• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    乙二醇促進制備高分散的Co/SiO2催化劑及其催化乳酸乙酯轉化為1,2-丙二醇的氣相加氫活性

    2016-09-09 03:31:57仇松柏翁育靖劉琪英馬隆龍張琦王鐵軍
    物理化學學報 2016年6期
    關鍵詞:丙二醇二氧化硅乙二醇

    仇松柏 翁育靖 劉琪英 馬隆龍 張琦 王鐵軍

    (中國科學院可再生能源重點實驗室,中國科學院廣州能源研究所,廣州510640)

    乙二醇促進制備高分散的Co/SiO2催化劑及其催化乳酸乙酯轉化為1,2-丙二醇的氣相加氫活性

    仇松柏翁育靖劉琪英馬隆龍張琦王鐵軍*

    (中國科學院可再生能源重點實驗室,中國科學院廣州能源研究所,廣州510640)

    研究了利用乙二醇共浸漬方法制備高分散的二氧化硅負載鈷催化劑,該催化劑有效地提高了乳酸乙酯的氣相加氫反應活性。系統(tǒng)地考察了鈷金屬負載量、乙二醇與硝酸鈷摩爾比、醇種類和焙燒溫度等制備參數對四氧化三鈷納米粒子物性的影響。乙二醇與硝酸鈷摩爾比和醇種類對二氧化硅負載的四氧化三鈷納米粒子大小有顯著影響。與常規(guī)的浸漬方法相比較,共浸漬過程中的乙二醇增強了二價鈷粒子和載體二氧化硅之間的相互作用力,從而引起金屬鈷分散度的提高以及四氧化三鈷納米粒子粒徑從16 nm降到5 nm以下;金屬鈷的高分散與無定型硅酸鈷的形成密切相關;同時顯著地提高了乳酸乙酯的加氫活性,在反應條件下(2.5 MPa、160°C和10%(w,質量分數)Co/SiO2)乳酸乙酯的轉化率從69.5%提高到98.6%,1,2-丙二醇的選擇性達到98.0%。利用X射線衍射(XRD)、透射電子顯微鏡(TEM)、X射線光電子能譜(XPS)、N2吸脫附實驗、H2程序升溫還原(H2-TPR)等表征手段對共浸漬制備的Co/SiO2催化劑結構和形貌進行了表征分析。

    Co/SiO2;共浸漬;乳酸乙酯加氫;1,2-丙二醇;乙二醇

    1 lntroduction

    Supported metal catalysts comprise the most important class of heterogeneous catalysts in industrial practice1.Therefore,the synthesis of supported catalysts with high dispersion,stability,and activity is of utmost academic and industrial importance.A great deal of preparation methods have been developed to improve catalytic activity of supported catalysts,such as ion exchange2,ion sputtering3,atomic layer deposition4,chemical vapor/liquid deposition5,6,impregnation1,7-9and so on.By far the most used synthesis route involves impregnation,which has been opened up by many innovative pathways for achieving highly active catalysts,including complexation-impregnation1,surface modification10,freeze-drying11,adjusting pH value of impregnation solution12,organic metal precursor1,6,calcination atmosphere13,14,etc.In consideration of production cost and technical feasibility in industry,co-impregnation with ethylene glycol(EG)as one simple and efficient strategy of modifying impregnation for preparing the highly active catalysts is most attractive1,15.

    Biomass-derived lactic acid has been commercially produced by fermentation of renewable resources,such as sugars,starches,and xylose.Hydrogenation of lactic acid provides a promising alternative to the bulk commodity chemical production of 1,2-propanediol(1,2-PDO)which depended on the non-renewable petroleum-based process16.Supported cobalt catalysts have been of great interest due to their high catalytic properties in several different catalytic processes,ranging from catalytic combustion,steam reforming,F(xiàn)ischer-Tropsch synthesis,hydrodesulfurization,and hydrogenation of aromatics17.Previous reports on the hydrogenation of lactic acid by various transition metal catalysts (Ru,Pd,Ni,F(xiàn)e,Cu,and Co)have indicated that Co-based catalysts are significantly more active and selective18,19.However,it is acknowledged that the preparation method could show an obvious effect on the activity of lactic acid hydrogenation by adjusting the dispersion and particles size of cobalt species16-19.

    Formerly,we have prepared highly active and dispersed nickel based catalysts by co-impregnation with polyols such as EG15,20. Comparing with the conventional wetness impregnation,the only difference of co-impregnation needs to add moderate polyols into the metal nitrate aqueous solution before impregnation.Upon solvent evaporation,additive polyols increase viscosity of such solutions and form a gel-like film to inhibit redistribution of the active phase over the support bodies during drying,resulting in formation of smaller metal particles and high dispersions1,7.In this paper,highly dispersed Co catalysts supported on SiO2were prepared by co-impregnation with EG and tested in the vaporphase hydrogenolysis of ethy lactate to 1,2-propanediol.The synthesis parameters that influence the physical property of Co3O4nanoparticles were investigated,including Co metal loading,ratio of EG to cobalt nitrate,types of alcohol,and calcination temperature.The obtained catalysts were characterized by XRD,TEM,XPS,BET(Brunauer-Emmett-Teller),and H2-TPR analytical methods.

    2 Experimental

    Co/SiO2catalysts with 1.0%-40.0%(w,mass fraction)Co loading were prepared by incipient-wetness impregnation and coimpregnation15on SiO2support(Qingdao Haiyang Chemical Co.,Ltd,60-80 mesh,specific surface area of 352.4 m2?g-1,pore volume of 1.07 mL?g-1,average pore diameter of 9.45 nm)with Co(NO3)2?6H2O(analytical pure,99.0%)in aqueous solution.The Co loading was the nominal metal loading,which was calculated by the equation of(WCo/Wsupport)×100%,where WCoand Wsupportwere the masses of cobalt and SiO2support,respectively.Before impregnation,the SiO2support was calcined in air at 550°C for 4 h. Then,the cobalt nitrate aqueous solution was impregnated onto SiO2support and kept still for 12 h.After that,the samples were dried at 100°C and calcined at 400°C for 2 h using a heating rate of 2°C?min-1.The preparation process of co-impregnation was the same with that of the conventional wetness impregnation method except adding proper amount of EG(analytical pure,99.6%)into the metal nitrate aqueous solution.The obtained catalysts were denoted as Co/SiO2?xEG(molar ratio of x(Co/EG)is 1:x).The sample,Co/SiO2?0EG,which prepared by conventional wetness impregnation without EG addition,was used as a reference.Ethy lactate(analytical pure,99.0%)was supplied by Aladdin Industrial Corporation.

    The BET(Brunauer-Emmett-Teller)specific surface area of catalysts was determined by N2isothermal adsorption using QUADRASORB SI analyzer equipped with QuadraWin software system.H2-TPR researches of the different catalysts were carried out in a quartz tube reactor with a thermal conductivity detector (TCD)reported in literature21.XRD patterns were measured by an X?pert Pro Philips diffractometer,using Cu Kαradiation(λ= 0.1541841 nm)in the range of 2θ=5°-80°,step counting time of 10 s,and step size of 0.0167°at 25°C.The XPS analysis was performed on a ThermoFisher Scientific ESCALAB 250 spectrometer.The spectra were excited by the monochromatized Al Kαsource(1486.6 eV).The average Co3O4particle sizes were calculated from the most intense Co3O4line(2θ=36.8°,(311)crystal plane),using the Scherrer formula.

    The vapor-phase hydrogenolysis of ethy lactate was carried out in a tubular stainless steel fixed-bed reactor(inner diameter of 10 mm and length of 350 mm).Before reaction,2 mLcatalysts(about 1.2 g)were loaded in the constant temperature zone of the reactorwith quartz sand and quartz wool as the filler materials on the top and bottom of the reactor,respectively.Subsequently,the catalysts were in situ reduced in a H2flowing at 550°C for 8 h at 2.5 MPa. During reaction,analytical pure ethy lactate was pumped into the fixed-bed reactor at the flow rate of 0.010 mL?min-1by a high pressure liquid pump(HPLP).The reaction temperature varied from 140 to 200°C.The gas stream at the reactor outlet was connected to a cooler that was maintained at 4°C.The condensed samples were collected regularly and analyzed by gas chromatography(GC-2014C,Shimadzu)equipped with a flame ionization detector and a HP-Innowax capillary column(30 m×0.25 mm× 0.25 μm).

    3 Results and discussion

    Fig.1 XRD patterns of various catalysts(A)10%Co/SiO2catalysts with different molar ratios of cobalt nitrate to EG;(B)10%Co/SiO2catalysts with ethanol(Eth)and different polyols including glycerol(Gly)and citric acid(CA);the effect of(C)the Co metal loading and(D)the calcination temperature(10%Co/SiO2)with x(Co/EG)=1:2

    3.1Catalyst characterization

    The synthesis parameters such as the molar ratio of cobalt to EG nitrate,the types of alcohol,the Co metal loading,and the calcination temperature,which influenced the physical property of Co3O4nanoparticles,were investigated through the use of XRD method shown in Fig.1.In the diffraction patterns of all the catalysts,the broad and diffuse pattern observed clearly at around 2θ=22.5°was attributed to amorphous silica17.The samples showed diffraction lines at 31.2°(220),36.8°(311),44.8°(400),59.4°(511),and 65.2°(440),indicating that cobalt was present mainly in the form of Co3O4spinel structure(JCPDS No.74-1656)after calcination at 400°C18.However,there were no XRD peaks of cobalt phyllosilicate to be detected on all the Co/SiO2samples. The average Co3O4particle sizes were calculated from the most intense Co3O4line(2θ=36.8°),using the Scherrer formula.Fig.1A showed the XRD patterns of the 10%Co/SiO2catalysts with different molar ratios of cobalt nitrate to EG.The samples with x (Co/EG)from 1:1 to 1:10 gave weak and broad peaks to Co3O4below 5 nm,indicating that Co3O4particles were very small and highly dispersed on the SiO2support.Interestingly,no diffraction lines pertaining to the Co/SiO2with x(Co/EG)≤1:2 were observed,due to small particle sizes near or amorphous cobalt species below the limitation for the XRD detectability.While the samples with x(Co/EG)=1:0 and 1:0.5 showed the strong and sharp Co3O4peaks respectively corresponding to 16 and 15 nm,which means that the Co3O4particles grew up.The average crystal sizes of Co3O4decreased gradually from 16 nm to below 5 nm with the increasing amount of EG.It implied that the molar ratios of x(Co/EG)played a vital role in controlling particle sizes of Co3O4and dispersion of cobalt species on the SiO2support.

    As shown in Fig.1B,the types of alcohol significantly affected the particle size of Co3O4supported on SiO2(10%Co loading). Other polyols such as glycerol(Gly)and citric acid(CA)have actually similar physical and chemical properties,which could play the same role in impregnation process as ethylene glycol20. However,upon solvent evaporation,ethanol(Eth)in the cobalt nitrate aqueous solution could volatilize completely during drying because of its lower boiling point and viscosity than other polyols,which could not inhibit redistribution of the active phase over the support bodies,resulting in formation of 16 nm Co3O4.

    Fig.1C displayed the XRD profiles of the Co/SiO2samples with the different Co metal loading varying from 1%-40%with x(Co/EG)=1:2.There are no other XRD diffraction peaks to be detected in 1%-20%Co/SiO2catalysts,indicating that metal oxides dispersed well on the support,and metal oxide crystallite size should be smaller than 4 nm.For the Co-based catalysts with higher metal loading over 25%,new dispersive diffraction peaks could be found and gradually got strong and sharp,indicating that the mean particle sizes of Co3O4slowly grew up to 13 nm.A conclusion could be obtained that the cobalt oxidized species were considered evenly dispersed on the surface of the support and could form superfine Co3O4nanoparticles below 4 nm until metal loading amount exceeded 30%.This clearly showed that additive EG during impregnation had no ability to control relatively homogeneous particle sizes and high dispersion for excess metal loading over 30%.This might be caused by the small BET specific surface area of SiO2support,which could not support excess metal over 30%Co loading for maintaining high metal dispersion.

    Fig.1D showed the diffraction patterns of 10%Co/SiO2samples with x(Co/EG)=1:2 calcinated at different temperatures.The calcination temperatures had a minor impact on particle size and distribution.Particularly,the diffraction peaks of Co3O4completely disappeared after calcination below 600°C,due to small particle sizes below the limitation for the XRD detectability.Even at higher calcination temperature in the range of 600-800°C,the Co/SiO2samples also obviously expressed the broad and diffuse pattern of Co3O4with an average diameter of about 5 nm,indicating the favorable resistance to high temperature sintering using the co-impregnation method with EG.Generally,as the calcination temperature got higher,the particles were easy to agglomerate and the particles got bigger using common impregnation method. Thus,the Co/SiO2catalyst prepared by co-impregnation exhibited the wide temperature window of calcination and excellent resistance to metal sintering as stronger interaction between the supported Co and silica support22.

    So as to explore the textural and physicochemical properties using co-impregnation,the Co/SiO2sample with x(Co/EG)=1: 1 was comparatively studied with the Co/SiO2catalyst without EG using conventional wetness impregnation.The TEM images of Co/ SiO2?0EG and Co/SiO2?1EG were also shown in Fig.2(a,b).As could be seen,the TEM microstructures were significantly different with cobalt phyllosilicate species,which exhibited amorphous lamellar structure,constituted of claylike lines in literature23.The TEM photographs clearly showed that the Co/SiO2?1EG catalyst exhibited remarkably smaller particle size.In addition,the Co3O4nanoparticles were spherical and distributed homogeneously with an average diameter of about 7 nm,which was a little larger than the values calculated from the XRD data,as tabulated in Table 1.This might be caused by imaging techniques such as TEM which often gave the size of the particle,while X-ray diffraction disclosed the size of the crystalline.For the Co/SiO2?0EG,cobalt oxide particle aggregated into even larger clusters on the SiO2surface with maldistribution in the range of 40-130 nm.

    Fig.2TEM images of 10%Co/SiO2?0EG(a,b)and 10%Co/SiO2?1EG(c,d)

    Table 1Textural properties of the catalysts

    After impregnating,the BET special surface area and total pore volume obviously decreased.The impregnation and drying steps had not significantly affected the long-range order of the mesopores.The decreased porosity was presumably due to the formation of inaccessible domains in the sample.Moreover,the pore diameters for all samples were almost same to the original SiO2,suggesting that cobalt species were basically limited on the external surface of the mesoporous support,which was in agreement with the XPS data shown below.

    The XPS study was carried out to determine the chemical composition and valence state of the elements on the surface of supported cobalt oxide as shown in Fig.3.The signal of the Co 2p lines exhibited a slightly intense satellite structure.For 10%Co/ SiO2?0EG and 10%Co/SiO2?1EG catalysts,the binding energy(BE)of the Co 2p3/2showed peaks at 780.7 and 781.3 eV,respectively.The higher position of the Co 2p3/2peaks indicated a stronger interaction between silica support and cobalt species24. For 10%Co/SiO2?0EG,the binding energy and low intensity of shake-up satellites suggested that Co3O4was the predominant cobalt phase on the catalyst surface25,26,which was in good agreement with the other measurements obtained from XRD and H2-TPR.In the case of the catalyst with co-impregnation,the relative intensity of the shake-up satellite obviously increased. Furthermore,the main Co 2p3/2peak shifted to higher binding energy,with satellite peaks at about 6 eV higher energy sides. These features were indicative of the presence of Co2+species in amorphous cobalt silicate and could be taken as evidence of a strong interaction of the cobalt species with the SiO2support25-28,which were responsible for the H2-TPR profiles at high temperature,as observed later.Therefore,these results suggested that both amorphous cobalt silicate and Co3O4were mainly formed over the catalyst prepared by co-impregnation with EG.Generally,the decomposition of organic cobalt precursors could facilitate a strong Co-support interaction,resulting in the appearance of Co3O4crystallites and amorphous cobalt silicate.Table 2 presented the atomic concentration and corresponding atomic ratio of XPS results.Based on XPS carbon analysis,the surface carbon concentration had a little increase,which revealed that the EG decomposed almost completely during calcining at 400°C in air.The sample of 10%Co/SiO2?0EG also expressed the carbon peak during impregnation without EG,which could be ascribed to carbon pollution.XPS intensity ratios of ICo/ISicould provide important information about the dispersion29.Compared with the conventional wetness impregnation,the co-impregnation increased the surface cobalt content and ICo/ISiratios by almost 50%using the addition of EG,which meaned the higher surface dispersion.Thus,cobalt dispersion in the calcinated cobalt catalysts was significantly affected by the EG in the impregnating solution.

    Fig.3Co 2p XPS spectra of(a)10%Co/SiO2?0EG and (b)10%Co/SiO2?1EG

    Fig.4H2-TPR of Co/SiO2samples(a)10%Co/SiO2?0EG and(b)10%Co/SiO2?1EG after calcinating at 400°C for 2 h;(c)10%Co/SiO2?1EG after calcinating at 550°C for 4 h

    On the other hand,in order to further explore the effect of additive EG on the dispersion of cobalt species in the Co/SiO2samples,the H2-TPR technique was measured as shown in Fig.4. In the reduction profile of calcined 10%Co/SiO2?0EG,two main peaks were evolved at around 366 and 450°C(Fig.4(a)),which were ascribed to reduction of Co3O4to CoO(366°C)and CoO to Co0(450°C),respectively,according to the literature18,30.As observed,the small peak at 760°C could be attributed to the cobaltspecies interacting strongly with silica23.In the previous study,TPR peak above 700°C was assigned to the reduction of Co silicate,probably formed by reaction of Co2+species strongly interacting with the SiO2support.On the other hand,a significantly different reduction pattern was observed for the samples obtained by co-impregnation using EG30.One small asymmetric peak shifted to the lower temperature around 340°C,typical of Co3O4reduction with small nanoparticles,ascribing to the weak interaction with support.Meanwhile,the main reduction feature for this sample was detected at higher temperature of about 870°C,relating to the reduction of amorphous Co2SiO4,which was consistent with XPS results.In order to eliminate the influences of the residual carbon species to the reduction profile at high temperature,10%Co/SiO2?1EG was calcinated at 550°C for 4 h as a reference.The samples calcinated at higher temperature expressed the similar H2-TPR profiles.Generally the strong interaction between the metal species and support favored to enhance Co dispersion and form ultra-small particles.Taking into consideration of XRD,TEM,XPS,and TPR analyses,two main kinds of cobalt species(small size of Co3O4nanoparticles and amorphous Co2SiO4)were inferred to present in the samples prepared by co-impregnation using EG,corresponding to weak and strong interaction between cobalt particles and SiO2support,respectively.The strong interaction was mainly caused by the existence of amorphous cobalt silicate.

    3.2Catalytic performance

    So as to explore the catalytic activity using co-impregnation,the Co/SiO2samples with x(Co/EG)=1:1 was compared with the catalyst by conventional wetness impregnation in the ethyl lactate hydrogenation.As illustrated in Fig.5,the desired product 1,2-PDO was formed mainly via the direct hydrogenation of ethyl lactate over the Co/SiO2catalysts.The chief by-products included 1-pronanol(1-PO),2-propanol(2-PO),lactic acid,and 2-hydroxyl propyl lactate.The hydrogenolysis reaction was performed in the fixed-bed reactor with the typical reaction conditions at 2.5 MPa,weight hourly space velocity(WHSV)of 0.3 h-1,and H2/ethy lactate molar ratio of 100:1.Table 3 presented the effect of cobalt loading and reaction temperature on the reaction performance.The conversion of ethyl lactate increased with the increasing cobalt loading,and the 1,2-propanediol selectivity decreased slightly.The Co/SiO2catalysts showed almost complete conversion with cobalt loading above 15%at 160°C.The conversion and selectivity for ethyl lactate hydrogenolysis was investigated on the Co/SiO2samples at 140,160,and 200°C.As expected,the conversion of ethyl lactate increased remarkably as the reaction temperature elevated from 140 to 160°C.This could be caused by the low boiling point of ethyl lactate(154°C),resulting in the different hydrogenolysis state of reactant such as vapor-phase and liquidphase.The selectivity of 1,2-PDO dramatically decreased at a temperature of 200°C,especially for the highly active 10%Co/ SiO2?1EG.The decrease of 1,2-PDO selectivity was mainly due to dehydration that produced 1-pronanol(1-PO)and 2-propanol (2-PO),indicating that overhigh reaction temperature favored the formation of side products.

    In comparison with the catalysts prepared by conventional wetness impregnation,the Co/SiO2via co-impregnation with EG presented markedly higher catalytic activity in the ethyl lactate hydrogenation.Especially,the conversion of ethyl lactate was greatly enhanced from 69.5%to 98.6%at 160°C over 10%Co/ SiO2.Even at low cobalt loading of 5%Co/SiO2?1EG,there was 55.5%ethyl lactate conversion.Thus,the catalytic activity of Co/ SiO2catalysts could be strongly enhanced by co-impregnation,apparently related to the ultra-small particles and higher dispersion originated from the strong interaction between cobalt particles and SiO2support.The long-term stability and activity of 10%Co/SiO2?1EG catalyst were tested for vapor-phase hydrogenation of ethy lactate.Obvious decrease of ethy lactate conversion was observed within 50 h under identical reaction conditions.

    Fig.5Possible reaction scheme for the hydrogenation of ethyl lactate

    Table 3Activity of various catalysts under different reaction temperaturesa

    In brief,the catalytic activity was dependent on the number of active cobalt species29.It was proved that the reaction activity was directly correlated with the cobalt dispersion of the supportedmetal catalysts in the Fishcher-Tropsch reactions and citral hydrogenation.The XRD and TEM obviously showed that the additive EG during co-impregnation inhibited aggregation of the active phase over the support surface resulting in formation of smaller metal particles and significantly improved the dispersion of supported cobalt.

    As observed analysis techniques,a strong interaction between SiO2support and cobalt oxide species indicated an electron transfer from cobalt oxide to support for the Co/SiO2samples prepared by co-impregnation,contributing to low electron density of Co2+species in amorphous Co2SiO4;furthermore,the weak interaction was inferred to the electron density of supported Co ions,expressing in ultra-small Co3O4nanoparticles.The coimpregnation increased the surface cobalt content and ICo/ISiratios by 48.1%,which was an interesting coincidence with the activity improvement of ethyl lactate conversion with 41.9%increasement at 160°C over 10%Co/SiO2,indicating that the excellent hydrogenation activity was mainly caused by the high dispersion of Co active sites.The hydrogenation of ethyl lactate required both of the dissociation of hydrogen and activation of C=O bond16. XPS and TPR results demonstrated that weak and strong interaction occurred between cobalt species and SiO2support,making difference of Co electron density.It was reported that higher electron density on Co active sites could facilitate the formation of activated hydrogen,which was corresponded to the cobalt species with the weak interaction16,31.The lower electron density of the cobalt species with the strong interaction might be beneficial to the activation of C=O bond16.Thus,the excellent performance of 10%Co/SiO2?1EG catalyst was mainly attributed to the weak interaction cobalt species and SiO2support,its surface composition with high ICo/ISiratios,and relatively high dispersion of particles and Co active sites.

    4 Conclusions

    The Co/SiO2catalysts prepared by co-impregnation with EG showed excellent activity in the vapor-phase hydrogenolysis of ethyl lactate to 1,2-propanediol.The synthesis parameters such as the Co loading,the molar ratio of cobalt to EG,the types of alcohol additives,and the calcination temperature were carefully studied.Where,the molar ratios of cobalt to EG,and the types of alcohol additives played critical roles in controlling particle sizes and dispersion of Co3O4on the SiO2support.Under the promotion of EG with higher boiling point and viscosity,the average crystal sizes of supported Co3O4decreased from 16 nm to below 5 nm with the molar ratio of cobalt to EG above 1:1.For excess metal loading over 30%,additive EG during impregnation had no ability to control relatively homogeneous particle sizes and high dispersion.The strong interaction between the Co species and the silica support led to the wide temperature range of calcination and excellent resistance to supported metal sintering even at 800°C. In comparison with the catalysts prepared by conventional wetness impregnation,the conversion of ethy lactate was greatly enhanced to 98.6%from 69.5%,with 98.0%selectivity of 1,2-propanediol over 10%Co/SiO2catalysts via co-impregnation at 2.5 MPa and 160°C.As observed from XPS and TPR techniques,two main kinds of cobalt species(Co3O4with super small particle size and amorphous Co2SiO4)were inferred to present in the samples prepared by co-impregnation using EG,corresponding to weak and strong interaction between cobalt species and SiO2support,respectively.The excellent performance of 10%Co/SiO2?1EG catalyst could be mainly attributed to the weak interaction cobalt species and SiO2support,its surface composition with high ICo/ISiratios,and relatively high dispersion of particles and Co active sites.

    References

    (1)Dillen,A.J.;Ter?rde,R.M.;Lensveld,D.J.;Geus,J.W.;Jong,K.P.J.Catal.2003,216,257.doi:10.1016/S0021-9517(02)00130-6

    (2)Centomo,P.;Bonato,I.;Hankova,L.;Holub,L.;Jerabek,K.;Zecca,M.Top.Catal.2013,56(9-10),611.doi:10.1007/ s11244-013-0021-6

    (3)Zeng,C.Y.;Sun,J.;Yang,G.H.;Ooki,I.;Hayashi,K.;Yoneyama,Y.;Taguchi,A.;Abe,T.;Tsubaki,N.Fuel 2013,112,140.doi:10.1016/j.fuel.2013.05.026

    (4)Detavernier,C.;Dendooven,J.;Sree,S.P.;Ludwig,K.F.;Martens,J.A.Chem.Soc.Rev.2011,40(11),5242. doi:10.1039/c1cs15091j

    (5)Liu,X.H.;Tang,D.S.;Zeng,C.L.;Hai,K.;Xie,S.S.Acta Phys.-Chim.Sin.2007,23(3),361.[劉星輝,唐東升,曾春來,海闊,解思深.物理化學學報,2007,23(3),361.]doi:10.1016/S1872-1508(07)60027-8

    (6)Maki-Arvela,P.;Murzin,D.Y.Appl.Catal.A-Gen.2013,451,251.doi:10.1016/j.apcata.2012.10.012

    (7)Tan,X.H.;Zhou,G.B.;Dou,R.F.;Pei,Y.;Fan,K.N.;Qiao,M.H.,Sun,B.;Zong,B.N.Acta Phys.-Chim.Sin.2014,30(5),932.[譚曉荷,周功兵,竇镕飛,裴燕,范康年,喬明華,孫斌,宗保寧.物理化學學報,2014,30(5),932.]doi:10.3866/PKU.WHXB201403212

    (8)Yuan,L.X.;Chen,Y.Q.;Song,C.F.;Ye,T.Q.;Guo,Q.X.;Zhu,Q.S.;Torimoto,Y.;Li,Q.X.Chem.Commun.2008,41,5215.doi:10.1039/B810851J

    (9)Guo,J.H.;Ruan,R.X.;Zhang,Y.Ind.Eng.Chem.Res.2012,51(19),6599.doi:10.1021/ie300106r

    (10)Qu,Z.P.;Huang,W.X.;Zhou,S.T.;Zheng,H.;Liu,X.M.;Cheng,M.J.;Bao,X.H.J.Catal.2005,234,33.doi:10.1016/j. jcat.2005.05.021

    (11)Eggenhuisen,T.M.;Munnik,P.;Talsma,H.;de Jongh,P.E.;de Jong,K.P.J.Catal.2013,297,306.doi:10.1016/j. jcat.2012.10.024

    (12)Zhu,X.R.;Cho,H.R.;Pasupong,M.;Regalbuto,J.R. Catalysis 2013,3(4),625.doi:10.1021/cs3008347

    (13)Jia,L.T.;Fang,K.G.;Chen,J.G.;Sun,Y.H.Acta Phys.-Chim.Sin.2006,22(11),1404.[賈麗濤,房克功,陳建剛,孫予罕.物理化學學報,2006,22(11),1404.]doi:10.3866/PKU.WHXB20061119

    (14)den Breejen,J.P.;Sietsma,J.R.A.;Friedrich,H.;Bitter,J.H.;de Jong,K.P.J.Catal.2010,270(1),146.doi:10.1016/j. jcat.2009.12.015

    (15)Qiu,S.B.;Zhang,X.;Liu,Q.Y.;Wang,T.J.;Zhang,Q.;Ma,L. L.Catal.Commun.2013,42,73.doi:10.1016/j. catcom.2013.07.031

    (16)Ma,X.Y.;De,S.;Zhao,F(xiàn).W.;Du,C.H.Catal.Commun.2015,60,124.doi:10.1016/j.catcom.2014.11.027

    (17)Zhang,Q.H.;Chen,C.;Wang,M.;Cai,J.Y.;Xu,J.;Xia,C.G. Nanoscale Res.Lett.2011,6,586.doi:10.1186/1556-276X-6-586

    (18)Huang,L.;Zhu,Y.L.;Zheng,H.Y.;Du,M.X.;Li,Y.W.Appl. Catal.A-Gen.2008,349(1-2),204.doi:10.1016/j. apcata.2008.07.031

    (19)Kasinathan,P.;Yoon,J.W.;Hwang,D.W.;Lee,U.H.;Hwang,J.S.;Hwang,Y.K.;Chang,J.S.Appl.Catal.A-Gen.2013,451,236.doi:10.1016/j.apcata.2012.10.027

    (20)Qiu,S.B.;Weng,Y.J.;Li,Y.P.;Ma,L.L.;Zhang,Q.;Wang,T. J.Chin.J.Chem.Phys.2014,27(4),433.10.1063/1674-0068/ 27/04/433-438

    (21)Liu,Q.Y.;Bie,Y.W.;Qiu,S.B.;Zhang,Q.;Sainio,J.;Wang,T. J.;Ma,L.L.;Lehtonen,J.Appl.Catal.B-Environ.2014,147, 236.doi:10.1016/j.apcatb.2013.08.045

    (22)Lv,X.Y.;Chen,J.F.;Tan,Y.S.;Zhang,Y.Catal.Commun. 2012,20,6.doi:10.1016/j.catcom.2012.01.002

    (23)Xue,J.J.;Cui,F(xiàn).;Huang,Z.W.;Zuo,J.L.;Chen,J.;Xia,C.G. Chin.J.Catal.2012,33,1642.[薛晶晶,崔芳,黃志威,左建良,陳靜,夏春谷.催化學報,2012,33,1642.]doi:10.1016/S1872-2067(11)60434-8

    (24)Martinez,A.;Lopez,C.;Marquez,F(xiàn).;Diaz,I.J.Catal.2003,220,486.doi:10.1016/S0021-9517(03)00289-6

    (25)Ernst,B.;Libs,S.;Chaumette,P.;Kiennemann,A.Appl.Catal. A-Gen.1999,186,145.doi:10.1016/S0926-860X(99)00170-2

    (26)Koizumi,N.;Mochizuki,T.;Yamada,M.Catal.Today 2009,141,34.doi:10.1016/j.cattod.2008.03.020

    (27)Mochizuki,T.;Hara,T.;Koizumi,N.;Yamada,M.Appl.Catal. A-Gen.2007,317,97.doi:10.1016/j.apcata.2006.10.005

    (28)Grams,J.;Ura,A.;Kwapinski,W.Fuel 2014,122,301. doi:10.1016/j.fuel.2014.01.005

    (29)Girardon,J.S.;Quinet,E.;Griboval-Constant,A.;Chernavskii,P.A.;Gengembre,L.;Khodakov,A.Y.J.Catal.2007,248,143. doi:10.1016/j.jcat.2007.03.002

    (30)Koizumi,N.;Suzuki,S.;Niiyama,S.;Shindo,T.;Yamada,M. Catal.Lett.2011,141,931.doi:10.1007/s10562-011-0633-z

    (31)Noller,H.;Lin,W.M.J.Catal.1984,85,25.doi:10.1016/0021-9517(84)90106-4

    Preparation of Highly Dispersed Co/SiO2Catalyst Using Ethylene Glycol and lts Application in Vapor-Phase Hydrogenolysis of Ethyl Lactate to 1,2-Propanediol

    QIU Song-BaiWENG Yu-JingLIU Qi-YingMALong-LongZHANG QiWANG Tie-Jun*
    (Key Laboratory of Renewable Energy,Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,P.R.China)

    Highly dispersed Co catalysts supported on SiO2were prepared in the presence of ethylene glycol (EG)by co-impregnation and tested in the vapor-phase hydrogenolysis of ethyl lactate to 1,2-propanediol.The synthesis parameters of Co metal loading,ratio of EG to cobalt nitrate,type of alcohol and calcination temperature,which influenced the physical properties of the Co3O4nanoparticles,were investigated through the use of X-ray diffraction(XRD).It revealed that the ratio of EG to cobalt nitrate and the type of alcohol significantly affected the particle size of Co3O4supported on SiO2.During co-impregnation with EG,the interaction between Co2+and the SiO2support was strongly enhanced,resulting in the high dispersion of cobalt species and the decrease of Co3O4particle size from 16 nm to below 5 nm;the significantly enhanced cobalt dispersion was associated with the formation of amorphous cobalt silicate.Meanwhile the conversion of ethyl lactate was greatly improved to 98.6%from 69.5%,with 98.0%selectivity of 1,2-propanediol over 10%(w,mass fraction)Co/SiO2catalysts under the given reaction conditions(2.5 MPa and 160°C).The obtained catalysts werecharacterized by X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),N2adsorption-desorption measurements,and H2temperature-programmed reduction(H2-TPR)methods.

    Co/SiO2;Co-impregnation;Ethyl lactate hydrogenation;1,2-Propanediol;Ethylene glycol

    March 1,2016;Revised:March 7,2016;Published on Web:March 9,2016.

    O643

    [Article]10.3866/PKU.WHXB201603094www.whxb.pku.edu.cn

    *Corresponding author.Email:wangtj@ms.giec.ac.cn;Tel:+86-20-87057751.

    The projectwassupported bytheNationalHigh-TechResearchandDevelopmentProgramofChina(863)(2012AA101806)andNationalNaturalScience Foundation ofChina(21306195,51276183).

    國家高技術研究發(fā)展計劃項目(863)(2012AA101806)及國家自然科學基金(21306195,51276183)資助

    ?Editorial office ofActa Physico-Chimica Sinica

    猜你喜歡
    丙二醇二氧化硅乙二醇
    陶氏推出可持續(xù)丙二醇生產技術
    新型裝配式CO2直冷和乙二醇載冷冰場的對比研究
    冰雪運動(2021年2期)2021-08-14 01:54:20
    乙二醇:需求端內憂外患 疫情期亂了節(jié)奏
    廣州化工(2020年5期)2020-04-01 01:24:58
    姜黃提取物二氧化硅固體分散體的制備與表征
    中成藥(2018年2期)2018-05-09 07:19:43
    努力把乙二醇項目建成行業(yè)示范工程——寫在中鹽紅四方公司二期30萬噸/年乙二醇項目建成投產之際
    氨基官能化介孔二氧化硅的制備和表征
    齒科用二氧化硅纖維的制備與表征
    介孔二氧化硅制備自修復的疏水棉織物
    擴鏈劑對聚對苯二甲酸乙二醇酯流變性能和發(fā)泡性能影響
    中國塑料(2015年5期)2015-10-14 00:59:48
    丙二醇頭孢曲嗪的有關物質檢查
    欧美日本视频| 757午夜福利合集在线观看| 免费av不卡在线播放| 国产精品综合久久久久久久免费| www日本黄色视频网| 久久久国产精品麻豆| АⅤ资源中文在线天堂| 在线观看66精品国产| 97人妻精品一区二区三区麻豆| 成年女人毛片免费观看观看9| 欧美乱妇无乱码| 99久国产av精品| 高潮久久久久久久久久久不卡| 国产精品国产高清国产av| 日韩中文字幕欧美一区二区| 久久亚洲精品不卡| 岛国在线免费视频观看| 精品无人区乱码1区二区| 国产精品永久免费网站| 中文字幕久久专区| 欧美成人免费av一区二区三区| 看免费av毛片| 午夜福利在线观看吧| 淫秽高清视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 女生性感内裤真人,穿戴方法视频| 久久精品91无色码中文字幕| 午夜福利成人在线免费观看| 亚洲精品456在线播放app | 亚洲美女黄片视频| 在线免费观看的www视频| 淫秽高清视频在线观看| 久久久久国内视频| 在线免费观看不下载黄p国产 | 18美女黄网站色大片免费观看| 久久久久性生活片| 免费观看精品视频网站| 黄色成人免费大全| 亚洲自拍偷在线| 亚洲av免费在线观看| 亚洲国产精品成人综合色| 午夜激情欧美在线| 看免费av毛片| 在线观看免费视频日本深夜| 一级a爱片免费观看的视频| 一二三四社区在线视频社区8| 久久久久久久精品吃奶| 久久久久性生活片| 亚洲在线自拍视频| 亚洲天堂国产精品一区在线| 丁香欧美五月| 日韩免费av在线播放| 亚洲av二区三区四区| 亚洲最大成人中文| 亚洲中文日韩欧美视频| 99国产精品一区二区三区| 中文亚洲av片在线观看爽| 欧美日本亚洲视频在线播放| 久久久久久久午夜电影| 亚洲五月婷婷丁香| 高潮久久久久久久久久久不卡| 亚洲人成网站在线播放欧美日韩| 久久99热这里只有精品18| 日韩av在线大香蕉| 成年女人毛片免费观看观看9| 国产精品野战在线观看| 国产男靠女视频免费网站| 亚洲熟妇熟女久久| tocl精华| 国产高清videossex| 成人国产综合亚洲| 国产伦精品一区二区三区视频9 | 国产又黄又爽又无遮挡在线| 午夜福利在线观看免费完整高清在 | 免费av不卡在线播放| 91av网一区二区| 欧美日韩中文字幕国产精品一区二区三区| 精品一区二区三区视频在线 | 日韩欧美免费精品| 国产精品久久久久久久久免 | 午夜两性在线视频| 日本精品一区二区三区蜜桃| 久久久色成人| 成人欧美大片| 在线观看av片永久免费下载| 国产精品爽爽va在线观看网站| 黄色片一级片一级黄色片| 日韩大尺度精品在线看网址| 悠悠久久av| 久久久久久国产a免费观看| 麻豆成人午夜福利视频| 欧美乱码精品一区二区三区| 好看av亚洲va欧美ⅴa在| 免费高清视频大片| 国产精品亚洲美女久久久| 韩国av一区二区三区四区| 国产精品野战在线观看| 国内精品久久久久精免费| 国产成人啪精品午夜网站| 免费看日本二区| 亚洲欧美日韩高清专用| 91久久精品国产一区二区成人 | 天美传媒精品一区二区| 欧美一区二区国产精品久久精品| 精品久久久久久久毛片微露脸| 九九热线精品视视频播放| 亚洲av日韩精品久久久久久密| 久久久久久久精品吃奶| 欧美乱妇无乱码| 亚洲最大成人手机在线| 性色avwww在线观看| 女警被强在线播放| 夜夜夜夜夜久久久久| 国产中年淑女户外野战色| 首页视频小说图片口味搜索| 久久性视频一级片| 亚洲成人久久爱视频| 人妻久久中文字幕网| 久久人妻av系列| 午夜免费男女啪啪视频观看 | 亚洲av成人精品一区久久| 日韩欧美国产在线观看| 天堂网av新在线| 亚洲在线自拍视频| 国产精品乱码一区二三区的特点| 国产视频一区二区在线看| 精品电影一区二区在线| 神马国产精品三级电影在线观看| 人人妻,人人澡人人爽秒播| 村上凉子中文字幕在线| 国产伦精品一区二区三区视频9 | 午夜老司机福利剧场| 最近在线观看免费完整版| 一卡2卡三卡四卡精品乱码亚洲| 久久久精品大字幕| 免费看光身美女| 午夜两性在线视频| 2021天堂中文幕一二区在线观| 九九久久精品国产亚洲av麻豆| 天天添夜夜摸| 日本免费a在线| 久9热在线精品视频| 内地一区二区视频在线| 看免费av毛片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av二区三区四区| 波多野结衣高清无吗| www.色视频.com| 九九热线精品视视频播放| 欧美在线一区亚洲| 国产精品嫩草影院av在线观看 | 国产精品久久久久久久久免 | 国产高清有码在线观看视频| 18禁裸乳无遮挡免费网站照片| 91久久精品国产一区二区成人 | 两个人看的免费小视频| 国产综合懂色| 最近最新中文字幕大全电影3| 成人精品一区二区免费| 国内精品久久久久精免费| 九色国产91popny在线| 夜夜躁狠狠躁天天躁| 少妇熟女aⅴ在线视频| 伊人久久大香线蕉亚洲五| 久久久久亚洲av毛片大全| 亚洲片人在线观看| 成年女人永久免费观看视频| 十八禁人妻一区二区| 熟女人妻精品中文字幕| 99热这里只有精品一区| 男女那种视频在线观看| 欧美日本视频| 国产极品精品免费视频能看的| 国产av在哪里看| 美女黄网站色视频| 狠狠狠狠99中文字幕| 国产亚洲av嫩草精品影院| 成年女人毛片免费观看观看9| 国产精品电影一区二区三区| 少妇高潮的动态图| 欧美日韩黄片免| 亚洲欧美日韩无卡精品| 88av欧美| 久久6这里有精品| 无人区码免费观看不卡| 婷婷丁香在线五月| 国产 一区 欧美 日韩| 精品久久久久久久人妻蜜臀av| 波野结衣二区三区在线 | 18禁黄网站禁片免费观看直播| 精品乱码久久久久久99久播| 亚洲国产精品成人综合色| 国产视频内射| 99热这里只有是精品50| 日韩国内少妇激情av| av在线蜜桃| 久久久成人免费电影| 国产高潮美女av| 变态另类成人亚洲欧美熟女| 老汉色∧v一级毛片| 国产精品久久久久久精品电影| 国产精品三级大全| 一个人观看的视频www高清免费观看| 亚洲人成电影免费在线| 在线播放国产精品三级| 91在线观看av| 欧美一区二区精品小视频在线| 婷婷六月久久综合丁香| 欧美一区二区亚洲| 成人性生交大片免费视频hd| www国产在线视频色| 一级毛片高清免费大全| 身体一侧抽搐| 在线观看一区二区三区| 变态另类丝袜制服| 午夜老司机福利剧场| 亚洲不卡免费看| 在线十欧美十亚洲十日本专区| av中文乱码字幕在线| 久久久精品欧美日韩精品| 欧美丝袜亚洲另类 | 啦啦啦观看免费观看视频高清| 色在线成人网| 在线观看免费午夜福利视频| h日本视频在线播放| 国产一区二区激情短视频| 久久草成人影院| 在线天堂最新版资源| 国产精品自产拍在线观看55亚洲| 高潮久久久久久久久久久不卡| 无遮挡黄片免费观看| 男插女下体视频免费在线播放| 人人妻人人看人人澡| 黄色女人牲交| 成熟少妇高潮喷水视频| 成人国产一区最新在线观看| 99riav亚洲国产免费| 韩国av一区二区三区四区| 久久精品国产清高在天天线| 国产单亲对白刺激| ponron亚洲| 母亲3免费完整高清在线观看| 免费人成在线观看视频色| eeuss影院久久| 青草久久国产| 成人永久免费在线观看视频| 国产91精品成人一区二区三区| 女人被狂操c到高潮| 午夜福利在线观看免费完整高清在 | 久久久精品欧美日韩精品| 国产综合懂色| av欧美777| 国产成人av教育| 国语自产精品视频在线第100页| 国产一区二区在线av高清观看| 色综合欧美亚洲国产小说| av在线蜜桃| 欧美激情在线99| 免费在线观看日本一区| 色综合亚洲欧美另类图片| 午夜激情欧美在线| 我的老师免费观看完整版| 亚洲aⅴ乱码一区二区在线播放| 国产探花在线观看一区二区| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 男人的好看免费观看在线视频| 无限看片的www在线观看| 男女做爰动态图高潮gif福利片| www.www免费av| 别揉我奶头~嗯~啊~动态视频| 成人特级av手机在线观看| 欧美xxxx黑人xx丫x性爽| 精品无人区乱码1区二区| 欧美成人免费av一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 高清在线国产一区| 国产99白浆流出| 亚洲国产欧美人成| 美女 人体艺术 gogo| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 亚洲精品影视一区二区三区av| 天堂影院成人在线观看| 亚洲自拍偷在线| 别揉我奶头~嗯~啊~动态视频| 变态另类成人亚洲欧美熟女| 嫩草影院入口| 一个人看的www免费观看视频| 欧美性感艳星| 麻豆一二三区av精品| 国产精品免费一区二区三区在线| 中出人妻视频一区二区| 国内少妇人妻偷人精品xxx网站| 老鸭窝网址在线观看| 亚洲一区二区三区不卡视频| 国产一区二区三区在线臀色熟女| 国产激情欧美一区二区| 免费高清视频大片| 国产成人av激情在线播放| 国内揄拍国产精品人妻在线| 99久国产av精品| 神马国产精品三级电影在线观看| 好男人在线观看高清免费视频| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 免费观看精品视频网站| 宅男免费午夜| 欧美大码av| 中文字幕人成人乱码亚洲影| 国产精品久久久久久久久免 | 18禁黄网站禁片免费观看直播| 51国产日韩欧美| 中文亚洲av片在线观看爽| 女人十人毛片免费观看3o分钟| 久久精品国产综合久久久| 亚洲国产欧洲综合997久久,| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品国产三级普通话版| 国产精品久久久久久久久免 | 亚洲国产精品sss在线观看| 真人一进一出gif抽搐免费| 亚洲av二区三区四区| 国产精品女同一区二区软件 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费电影在线观看免费观看| 成熟少妇高潮喷水视频| 欧美在线黄色| 色av中文字幕| 丁香欧美五月| 久久精品国产99精品国产亚洲性色| 我的老师免费观看完整版| 午夜福利在线观看吧| 伊人久久精品亚洲午夜| 叶爱在线成人免费视频播放| 成人三级黄色视频| 两人在一起打扑克的视频| 亚洲一区二区三区色噜噜| 午夜老司机福利剧场| 欧美最新免费一区二区三区 | 俺也久久电影网| 亚洲va日本ⅴa欧美va伊人久久| or卡值多少钱| 在线国产一区二区在线| 国产黄a三级三级三级人| 国产av一区在线观看免费| 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产 | 成人高潮视频无遮挡免费网站| 丰满乱子伦码专区| 免费一级毛片在线播放高清视频| 琪琪午夜伦伦电影理论片6080| 高潮久久久久久久久久久不卡| 香蕉av资源在线| 精品99又大又爽又粗少妇毛片 | 午夜两性在线视频| 天天躁日日操中文字幕| 少妇熟女aⅴ在线视频| 亚洲av一区综合| 国产色婷婷99| 麻豆国产97在线/欧美| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线观看免费| 国产精品影院久久| 久久久国产成人免费| 欧美乱码精品一区二区三区| 久久精品影院6| 国产精品一区二区免费欧美| 18禁国产床啪视频网站| 成年免费大片在线观看| 午夜日韩欧美国产| 一级毛片女人18水好多| 欧美性感艳星| 90打野战视频偷拍视频| 欧美日韩福利视频一区二区| 免费人成在线观看视频色| 亚洲成人久久性| 国产一区二区在线av高清观看| 欧美黄色淫秽网站| 色综合婷婷激情| 国产高清视频在线播放一区| 免费大片18禁| 国产 一区 欧美 日韩| 午夜两性在线视频| 亚洲av电影在线进入| 国产成人av教育| 老司机在亚洲福利影院| 亚洲成人中文字幕在线播放| 嫁个100分男人电影在线观看| 一级毛片女人18水好多| 1000部很黄的大片| 18禁美女被吸乳视频| av专区在线播放| 宅男免费午夜| 老司机福利观看| 老熟妇仑乱视频hdxx| 99热只有精品国产| 亚洲欧美激情综合另类| 亚洲在线自拍视频| 日本在线视频免费播放| 国产精品1区2区在线观看.| 97碰自拍视频| 中亚洲国语对白在线视频| 两个人看的免费小视频| 国产极品精品免费视频能看的| 久久精品综合一区二区三区| 免费在线观看亚洲国产| 免费看光身美女| АⅤ资源中文在线天堂| 欧美成人免费av一区二区三区| 日韩国内少妇激情av| 最好的美女福利视频网| 亚洲18禁久久av| 国产日本99.免费观看| 国产亚洲精品综合一区在线观看| 日韩免费av在线播放| 亚洲专区国产一区二区| 国产精品香港三级国产av潘金莲| 性色avwww在线观看| 国产又黄又爽又无遮挡在线| 成年女人看的毛片在线观看| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频| 搞女人的毛片| 亚洲av美国av| 无人区码免费观看不卡| 日韩精品青青久久久久久| 男插女下体视频免费在线播放| 久久精品91蜜桃| 18美女黄网站色大片免费观看| 久久精品亚洲精品国产色婷小说| 观看美女的网站| 好男人电影高清在线观看| 嫩草影院入口| 国产精品99久久99久久久不卡| 日本 欧美在线| 亚洲成人免费电影在线观看| 99久久无色码亚洲精品果冻| 亚洲专区国产一区二区| 亚洲av电影在线进入| 国产亚洲精品av在线| 制服丝袜大香蕉在线| 亚洲人成网站高清观看| 久久久久久久午夜电影| 真人做人爱边吃奶动态| 日本免费a在线| 特级一级黄色大片| 成人特级av手机在线观看| 91九色精品人成在线观看| 97超视频在线观看视频| 日本三级黄在线观看| 欧美+亚洲+日韩+国产| 久久久久久久午夜电影| 99国产综合亚洲精品| 亚洲第一欧美日韩一区二区三区| 999久久久精品免费观看国产| 十八禁网站免费在线| 97超级碰碰碰精品色视频在线观看| a级一级毛片免费在线观看| 18禁黄网站禁片免费观看直播| 欧美zozozo另类| 日日夜夜操网爽| 婷婷精品国产亚洲av在线| 观看美女的网站| 久久精品国产99精品国产亚洲性色| 悠悠久久av| 90打野战视频偷拍视频| 制服丝袜大香蕉在线| 精品人妻一区二区三区麻豆 | 18禁黄网站禁片午夜丰满| 亚洲中文日韩欧美视频| 97超视频在线观看视频| 国产久久久一区二区三区| 动漫黄色视频在线观看| 狠狠狠狠99中文字幕| 人妻久久中文字幕网| 日韩人妻高清精品专区| 19禁男女啪啪无遮挡网站| 99热6这里只有精品| 老司机在亚洲福利影院| 亚洲美女视频黄频| 一级作爱视频免费观看| 久久精品91蜜桃| 欧美日韩福利视频一区二区| 婷婷精品国产亚洲av| 日韩欧美精品免费久久 | 老汉色∧v一级毛片| 亚洲成av人片免费观看| 夜夜看夜夜爽夜夜摸| 99精品久久久久人妻精品| 在线a可以看的网站| 性色avwww在线观看| 国产爱豆传媒在线观看| 亚洲成人久久爱视频| 亚洲乱码一区二区免费版| 无人区码免费观看不卡| 757午夜福利合集在线观看| 听说在线观看完整版免费高清| 久久精品国产99精品国产亚洲性色| 国产高潮美女av| 舔av片在线| 国产色婷婷99| 人人妻,人人澡人人爽秒播| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| 精品一区二区三区视频在线观看免费| 久久6这里有精品| 欧美极品一区二区三区四区| 日韩人妻高清精品专区| 国产成人影院久久av| 91久久精品电影网| 欧美3d第一页| 美女免费视频网站| 丰满人妻熟妇乱又伦精品不卡| 免费高清视频大片| 99久久综合精品五月天人人| 亚洲美女视频黄频| 国产精品野战在线观看| 中文字幕人妻丝袜一区二区| 国产高清三级在线| 久久久久久大精品| 免费观看精品视频网站| 18禁美女被吸乳视频| 国产老妇女一区| 色播亚洲综合网| 亚洲中文字幕日韩| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av| 最新在线观看一区二区三区| 91麻豆精品激情在线观看国产| 亚洲国产精品久久男人天堂| 成人特级av手机在线观看| 日韩精品中文字幕看吧| 天天躁日日操中文字幕| 午夜福利高清视频| 麻豆成人午夜福利视频| 啦啦啦免费观看视频1| 国产成人a区在线观看| 麻豆国产97在线/欧美| 欧美精品啪啪一区二区三区| 禁无遮挡网站| 精品一区二区三区人妻视频| 国产亚洲欧美98| 岛国视频午夜一区免费看| 真实男女啪啪啪动态图| 制服丝袜大香蕉在线| 亚洲中文字幕一区二区三区有码在线看| 精品欧美国产一区二区三| 精华霜和精华液先用哪个| 免费在线观看日本一区| 听说在线观看完整版免费高清| 欧美乱色亚洲激情| a在线观看视频网站| 亚洲成人精品中文字幕电影| 欧美另类亚洲清纯唯美| 长腿黑丝高跟| 日韩国内少妇激情av| 欧美日韩乱码在线| 亚洲专区国产一区二区| 给我免费播放毛片高清在线观看| 韩国av一区二区三区四区| 久久久久久久午夜电影| 99热精品在线国产| 免费看a级黄色片| a在线观看视频网站| 99精品在免费线老司机午夜| 亚洲熟妇中文字幕五十中出| 在线观看免费午夜福利视频| 国产毛片a区久久久久| 亚洲精品美女久久久久99蜜臀| 欧美国产日韩亚洲一区| 精品人妻1区二区| 可以在线观看的亚洲视频| 女同久久另类99精品国产91| 国产成人影院久久av| 日韩精品中文字幕看吧| 欧美激情在线99| 男女那种视频在线观看| 久久久久久久久久黄片| 中文在线观看免费www的网站| 91字幕亚洲| 美女 人体艺术 gogo| 亚洲av二区三区四区| 午夜福利在线观看吧| 一级毛片高清免费大全| 久久99热这里只有精品18| 最新美女视频免费是黄的| 少妇丰满av| 真实男女啪啪啪动态图| 老汉色av国产亚洲站长工具| 99久久成人亚洲精品观看| 国产精品一及| 午夜精品一区二区三区免费看| 国产主播在线观看一区二区| 午夜久久久久精精品| 久久亚洲精品不卡| 免费看日本二区| 欧美又色又爽又黄视频| 两人在一起打扑克的视频| 国产伦在线观看视频一区| 香蕉丝袜av| 真人做人爱边吃奶动态| 成人三级黄色视频| 国产真实伦视频高清在线观看 | 成人av在线播放网站| 国产成人啪精品午夜网站| 亚洲真实伦在线观看| 99久久无色码亚洲精品果冻| 91在线观看av| 日本a在线网址| 国产精品久久久久久人妻精品电影| 欧美+日韩+精品| 日本 av在线| 一级黄片播放器|