得到了更加理想的預(yù)測(cè)結(jié)果。在實(shí)際的GDP預(yù)測(cè)中,也許不能把所有因素都考慮周全,因此,可以采用ARIMA模型為主,指數(shù)平滑法為輔的方式,綜合分析預(yù)測(cè)出最優(yōu)的結(jié)果。
[1]趙玉新.多元線性回歸分析中自變量的篩選[J].經(jīng)濟(jì)觀察,2011(11):32-34.
[2]丁文斌.GDP總量預(yù)測(cè)方法探討研究[J].統(tǒng)計(jì)與預(yù)測(cè),2003(5):57-59.
[3]孫彩,姜明輝.基于GP的非線性GDP預(yù)測(cè)模型的構(gòu)建與應(yīng)用[N].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2008(1):133-138.
[4]G.P.E.BOXandG.MJenkins.TimeSeriesAnalysis:Forcastingandcontrol[M].SanFrancisco:SanFrancisco Press,1978.23-25.
[5]王燕.應(yīng)用時(shí)間序列與分析[M].第2版.北京:中國(guó)人民大學(xué)出版社,2008.44.
F201