湖南省桃江縣桃花江小學(xué)五年級(jí) 張淺淇
表面積是多少
湖南省桃江縣桃花江小學(xué)五年級(jí) 張淺淇
一個(gè)棱長(zhǎng)是1米的正方體,沿長(zhǎng)、寬、高各切2刀、3刀、5刀,恰好切成72個(gè)小長(zhǎng)方體,求這些長(zhǎng)方體的表面積之和。這是我做作業(yè)時(shí)遇到的難題。
我想如果是沿長(zhǎng)、寬、高均勻地各切2刀、3刀、5刀,就會(huì)切成72個(gè)一模一樣的小長(zhǎng)方體了(如圖一),這時(shí)小長(zhǎng)方體的長(zhǎng)就是寬就是高就是那72個(gè)長(zhǎng)方體的表面積就是
但是題目并沒(méi)有說(shuō)是均勻地切,那得到的就不一定是72個(gè)一模一樣的長(zhǎng)方體了,那它們的表面積之和會(huì)是多少呢?
我靈機(jī)一動(dòng),想起胡老師說(shuō)過(guò),切西瓜,一刀下去,刀的兩面都會(huì)沾上西瓜汁。當(dāng)切下一刀時(shí),表面積就增加了2個(gè)切面,如圖二所示。切一刀后,即增加了A的對(duì)面與B面這兩個(gè)面,每個(gè)面是1×1=1(m2),切一刀就增加了1×2=2(m2),一共切了2+3+5=10(刀),那就增加了2×10=20(m2)。這時(shí),增加的表面積加上原來(lái)正方體的表面積就等于72個(gè)小長(zhǎng)方體的表面積之和,即(1×1×6)+20=26(m2)。
圖一
圖二
哈哈,原來(lái)不管是均勻地切還是隨便切,只要是沿長(zhǎng)寬高切,表面積之和就是一樣的啦!
看來(lái)要經(jīng)過(guò)反復(fù)思考,才能解決難題哦!
(指導(dǎo)老師 胡宏偉)