趙連佳,薛麗華,孫乾坤,章建新
(1.新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,新疆烏魯木齊 830052; 2.新疆農(nóng)業(yè)科學(xué)院糧食作物研究所,新疆烏魯木齊 830091)
?
不同水氮處理對滴灌冬小麥田耗水特性及水氮利用效率的影響
趙連佳1,薛麗華2,孫乾坤1,章建新1
(1.新疆農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,新疆烏魯木齊 830052; 2.新疆農(nóng)業(yè)科學(xué)院糧食作物研究所,新疆烏魯木齊 830091)
為給滴灌超高產(chǎn)冬小麥的水氮運(yùn)籌提供依據(jù),采用水、氮兩因素三水平的田間裂區(qū)試驗(yàn)(灌水量設(shè)1 125、2 250和2 700 m3·hm-2三個水平,分別用W1、W2和W3表示;施氮量設(shè)0、180和270 kg·hm-2三個水平,分別用N0、N1和N2表示),研究了9個水氮處理對麥田0~140 cm土層耗水量、冬小麥品種新冬41號群體葉面積指數(shù)、干物質(zhì)和產(chǎn)量及水、氮利用效率的影響。結(jié)果表明,增加滴灌量直接提高了0~60 cm土層含水量,間接減少了小麥對60~140 cm土層儲水的消耗量,增加了麥田總耗水量;施氮量對土壤含水量影響不顯著。在相同水分條件下,增加施氮量提高了小麥產(chǎn)量;而僅在N2條件下,滴灌量顯著影響產(chǎn)量,W2和W3的產(chǎn)量均顯著高于W1,但W2和W3間差異不顯著;加大滴灌量或施氮量均增加孕穗至成熟期間群體葉面積指數(shù)、光合勢和干物質(zhì)積累量,減少花前營養(yǎng)器官儲存物質(zhì)的轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)效率和對籽粒產(chǎn)量的貢獻(xiàn)率,增加花后物質(zhì)生產(chǎn)對籽粒產(chǎn)量的貢獻(xiàn)率和產(chǎn)量,降低灌溉水利用效率和氮肥農(nóng)學(xué)利用效率;適宜水氮組合較單灌水或單施氮處理增產(chǎn)更顯著,并同時(shí)提高水、氮利用效率,以W2N2、W3N2組合產(chǎn)量較高(9 051.9、9 189.6 kg·hm-2)。綜合產(chǎn)量和成本,春季總滴灌量2 250 m3·hm-2(拔節(jié)期、孕穗期、開花期各750 m3·hm-2)、總施氮量270 kg·hm-2(拔節(jié)期90 kg·hm-2、孕穗期180 kg·hm-2)的水氮組合為北疆滴灌冬小麥超高產(chǎn)田水氮運(yùn)籌的適宜模式。
滴灌;冬小麥;水氮耦合;超高產(chǎn);水氮利用效率
灌水和施肥是調(diào)控作物生長和產(chǎn)量形成兩大重要技術(shù)措施。水分和養(yǎng)分對作物生長存在明顯的互作效應(yīng)[1]。增加灌水量和灌水次數(shù)時(shí)小麥花前營養(yǎng)器官中貯存的氮素轉(zhuǎn)運(yùn)量減少,籽粒含氮量降低,氮素利用效率下降[2]。適當(dāng)水分虧缺有利于小麥氮素利用[3]。干旱脅迫和過量灌溉均不利于小麥植株對氮素的積累,水分虧缺下氮素利用效率均高于正常灌水[4]。適量灌溉可促進(jìn)作物氮素吸收和提高氮肥利用率[5]。滴灌技術(shù)已在新疆小麥生產(chǎn)上大面積應(yīng)用,節(jié)水、增產(chǎn)效果顯著[6]。滴灌技術(shù)不僅能通過局部濕潤的方式將水肥控制在根區(qū)內(nèi)提高作物對水分和養(yǎng)分的吸收利用,還能減少地表徑流、棵間蒸發(fā)和深層滲漏[7]。滴灌小麥的產(chǎn)量比噴灌少16%~27%,但可節(jié)水43%~76%[8]。目前,有關(guān)滴灌小麥灌水[9-11]或氮肥[12-13]的單因素效應(yīng)的研究較多,而在滴灌條件下水氮對冬小麥田間耗水特征和產(chǎn)量及水氮利用效率的耦合效應(yīng)研究很少。有關(guān)冬小麥的水氮耦合研究幾乎都是在非滴灌條件下進(jìn)行的[14-16]。本試驗(yàn)在滴灌條件下,研究了不同水氮組合對超高產(chǎn)冬小麥田耗水特性和產(chǎn)量及水氮利用效率的影響,以期為滴灌超高產(chǎn)冬小麥的水氮運(yùn)籌提供依據(jù)。
1.1試驗(yàn)地條件及管理情況
試驗(yàn)于2014-2015年在新疆農(nóng)業(yè)科學(xué)院瑪納斯試驗(yàn)站(北緯44°18′13.91″,東經(jīng)86°13′11.03″)進(jìn)行。前茬為長期連作冬小麥,試驗(yàn)地為壤土。0~20 cm土壤有機(jī)質(zhì)含量為2.56%,堿解氮含量為54.5 mg·kg-1,速效磷含量為9.65 mg·kg-1,速效鉀含量為113 mg·kg-1。試驗(yàn)地基施重過磷酸鈣300 kg·hm-2和硫酸鉀225 kg·hm-2。參試冬小麥品種為新冬41號。播前0~140 cm土壤含水量和容重見表1。地下水埋深4 m。小麥于2014年9月29日播種,行距15 cm,采用“1管4行”布置毛管,間距60 cm。播種后各小區(qū)滴灌750 m3·hm-2。基本苗410萬株·hm-2,越冬前各小區(qū)均滴灌900 m3·hm-2。6月17日至6月26日成熟。
1.2試驗(yàn)設(shè)計(jì)
試驗(yàn)采用水氮二因素裂區(qū)設(shè)計(jì)。其中,以拔節(jié)后總灌水量為主區(qū),設(shè)1 125、2 250和2 700 m3·hm-2三個水平,分別用W1、W2和W3表示;以施氮量為裂區(qū),設(shè)0、180和270 kg·hm-2三個水平,分別用N0、N1和N2表示。共形成9個水氮處理,各處理的具體滴灌、施氮時(shí)間和量見表2。主區(qū)按W1、W2、W3順序排列,相互間設(shè)置2 m寬隔離帶,防止主區(qū)間串水。副區(qū)按N0、N1、N2順序排列,小區(qū)面積18 m2(5 m×3.6 m),重復(fù)3次。用水表控制各處理滴灌量,稱取定量尿素隨灌水施入。2014-2015年小麥生長期間各月降水量見表3。
1.3測定方法
1.3.1土壤含水量測定
自拔節(jié)期(春季灌頭水前1 d)開始每隔 7 d用烘干法測定1次0~100 cm土層的含水量(每20 cm為1個土層),在各小區(qū)毛管間距1/2處取土樣,重復(fù)2次,在灌水前、后12 h加測1次0~60 cm土層含水量。成熟期測定各處理0~140 cm土層含水量。在拔節(jié)期用環(huán)刀分別取0~20、20~40、40~60、60~80、80~100、100~120和120~140 cm土樣測定容重(重復(fù)3次)。
1.3.2葉面積、干物質(zhì)積累量測定
分別在拔節(jié)期(4月25日)、孕穗期(5月10日)、開花期(5月20日)、花后20 d(6月9日)、成熟期(6月26日),各處理取30個莖用長、寬系數(shù)法測定葉面積后,烘干法測定干物質(zhì)量,重復(fù)3次,并計(jì)算春季總光合勢。開花期各處理分別選取當(dāng)天開花、大小相似60個莖掛牌標(biāo)記,開花當(dāng)天各處理分別自莖基部取10個莖烘干稱重,重復(fù)2次;成熟期各處理分別自莖基部取開花期掛牌莖10個,重復(fù)2次,烘干后稱總重后,脫粒后稱粒重。計(jì)算花前營養(yǎng)器官貯存的干物質(zhì)在花后向籽粒的轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)效率和對籽粒產(chǎn)量的貢獻(xiàn)率。
開花前干物質(zhì)轉(zhuǎn)運(yùn)量=開花期營養(yǎng)器官干重-成熟期營養(yǎng)器官干重
開花前干物質(zhì)轉(zhuǎn)運(yùn)效率=開花前干物質(zhì)轉(zhuǎn)運(yùn)量/開花期營養(yǎng)器官干重×100%
表1 播種前土壤含水量及土壤容重
表2 各水氮處理的滴灌量及施氮量
表3 2014-2015年冬小麥生長季的降水量
開花前干物質(zhì)對籽粒產(chǎn)量的貢獻(xiàn)率=開花前干物質(zhì)轉(zhuǎn)運(yùn)量/成熟期籽粒干重×100%
花后物質(zhì)積累對籽粒產(chǎn)量的貢獻(xiàn)率=1-開花前干物質(zhì)對籽粒產(chǎn)量的貢獻(xiàn)率
1.3.3產(chǎn)量和水氮利用效率測定
每處理分別取3個具有代表性的4.5 m2樣點(diǎn)實(shí)收,以其平均數(shù)計(jì)算折合成公頃產(chǎn)量。成熟期分別取樣考察各處理產(chǎn)量構(gòu)成,并計(jì)算水、氮利用效率。
總耗水量=140 cm土層儲水消耗量+降水量+總灌水量
土壤貯水消耗量=播種時(shí)140 cm土層貯水量-成熟時(shí)140 cm土層貯水量
水分利用效率=籽粒產(chǎn)量/生長季總耗水量
灌溉水利用效率=經(jīng)濟(jì)產(chǎn)量/總灌水量
氮肥農(nóng)學(xué)利用率= (施氮區(qū)籽粒產(chǎn)量-氮空白區(qū)籽粒產(chǎn)量)/施氮量
氮肥偏生產(chǎn)力=籽粒產(chǎn)量/施氮量
1.4數(shù)據(jù)分析
用Excel 2010進(jìn)行數(shù)據(jù)處理,用DPS進(jìn)行圖標(biāo)繪制,用SPSS進(jìn)行統(tǒng)計(jì)分析。
2.1不同水氮處理對麥田0~100 cm土層含水量的影響
由圖1可見,不同水氮處理間0~100 cm土層含水量差異顯著。小麥滴灌前、后各水氮處理的0~40 cm土層含水量均呈現(xiàn)“谷-峰”連續(xù)變化,隨著滴灌量的增加,土壤含水量峰值顯著提高,多表現(xiàn)為W3>W2>W1;20~40 cm土層含水量峰值在不同處理間的差異大于0~20 cm土層;與W2和W3相比,W1在40~60 cm土層含水量的峰值不明顯,60~80 cm、80~100 cm土層的含水量則呈現(xiàn)下降趨勢,且多表現(xiàn)為W3>W2>W1;相同滴灌量下,不同施氮處理間0~100 cm土層含水量差異不顯著;增加滴灌量直接增加了0~60 cm土層含水量,明顯減少小麥生育后期60~100 cm土層水分消耗量,尤以80~100 cm土層的貯水消耗降幅較大。
2.2不同水氮處理對小麥葉面積指數(shù)和光合勢的影響
不同水氮處理間小麥葉面積指數(shù)和光合勢差異顯著(圖2和圖3)。在相同滴灌量下,增加拔節(jié)期至孕穗期施氮量后,孕穗至成熟期間群體葉面積指數(shù)和春季總光合勢增加。在N0下增加拔節(jié)至灌漿期間滴灌量對孕穗至花后20 d群體葉面積指數(shù)和春季總光合勢影響不明顯;在N1、N2下增加滴灌量顯著增加孕穗至花后20 d群體葉面積指數(shù)和春季總光合勢。同時(shí)增加滴灌量和施氮量后,孕穗至花后20 d群體葉面積指數(shù)和春季總光合勢大幅度增加,其中W3N2的群體葉面積指數(shù)和春季總光合勢比W1N1分別增加57.5%和56.9%。水氮同時(shí)增加時(shí)葉面積指數(shù)和春季總光合勢增加比單增加水或氮更顯著。所有處理中以W2N2和W3N2的葉面積指數(shù)和春季總光合勢最高。
2.3不同水氮處理對小麥干物質(zhì)積累和花前營養(yǎng)器官儲存物質(zhì)向籽粒轉(zhuǎn)運(yùn)的影響
不同水氮處理間小麥孕穗至成熟期間干物質(zhì)積累量差異顯著(表4)。在相同滴灌量下,增加拔節(jié)期至孕穗期施氮量后,孕穗至成熟期間干物積累量增加。在N0下,增加拔節(jié)至灌漿期間滴灌量后,孕穗至花后20 d的干物質(zhì)積累量變化不明顯;在N1、N2下,增加滴灌量顯著增加孕穗至花后20 d的干物質(zhì)積累量。滴灌量和施氮量同時(shí)增加時(shí),孕穗至花后20 d的干物質(zhì)積累量大幅度增加,其中W3N2比W1N1增加25.51%。水氮同時(shí)增加的促進(jìn)效應(yīng)大于單增加水(或氮)。所有處理中以W2N2和W3N2的總干物質(zhì)量最大。
不同水氮處理間小麥花前營養(yǎng)器官儲存物向籽粒的轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)效率及對籽粒產(chǎn)量貢獻(xiàn)率差異顯著(表5)。在相同滴灌量下,增加拔節(jié)期至孕穗期施氮量后,花前營養(yǎng)器官儲存物質(zhì)向籽粒的轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)效率和對籽粒產(chǎn)量的貢獻(xiàn)率均顯著減少;在N1、N2下,增加滴灌量均顯著減少花前營養(yǎng)器官儲存物質(zhì)的轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)效率和貢獻(xiàn)率;同時(shí)增加拔節(jié)至灌漿期間滴灌量和施氮量時(shí),花前營養(yǎng)器官儲存物的轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)效率和貢獻(xiàn)率大幅下降。水氮同時(shí)增加對花前營養(yǎng)器官儲存物質(zhì)的三個轉(zhuǎn)運(yùn)參數(shù)的減少效應(yīng)比單增加水或氮更顯著。在所有處理中以W2N2和W3N2的花前營養(yǎng)器官儲存物質(zhì)的轉(zhuǎn)運(yùn)參數(shù)較低,但其花后物質(zhì)積累對籽粒產(chǎn)量的貢獻(xiàn)率較高。
圖1 不同水氮處理下麥田土壤含水量的動態(tài)變化
J:拔節(jié)期;B:孕穗期;A:開花期;A20:花后20 d。
J:Jointing stage;B:Booting stage;A:Anthesis stage;A20:20 d after anthesis.
圖2不同水氮處理下小麥葉面積指數(shù)的變化
Fig.2Changes of wheat LAI in different water-nitrogen treatments
R-J:返青-拔節(jié);J-B:拔節(jié)-孕穗;B-A:孕穗-開花;A-A20:開花-花后20 d;A20-M:花后20d-成熟;T:總勢。
R-J:Regreening-jointing;J-B:Jointing-booting;B-A:Booting-anthesis;A-A20:Anthesis-20 d after anthesis;A20-M:20 d after anthesis-maturity;T:Total.
圖3 不同水氮處理下小麥光合勢的變化
同列數(shù)據(jù)后不同大、小寫字母分別表示處理間差異極顯著(P<0.01)和顯著(P<0.05)。下表同。
Values followed by different capital and small letters in a column are significantly different among different treatments at the 1% and 5%,respectively. The same as in other tables.
表5 不同水氮處理對小麥花前營養(yǎng)器官貯藏物質(zhì)向籽粒轉(zhuǎn)運(yùn)的影響
DMTAA:Dry matter translocation amount after anthesis;DMTRA:Dry matter translocation ratio after anthesis;CDMTAATG:Contribution of dry matter translocation amount after anthesis to grains;CDMAAATG:Contribution of dry matter assimilation amount after anthesis to grains.
2.4不同水氮處理對小麥耗水量、水氮利用效率及產(chǎn)量的影響
增加拔節(jié)至灌漿期間的滴灌量使小麥總耗水量增加,降低了0~140 cm土層儲水的消耗量,如W3N2的總耗水量較W1N2增加26.6%,土壤儲水消耗減少27.6%。在相同滴灌量下,增加拔節(jié)期至孕穗期的施氮量后,小麥總耗水量和土壤儲水消耗量變化不明顯(表6)。
由表7可見,不同水氮處理間小麥產(chǎn)量和水氮利用效率差異顯著。在N0下,增加拔節(jié)至灌漿期間滴灌量后,小麥產(chǎn)量變化不顯著,但水分利用效率降低;在N1、N2下,增加拔節(jié)至灌漿期間滴灌量后,穗數(shù)和穗粒數(shù)增加,產(chǎn)量提高,其中W2N1較W1N1增產(chǎn)5.97%,W2N2較W1N2增產(chǎn)11.85%。在W1、W2下,增加拔節(jié)和孕穗期施氮量后,穗數(shù)、穗粒數(shù)和產(chǎn)量均增加,其中W1N2較W1N0增產(chǎn)6.4%,W2N2較W2N0增產(chǎn)21.23%。同時(shí)增加拔節(jié)至灌漿期間滴灌量和施氮量時(shí),穗數(shù)、穗粒數(shù)和產(chǎn)量均增加,其中W3N2較W1N1增產(chǎn)20.86%。水氮同時(shí)增加較單增加水(或氮)的增產(chǎn)幅度更大。在所有處理中,以W2N2和W3N2的產(chǎn)量最高,分別為9 051.9和9 189.6 kg·hm-2,其灌溉水利用效率分別為2.32和2.11 kg·m-3,氮肥農(nóng)學(xué)利用效率分別為5.87和6.88 kg·kg-1。綜合產(chǎn)量和水氮利用效率,W2N2是本試驗(yàn)條件下較優(yōu)的水氮運(yùn)籌模式。
表6 不同水氮處理的冬小麥田耗水構(gòu)成
表7 不同水氮處理對冬小麥產(chǎn)量及水分和氮肥利用效率的影響
IWUE:Irrigation water use efficiency;WUE:Water use efficiency;AEN:Agronomic nitrogen use efficiency of nitrogen;PPA:Partial factor productivity from applied nitrogen.
不斷提高作物產(chǎn)量和水氮利用效率是作物栽培研究的重要任務(wù)。水分和氮肥對作物增產(chǎn)作用是水氮各自單因素及二者互作共同作用的結(jié)果[17]。隨著灌水次數(shù)的增加,總耗水量增多,土壤耗水量和降水量占總耗水量的比例降低[18-19],水分利用效率和灌水利用效率有所下降[19-21];適量施氮可促進(jìn)作物根系和植株生長,增強(qiáng)作物吸收水分和養(yǎng)分能力,提高水分利用效率[21]。在225~450 m3·hm-2的春季每次滴灌量范圍內(nèi),隨著滴灌量的增大,0~100 cm土層含水量、總耗水量和產(chǎn)量增加,降低土壤貯水消耗量和水分利用效率[10]。在0~242 kg·hm-2施氮量(分5次)范圍內(nèi),產(chǎn)量和氮肥利用效率隨著施氮量的增加而增加,以施氮量242 kg·hm-2的產(chǎn)量最高[13]。本研究結(jié)果表明,增加滴灌量直接增加0~60 cm土層含水量,明顯減少小麥生育后期40~100 cm土層水分消耗量,以80~100 cm土層貯水消耗量降幅較大,施氮量對0~100 cm土層含水量影響小,在于氮肥對冬小麥的水分吸收影響??;水氮同時(shí)增加比單增加水(或氮)增加對葉面積指數(shù)、春季總光合勢、干物質(zhì)積累和產(chǎn)量的影響更顯著,并降低花前營養(yǎng)器官儲存物質(zhì)向籽粒的轉(zhuǎn)運(yùn)量、轉(zhuǎn)運(yùn)效率及其對籽粒產(chǎn)量的貢獻(xiàn)率。
小麥在拔節(jié)至孕穗期對水分較為敏感,灌拔節(jié)水可提高分蘗成穗率和穗粒數(shù),灌開花水對粒重增加具有重要意義[22]。拔節(jié)期追氮可有效促進(jìn)小花兩極分化,提高穗粒數(shù)[23]。因此,通過水氮合理搭配運(yùn)籌,可以協(xié)調(diào)提高穗數(shù)、穗粒數(shù)和千粒重,實(shí)現(xiàn)增產(chǎn)[24]。本試驗(yàn)中,在N0下增加滴灌量不增產(chǎn),氮肥是增加產(chǎn)量的主要限制因素,水不能補(bǔ)償?shù)蛔?;在W1下增加氮肥僅W1N2處理增產(chǎn),可能是氮肥促進(jìn)根系生長,增加其吸收水分的范圍能力,而部分補(bǔ)償水分不足的緣故[21];以春季總滴灌量2 250 m3·hm-2(拔節(jié)期、孕穗期、開花期各滴750 m3·hm-2)、總施氮量270 kg·hm-2(拔節(jié)期90 kg·hm-2、孕穗期180 kg·hm-2)的水氮處理(W2N2)葉面積指數(shù)、春季總光合勢、干物質(zhì)積累量、灌溉水利用效率和氮肥農(nóng)學(xué)利用效率較高。這個水、氮量均明顯高于河北平原地區(qū)噴灌冬小麥超高產(chǎn)水氮高效利用運(yùn)籌模式的施氮量195 kg·hm-2、春季總灌水量1 050 m3·hm-2(拔節(jié)期450 m3·hm-2、開花期300 m3·hm-2、灌漿期300 m3·hm-2),其原因可能是新疆蒸發(fā)量高于河北平原區(qū),而且試驗(yàn)地土壤肥力在兩個地區(qū)間存在一定差異也是一個重要原因。可見,合理水氮運(yùn)籌模式在充分發(fā)揮二者對產(chǎn)量形成的促進(jìn)作用同時(shí),對小麥實(shí)現(xiàn)高產(chǎn)高效也是十分重要的。因6月份降水量較大,本試驗(yàn)未澆灌漿水。由于本研究僅是一年的試驗(yàn)結(jié)果,滴灌冬小麥的水氮運(yùn)籌模式還有待進(jìn)一步探討。
[1]肖自添,蔣衛(wèi)杰,余宏軍.作物水肥耦合效應(yīng)研究進(jìn)展[J].作物雜志,2007(6):18-22.
XIAO Z T,JIANG W J,YU H J.Research progress on coupling effect of water and fertilizer of crops [J].Crops,2007(6):18-22.
[2]黃令峰,劉義國,林 琪,等.不同補(bǔ)灌次數(shù)對旱地高產(chǎn)小麥氮素運(yùn)轉(zhuǎn)及產(chǎn)量的影響[J].中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2009,17(5):905-908.
HUANG L F,LIU Y G,LIN Q,etal.Effect of supplemental irrigation on nitrogen translation and high yield wheat yield in drylands [J].ChineseJournalofEco-Agriculture,2009,17(5):905-908.
[3]林 琪,侯立白,韓 偉,等.限量控制灌水對小麥光合作用及產(chǎn)量構(gòu)成的影響[J].萊陽農(nóng)學(xué)院學(xué)報(bào),2004,21(3):199-202.
LIN Q,HOU L B,HAN W,etal.The effect of limited irrigation on photosynthetic rate and yield constitution of winter wheat [J].JournalofLaiyangAgriculturalCollege,2004,21(3):199-202.
[4]李 艷,董中東,郝 西,等.小麥不同品種的氮素利用效率差異研究[J].中國農(nóng)業(yè)科學(xué),2007,40(3):472-477.
LI Y,DONG Z D,HAO X,etal.The studies on genotypic difference of nitrogen utilization efficiency in winter wheat [J].ScientiaAgriculturalSinica,2007,40(3):472-477.
[5]PLAUT Z,BUTOW B J,BLUMENTHAL C S,etal.Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficits and elevated temperature [J].FieldCropsResearch,2004,86:185-198.
[6]王榮棟,王新武,符 林,等.關(guān)于滴灌小麥栽培的幾個問題[J].新疆農(nóng)業(yè)科學(xué),2010,47(7):1412-1415.
WANG R D,WANG X W,FU L,etal.Several problems about wheat cultivation by drip irrigation [J].XinjiangAgriculturalSciences,2010,47(7):1412-1415.
[7]李久生,張建君,薛克宗.滴灌施肥灌溉原理與應(yīng)用[M].北京:中國農(nóng)業(yè)科技出版社,2003:1-2.
LI J S,ZHANG J J,XUE K Z.Principle and Application of the Fertilization and Irrigation under Drip Irrigation [M].Beijing:China Agricultural Science and Technology Press,2003:1-2.
[8]ARAFA Y E,WASIF E A,MEHAWED H E.Maximizing use efficiency in wheat yields based on drip irrigation systems [J].AustralianJournalofBasicandAppliedSciences,2009,3:790-796.
[9]謝小清,章建新,段麗娜,等.滴灌量對冬小麥根系時(shí)空分布及水分利用效率的影響[J].麥類作物學(xué)報(bào),2015,35(7):971-979.
XIE X Q,ZHANG J X,DUAN L N,etal.Effect of drip irrigation amount on temporal spatial distribution of root and water use efficiency of winter wheat [J].JournalofTriticeaeCrops,2015,35(7):971-979.
[10]薛麗華,陳興武,胡 銳,等.不同滴水量對冬小麥根系時(shí)空分布及耗水特征的影響[J].華北農(nóng)學(xué)報(bào),2014,29(5):200-206.
XUE L H,CHEN X W,HU R,etal.Effect of quantities of drip water on temporal and spatial distribution and characteristics of water consumption of winter-wheat root [J].ActaAgriculturaeBoreali-Sinica,2014,29(5):200-206.
[11]薛麗華,謝小清,段麗娜,等.滴灌次數(shù)對冬小麥根系生長及時(shí)空分布的影響[J].干旱地區(qū)農(nóng)業(yè)研究,2014,32(6):1-9.
XUE L H,XIE X Q,DUAN L N,etal.Effect of drip irrigation on growth,temporal and spatial distribution of root of winter wheat [J].AgriculturalResearchintheAridAreas,2014,32(6):1-9.
[12]刁萬英,李少昆,王克如,等,基于光譜參數(shù)估算滴灌小麥干物質(zhì)氮肥偏生產(chǎn)力和農(nóng)學(xué)效率[J].麥類作物學(xué)報(bào),2013,33(4):662-668.
DIAO W Y,LI S K,WANG K R,etal.Estimation of the partial productivity and agronomic efficiency of application on dry matter of wheat under drip irrigation by spectral parameters [J].JournalofTriticeaeCrops,2013,33(4):662-668.
[13]張 娜,仵妮平,徐文修,等.不同施氮水平對滴灌冬小麥干物質(zhì)生產(chǎn)及產(chǎn)量的影響[J].中國農(nóng)學(xué)通報(bào),2015,31(33):21-26.
ZHANG N,WU N P,XU W X,etal.Effect of nitrogen levels on dry matter and yield of winter wheat under drip irrigation [J].ChineseAgriculturalScienceBulletin,2015,31(33):21-26.
[14]栗 麗,洪堅(jiān)平,王宏庭,等.水氮互作對冬小麥耗水特性和水分利用效率的影響[J].水土保持學(xué)報(bào),2012,22(6):291-296.
LI L,HONG J P,WANG H T,etal.Effects of nitrogen and irrigation interaction on water consumption characteristics and use efficiency in winter wheat [J].JournalofSoilandWaterConservation,2012,26(6):291-296.
[15]侯翠翠,馮 偉,李世瑩,等.不同水氮處理對小麥耗水特性及產(chǎn)量的影響[J].麥類作物學(xué)報(bào),2013,33(4):699-704.
HOU C C,FENG W,LI S Y,etal.Effects of different irrigation and nitrogen treatments on water consumption characteristics and grain yield in wheat [J].JournalofTriticeaeCrops,2013,33(4):699-704.
[16]馬伯威,王紅光,李東曉,等.水氮運(yùn)籌模式對冬小麥產(chǎn)量和水氮生產(chǎn)效率的影響[J].麥類作物報(bào),2015,35(8):1141-1147.
MA B W,WANG H G,LI D X,etal.Influence of water-nitrogen patterns on yield and productive efficiency of water and nitrogen of winter wheat [J].JournalofTriticeaeCrops,2015,35(8):1141-1147.
[17]王 敏,張勝全,方保停,等.氮肥運(yùn)籌對限水灌溉冬小麥產(chǎn)量及氮素利用的影響[J].中國農(nóng)學(xué)通報(bào),2007,23(7):349-353.
WANG M,ZHANG S Q,FANG B T,etal.Effect of nitrogen applications on grain yield and nitrogen use efficiency of winter wheat in limited water supply [J].ChineseAgriculturalScienceBulletin,2007,23(7):349-353.
[18]楊曉亞,于振文,許振柱.灌水量和灌水時(shí)期對小麥耗水特性和氮素積累分配的影響[J].生態(tài)學(xué)報(bào),2009,29(2):846-853.
YANG X Y,YU Z W,XU Z Z.Effects of irrigation regines on winter consumption characteristics and nitrogen accumulation and allocation in wheat [J].ActaEcologicaSinica,2009,29(2):846-853.
[19]寧東峰,李志杰,孫文彥,等.節(jié)水灌溉對黃淮海地區(qū)冬小麥水分消耗與光合特性的影響[J].植物營養(yǎng)與肥料學(xué)報(bào),2010,16(4):852-858.
NING D F,LI Z J,SUN W Y,etal.Effects of water-saving irrigation on water consumption and photosynthetic characteristics of winter wheat in Huan-Huai-Hai area of China [J].JournalofPlantNutritionandFertilizer,2010,16(4):852-858.
[20]SUN H Y,LIU C M,ZHANG X Y,etal.Effects of irrigation on water balance,yield and WUE of winter wheat in North China Plain [J].AgriculturalWaterManagement,2006,85(4):211-218.
[21]趙炳梓,徐富安,周劉宗,等.水肥(N)雙因素下的小麥產(chǎn)量及水分利用率[J].土壤,2003,35(2):122-125.
ZHAO B X,XU F A,ZHOU L Z,etal.Wheat yield and water-use efficiency as influenced by different combinations of irrigation water and nitrogen fertilizer [J].Soils,2003,35(2):122-125.
[22]王德梅,于振文.灌溉量和灌溉時(shí)期對小麥耗水特性和產(chǎn)量的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2008,19(9):1965-1970.
WANG D M,YU Z W.Effects of irrigation amount and stage on water consumption characteristics and grain yield of wheat [J].ChineseJournalofAppliedEcology,2008,19(9):1965-1970.
[23]崔振嶺,石立委,徐久飛,等.氮肥施用對冬小麥產(chǎn)量、品質(zhì)和氮素表觀損失的影響研究[J].應(yīng)用生態(tài)學(xué)報(bào),2005,16(11):2071-2075.
CUI Z L,SHI L W,XU J F,etal. Effects of N fertilization on winter wheat grain yield and its crude protein content and apparent N losses [J].ChineseJournalofAppliedEcology,2005,16(11):2071-2075.
[24]郭天財(cái),馮 偉,趙會杰,等.水氮運(yùn)籌對干旱年型冬小麥旗葉生理性狀及產(chǎn)量的交互效應(yīng)[J].應(yīng)用生態(tài)學(xué)報(bào),2004,15(3):453-457.
GUO T C,FENG W,ZHAO H J,etal.Interactive effect of irrigation and nitrogen application on physiological characteristics of flag leaf and grain yield of winter in dry years [J].ChineseJournalofAppliedEcology,2004,15(3):453-457.
Effect of Different Irrigation and Nitrogen Application on Water Consumption Characteristics and the Water and Nitrogen Use Efficiencies under Drip Irrigation in Winter Wheat
ZHAO Lianjia1,XUE Lihua2,SUN Qiankun1,ZHANG Jianxin1
(1.College of Agronomy,Xinjiang Agricultural University,Urumqi,Xinjiang 830052,China;2.Grain Crops Research Institute of the Xinjiang Academy of Agricultural Sciences,Urumqi,Xinjiang 830091,China)
In order to provide evidence for irrigation and nitrogen application to the super high-yielding winter wheat production,two split-plot experimental designs were conducted with different irrigation and nitrogen to study the water consumption characteristics and water and nitrogen use efficiencies. There were three irrigation rates (W11 125 m3·hm-2,W22 250 m3·hm-2,and W32 700 m3·hm-2)and three nitrogen rates (N00 kg·hm-2,N1180 kg·hm-2,N2270 kg·hm-2)for nitrogen experiment.The effects of nine treatments on water consumption in 0-140 cm soil layers,leaf area index (LAI),dry matter,yield,and water and nitrogen use efficiency were studied.The results showed that increasing drip irrigation amount mainly improved soil water contents of 0-60 cm soil layers,and indirectly reduced the storage consumption of 60-140 cm soil layers,through significantly increased total water consumption in the winter wheat field,but the effect of increasing nitrogen application on soil water content was not obvious.The yield was increased with the increase of fertilize under the same irrigation levels,but the yield was only increased with the increase of drip irrigation amount under N2conditions.With the increase of drip irrigation amount (or N application rate) from booting to maturity,LAI,photosynthetic potential and dry matter accumulation amount of population were increased,and the dry matter storage in vegetative organs before anthesis transferring to the grain quantity,translocation ratio and contribution for grains were reduced,and the contribution of dry matter accumulation amount after anthesis to grains was increased,while the agronomic nitrogen use efficiency of nitrogen (AEN) was reduced.The optimal water and nitrogen combination increased yield more obviously than single factor(irrigation or N), with the improvement of water and nitrogen use efficiency.Higher yields(9 051.9 and 9 189.6 kg·hm-2) were obtained under W2N2and W3N2treatments.Taking the yield and cost into consideration,the total drip irrigation amount and total N application rate were 2 250 m3·hm-2(750 m3·hm-2each at jointing,booting,flowering stages),270 kg·hm-2(90 kg·hm-2and 180 kg·hm-2at jointing and booting stages) in the spring were recommended,for water and nitrogen management modes in the super high-yield field of winter wheat in North Xinjiang.
Drip irrigation; Winter wheat; Coupled effect of water and nitrogen; Super high-yielding; Water and nitrogen use efficiency
2016-01-21
2016-03-20
農(nóng)業(yè)部荒漠綠洲作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(25107020-201603);新疆農(nóng)業(yè)大學(xué)產(chǎn)學(xué)研聯(lián)合培養(yǎng)研究生示范基地項(xiàng)目(xjaucxy-yjs-20151008);新疆農(nóng)業(yè)科學(xué)院青年基金項(xiàng)目(xjnkq-2015045)
E-mail:605113698@qq.com
章建新(E-mail:zjxin401@126.com);薛麗華(E-mail:xuelihua521@126.com)
S512.1;S318
A
1009-1041(2016)08-1050-10
網(wǎng)絡(luò)出版時(shí)間:2016-08-01
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20160801.1123.022.html