呂玉民, 柳迎紅, 湯達(dá)禎, 李治平
(1.中海油研究總院, 北京 100028; 2.中國地質(zhì)大學(xué)(北京) 能源學(xué)院, 北京 100083)
?
欠飽和煤儲(chǔ)層滲透率動(dòng)態(tài)變化模型及實(shí)例分析
呂玉民1,2, 柳迎紅1, 湯達(dá)禎2, 李治平2
(1.中海油研究總院, 北京100028; 2.中國地質(zhì)大學(xué)(北京) 能源學(xué)院, 北京100083)
開發(fā)過程中因受應(yīng)力壓實(shí)效應(yīng)和基質(zhì)解吸收縮效應(yīng)的共同影響,導(dǎo)致煤儲(chǔ)層滲透率發(fā)生復(fù)雜的變化。目前,已有諸多學(xué)者建立一系列的煤儲(chǔ)層滲透率動(dòng)態(tài)模型。然而,對(duì)欠飽和煤層氣藏開發(fā)過程中的不同生產(chǎn)階段,何種效應(yīng)對(duì)煤儲(chǔ)層滲透率起主導(dǎo)作用仍未達(dá)成共識(shí)。本研究在總結(jié)已有的滲透率變化模型的基礎(chǔ)上,分析欠飽和煤層氣藏開發(fā)過程中的降壓解吸特征、有效應(yīng)力效應(yīng)、基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng),并對(duì)現(xiàn)有的滲透率模型進(jìn)行改進(jìn)與對(duì)比分析,以達(dá)到定量分析欠飽和煤層氣藏儲(chǔ)層滲透率變化規(guī)律的目的,最后通過鄂爾多斯東南緣韓城煤層氣田實(shí)例分析煤儲(chǔ)層滲透率動(dòng)態(tài)變化特征及其主控因素。結(jié)果表明欠飽和煤層氣藏開發(fā)過程中滲透率動(dòng)態(tài)變化特征可以臨界解吸壓力劃分為兩個(gè)階段,前一階段僅為有效應(yīng)力效應(yīng)作用階段,后一階段則受有效應(yīng)力效應(yīng)、基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng)影響,且后兩種效應(yīng)隨著儲(chǔ)層壓力的降低而進(jìn)一步顯現(xiàn)。對(duì)比分析顯示SD改進(jìn)模型在描述欠飽和煤層氣藏滲透率動(dòng)態(tài)變化上優(yōu)于PM改進(jìn)模型。因此,借助SD改進(jìn)模型對(duì)韓城煤層氣井進(jìn)行實(shí)例計(jì)算,分析結(jié)果顯示煤儲(chǔ)層滲透率改善效果依次為3#>11#>5#,區(qū)內(nèi)煤儲(chǔ)層滲透率改善效果取決于含氣飽和度,而滲透率應(yīng)力傷害受控于地解壓差。
煤層氣藏;欠飽和;動(dòng)態(tài)變化;韓城礦區(qū)
煤層氣藏開發(fā)過程中,煤儲(chǔ)層物性受多方面因素的影響而呈現(xiàn)動(dòng)態(tài)變化特征,這些影響因素概括起來主要指有效應(yīng)力效應(yīng)[1-9]、基質(zhì)收縮效應(yīng)[10-18]和克林肯伯格效應(yīng)[3, 19-21]。有效應(yīng)力效應(yīng)是指在煤層氣藏排水降壓過程中隨儲(chǔ)層壓力下降,煤層受到的有效應(yīng)力逐漸增加,進(jìn)而導(dǎo)致其發(fā)生彈塑性變形,使儲(chǔ)層物性降低的負(fù)效應(yīng)?;|(zhì)收縮效應(yīng)是指當(dāng)煤層壓力低于臨界解吸壓力后,吸附態(tài)的煤層氣發(fā)生解吸導(dǎo)致煤基質(zhì)收縮,儲(chǔ)層物性得到改善的正效應(yīng)。另一個(gè)正效應(yīng)為克林肯伯格效應(yīng),即指氣體通過毛細(xì)管壁時(shí)沿表面滑移(流動(dòng)速度不為零),進(jìn)而加快氣體分子的滲流速度。該效應(yīng)在低壓低滲儲(chǔ)層中表現(xiàn)得更為明顯。
目前學(xué)者對(duì)前兩個(gè)效應(yīng)在煤層氣藏開發(fā)過程中滲透率變化的影響研究較為深入,并且建立了多種數(shù)學(xué)模型[8-23],但對(duì)這兩個(gè)正負(fù)效應(yīng)在煤層氣藏開發(fā)過程中的不同生產(chǎn)階段所起的作用及其影響因素缺乏深入的研究。此外,國內(nèi)外學(xué)者忽略了克林肯伯格效應(yīng)對(duì)低壓低滲環(huán)境下煤儲(chǔ)層滲透率變化的影響。
由于絕大多數(shù)煤層氣藏為欠飽和煤層氣藏,本次研究在分析欠飽和煤層氣藏開發(fā)特征的基礎(chǔ)上,分析其開發(fā)過程中滲透率變化規(guī)律,并改進(jìn)現(xiàn)有成熟的滲透率動(dòng)態(tài)變化模型,以實(shí)現(xiàn)定量評(píng)價(jià)欠飽和煤層氣藏滲透率動(dòng)態(tài)變化特征。同時(shí),結(jié)合鄂爾多斯東南緣韓城煤層氣田探井測(cè)試分析、測(cè)井解釋成果等數(shù)據(jù),定量計(jì)算該氣田煤儲(chǔ)層滲透率動(dòng)態(tài)變化特征與趨勢(shì),并探討其滲透率動(dòng)態(tài)變化主控因素。
煤儲(chǔ)層滲透率受有效應(yīng)力效應(yīng)[1-9]、基質(zhì)收縮效應(yīng)[10-18]和克林肯伯格效應(yīng)[3, 19-21]三方面因素的共同影響,呈現(xiàn)動(dòng)態(tài)變化的特征。在煤層氣開發(fā)過程中,有效應(yīng)力是引起煤儲(chǔ)層滲透率下降的惟一效應(yīng),屬于負(fù)效應(yīng);而基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng)則是改善煤儲(chǔ)層滲透率并促使?jié)B透率反彈的兩個(gè)效應(yīng),屬于正效應(yīng)。正、負(fù)效應(yīng)的綜合作用決定了煤儲(chǔ)層滲透率的最終變化趨勢(shì)。當(dāng)正效應(yīng)大于負(fù)效應(yīng)時(shí),煤儲(chǔ)層滲透率得到改善,甚至反彈上升;而當(dāng)負(fù)效應(yīng)大于正效應(yīng)時(shí),煤儲(chǔ)層滲透率則保持下降趨勢(shì)。
圖1 煤層氣藏開發(fā)機(jī)理對(duì)滲透率動(dòng)態(tài)變化的控制作用(a)飽和煤層氣藏;(b)欠飽和煤層氣藏Fig.1 Controls of CBM reservoirs’ development mechanism on dynamic variation of permeability
由于正、負(fù)效應(yīng)發(fā)生作用的條件各不相同,必然導(dǎo)致不同煤層氣藏及其不同開發(fā)階段影響煤儲(chǔ)層滲透率變化的效應(yīng)也各不相同。對(duì)于飽和煤層氣藏(圖1)來說,由于原始儲(chǔ)層壓力等于臨界解吸壓力,從氣井開井排水降壓時(shí)起,儲(chǔ)層壓力的下降就伴隨著發(fā)生有效應(yīng)力效應(yīng),引起滲透率下降;同時(shí),另一方面由于儲(chǔ)層壓力任何幅度的下降,均會(huì)引起煤層氣發(fā)生解吸,進(jìn)而導(dǎo)致煤基質(zhì)發(fā)生收縮,改善滲透率。這意味著對(duì)于飽和煤層氣藏的開發(fā),一旦進(jìn)入開發(fā)階段就同時(shí)出現(xiàn)有效應(yīng)力效應(yīng)和基質(zhì)收縮效應(yīng)。而對(duì)于欠飽和煤層氣藏(圖1)來說,由于原始儲(chǔ)層壓力大于臨界解吸壓力,氣井開井生產(chǎn)后直至臨界解吸壓力,煤儲(chǔ)層壓力的下降均未能引起吸附態(tài)的煤層氣發(fā)生解吸,因此這個(gè)階段內(nèi)煤儲(chǔ)層內(nèi)部?jī)H發(fā)生飽和單相水流,滲透率的變化也僅受有效應(yīng)力控制;當(dāng)儲(chǔ)層壓力降低至臨界解吸壓力后,吸附態(tài)的煤層氣才發(fā)生解吸,進(jìn)而才開始出現(xiàn)煤基質(zhì)收縮效應(yīng)。因此,可以看出,由于欠飽和煤層氣藏與飽和煤層氣藏開發(fā)過程存在差異,造成煤基質(zhì)收縮效應(yīng)出現(xiàn)的階段也有差異。煤層氣藏吸附態(tài)飽和度越低,則地解壓差(原始儲(chǔ)層壓力與臨界解吸壓力之差)越大,煤基質(zhì)收縮效應(yīng)往往出現(xiàn)得越晚。此外,與國外煤層相比,我國煤儲(chǔ)層具有低滲和特低滲的特征[24-28],因此煤層氣開發(fā)過程中不能忽略克林肯伯格效應(yīng)對(duì)煤層氣開發(fā)過程中影響。
許多學(xué)者提出了大量有關(guān)煤儲(chǔ)層滲透率的理論模型和經(jīng)驗(yàn)?zāi)P汀T谶@些滲透率模型中,最為廣泛應(yīng)用的主要有Palmer & Mansoori(PM)模型和Shi & Durucan(SD)模型。本次研究針對(duì)PM模型和SD模型進(jìn)行改進(jìn),并進(jìn)行對(duì)比優(yōu)選,使之能更準(zhǔn)確地描述欠飽和煤層氣藏滲透率動(dòng)態(tài)變化特征。
2.1常用的煤儲(chǔ)層滲透率模型
2.1.1PM模型
PM模型是由Palmer和Mansoori于1996年在熱力壓縮膨脹基礎(chǔ)上,建立的煤巖單軸(即垂向)應(yīng)力條件下的煤儲(chǔ)層滲透率變化模型,其公式如下:
(1)式中:cf,基質(zhì)體積壓縮系數(shù),MPa-1;φ0,原始孔隙度,小數(shù);ε,蘭氏應(yīng)變常量,小數(shù);φc,臨界解析壓力點(diǎn)的孔隙度;K,體積模量,MPa;M,單軸模量,MPa;p,壓力,MPa;p0,初始?jí)毫?,MPa;PL,蘭氏壓力,MPa。
該模型適合分析單軸應(yīng)力條件下的應(yīng)力和基質(zhì)收縮引起的煤儲(chǔ)層滲透率變化,但其僅適用于單組分氣體解吸引起的基質(zhì)收縮效應(yīng)而導(dǎo)致的滲透率變化。同時(shí),該模型中的孔隙體積壓縮系數(shù)不是常量,φ變化不能超過30%。
2.1.2SD模型
SD模型類似于PM模型,建立于煤層氣解吸引起應(yīng)力變化而導(dǎo)致滲透率變化的基礎(chǔ)上而非引起應(yīng)變變化而導(dǎo)致滲透率變化的基礎(chǔ)上,即煤層氣解吸改變體積應(yīng)變→進(jìn)而改變水平應(yīng)力→最終改變儲(chǔ)層滲透率。因此,該模型的孔滲變化受水平有效應(yīng)力引起的垂向割理閉合或開啟影響,而不同于PM模型的垂向有效應(yīng)力引起水平割理閉合或開啟。該模型計(jì)算公式如下:
(2)
式中:υ,泊松比,小數(shù);E,楊氏模量,MPa。
2.2欠飽和煤儲(chǔ)層滲透率模型
2.2.1PM改進(jìn)模型
基于上述分析,可以看出準(zhǔn)確描述欠飽和煤層氣藏滲透率變化的PM模型應(yīng)是分段函數(shù),其分段點(diǎn)為臨界解吸壓力點(diǎn)。因此,對(duì)于原始儲(chǔ)層壓力降至臨界解吸壓力時(shí),煤儲(chǔ)層滲透率變化僅受有效應(yīng)力效應(yīng)的影響;而對(duì)于臨界解吸壓力降至廢棄壓力時(shí),煤儲(chǔ)層滲透率變化同時(shí)受有效應(yīng)力效應(yīng)、基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng)的影響,其綜合模型表達(dá)式為:
(3)
其中引入滑脫系數(shù)比:
(4)
式中:pc,臨界解吸壓力,MPa;φc,臨界解吸壓力點(diǎn)的孔隙度,小數(shù);bc,臨界解吸壓力點(diǎn)的滑脫系數(shù),MPa;b,壓力p下的滑脫系數(shù)。
2.2.2SD改進(jìn)模型
描述欠飽和煤層氣藏滲透率變化的SD模型也是以臨界解吸壓力點(diǎn)為分段點(diǎn)的分段函數(shù)。原始儲(chǔ)層壓力降至臨界解吸壓力時(shí),煤儲(chǔ)層滲透率變化僅受有效應(yīng)力效應(yīng)的影響;而對(duì)于臨界解吸壓力降至廢棄壓力時(shí),煤儲(chǔ)層滲透率變化同時(shí)受有效應(yīng)力效應(yīng)、基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng)的影響,其綜合模型表達(dá)式為:
(5)
3.1模型參數(shù)取值依據(jù)
在已建立的改進(jìn)模型的基礎(chǔ)上,借助臨界解吸壓力之前僅考慮有效應(yīng)力效應(yīng)的Seidle模型和臨界解吸壓力之后僅考慮基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng)的Seidle-Huitt模型(SH模型),對(duì)PM改進(jìn)模型和SD改進(jìn)模型進(jìn)行可靠性和差異性對(duì)比。模型對(duì)比分析過程中,各參數(shù)的取值范圍主要參考國內(nèi)外已公開發(fā)表的數(shù)據(jù)(如表1)。同時(shí),為了更加準(zhǔn)確地評(píng)價(jià)不同模型的差別,本次研究選取0.2 MPa為廢棄壓力點(diǎn)進(jìn)行計(jì)算。
表1 模型參數(shù)取值范圍
3.2改進(jìn)模型驗(yàn)證分析
對(duì)比改進(jìn)模型和原模型發(fā)現(xiàn),原模型中的滲透率動(dòng)態(tài)變化明顯區(qū)別于改進(jìn)模型。在整個(gè)煤層氣開發(fā)過程中,原模型的滲透率計(jì)算值幾乎均大于改進(jìn)模型的(圖2)。這主要在于原模型在煤層氣開發(fā)全過程中考慮了有效應(yīng)力和基質(zhì)收縮效應(yīng)的影響。而在改進(jìn)模型中,當(dāng)儲(chǔ)層壓力高于臨界解吸壓力時(shí),PM改進(jìn)模型僅存在有效應(yīng)力效應(yīng),滲透率直線下降,之后隨著儲(chǔ)層壓力降低至臨界解析壓力之后,基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng)才發(fā)揮作用,并逐漸改善滲透率,最終儲(chǔ)層壓力降至0.2 MPa時(shí),煤儲(chǔ)層滲透率變化值達(dá)到2.14(圖2);而PM原模型的滲透率一直呈現(xiàn)緩慢上升趨勢(shì)。SD模型改進(jìn)前后的滲透率差異最為明顯(圖2),原模型模擬得到0.2 MPa下的滲透率變化值達(dá)到11.48,而改進(jìn)模型模擬得到的僅為5.82。
圖2 改進(jìn)模型可靠性驗(yàn)證對(duì)比圖(a)改進(jìn)的PM模型;(b) 改進(jìn)的SD模型Fig. 2 Reliability demonstration of improved models
造成改進(jìn)模型與原模型最大的區(qū)別在于煤基質(zhì)收縮效應(yīng)及克林肯伯格效應(yīng)影響煤儲(chǔ)層滲透率的階段不同。其中,改進(jìn)模型是建立在欠飽和煤層氣藏開發(fā)特征的基礎(chǔ)上,考慮到儲(chǔ)層壓力大于臨界解吸壓力時(shí),煤儲(chǔ)層僅出現(xiàn)有效應(yīng)力效應(yīng),而煤基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng)則出現(xiàn)在儲(chǔ)層壓力降至臨界解吸壓力之下時(shí);而原模型未考慮吸附態(tài)煤層氣含氣飽和度對(duì)煤儲(chǔ)層滲透率動(dòng)態(tài)效應(yīng)作用階段差異性的影響,在整個(gè)開發(fā)過程中均考慮了有效應(yīng)力效應(yīng)、煤基質(zhì)收縮效應(yīng)和克林肯伯格效應(yīng)。
對(duì)比PM改進(jìn)模型和SD改進(jìn)模型與通用模型(SH模型和Seidle模型)之間的差異性發(fā)現(xiàn),SD改進(jìn)模型比PM改進(jìn)模型更接近通用模型(圖2)。當(dāng)處于儲(chǔ)層壓力大于臨界解吸壓力的生產(chǎn)階段,即僅發(fā)生有效應(yīng)力效應(yīng),Seidle模型預(yù)測(cè)的儲(chǔ)層滲透率傷害最為嚴(yán)重,儲(chǔ)層滲透率傷害80%;PM改進(jìn)模型儲(chǔ)層滲透率應(yīng)力傷害最弱,僅傷害25%;而SD改進(jìn)模型計(jì)算的儲(chǔ)層滲透率變化趨勢(shì)及其傷害程度均與Seidle模型極為相似,滲透率應(yīng)力傷害為78%。當(dāng)處于儲(chǔ)層壓力低于臨界解吸壓力的生產(chǎn)階段,僅考慮基質(zhì)收縮和氣體滑脫的SH模型預(yù)測(cè)的滲透率最大改善比為5.43,PM改進(jìn)模型的滲透率最大改善比為2.14,均明顯小于通用模型,主要是由于PM模型適用于割理孔隙度變化范圍為30%以內(nèi)的煤儲(chǔ)層滲透率預(yù)測(cè)[13-14];而SD改進(jìn)模型的滲透率最大反彈比值為5.82,均略小于通用模型,這主要是由于SD改進(jìn)模型考慮有效應(yīng)力效應(yīng)的影響。對(duì)比顯示,SD改進(jìn)模型可靠性更好,更適合分析欠飽和煤儲(chǔ)層氣藏開發(fā)過程中的滲透率變化趨勢(shì)及其變化量。
4.1韓城煤層氣田基本地質(zhì)條件
韓城煤層氣田位于鄂爾多斯盆地東南緣,區(qū)內(nèi)廣泛發(fā)育海陸過渡相沉積的太原組和主體為陸相環(huán)境沉積的山西組含煤層系,主力可采煤層為3#、5#和11#煤層(表2),其中3#煤層靠近山西組中下部,北厚南薄,厚度1~2 m,煤層結(jié)構(gòu)較為簡(jiǎn)單;5#煤層位于太原組上部,局部可采,南厚北薄,厚度1~6 m;11#煤層產(chǎn)于太原組中下部,分布穩(wěn)定,厚度2~6 m,局部礦區(qū)高達(dá)10.8 m,結(jié)構(gòu)較為復(fù)雜。主力煤層埋深集中在400~1 000 m之間,壓力梯度較低,平均僅為8.3 kPa/m,含氣量達(dá)到8~12 m3/t,蘭氏體積集中在20~26 m3/t之間,蘭氏壓力主要為2.0~2.5 MPa,含氣飽和度一般為50%~70%(表2),屬典型的欠飽和低壓煤層氣藏。
表2 韓城主力煤儲(chǔ)層滲透率動(dòng)態(tài)變化統(tǒng)計(jì)對(duì)比
注:v,含氣量;p0,初始儲(chǔ)層壓力;VL,蘭氏體積;PL,蘭氏壓力;S,煤層氣飽和度;ΔP,地解壓差;ΔP1,臨界解吸壓力與廢棄壓力的差值;P1,k最小點(diǎn)壓力;P2,k復(fù)原點(diǎn)壓力;(k/k0)min,滲透率與原始滲透率之比的最小值; (k/k0)0.2,0.2MPa壓力下的滲透率與原始滲透率比值。
4.2韓城主力煤儲(chǔ)層滲透率動(dòng)態(tài)對(duì)比分析
圖3 滲透率傷害/改善與影響參數(shù)相關(guān)性分析Fig.3 Relation analysis of permeability damage and increase with influential factors
研究主力煤儲(chǔ)層滲透率變化特征過程中,主要依托探井的含氣量、儲(chǔ)層壓力以及等溫吸附參數(shù)等測(cè)試分析數(shù)據(jù),割理壓縮系數(shù)、割理孔隙度、蘭氏應(yīng)變常數(shù)和滑脫系數(shù)則以上述表1的基準(zhǔn)值為準(zhǔn),而泊松比和彈性模量以測(cè)井解釋成果為依據(jù)。同時(shí)考慮到PM改進(jìn)模型僅適用于割理縫呈水平分布且割理孔隙度變化量不超過30%的煤層,因此,本次對(duì)韓城主力煤儲(chǔ)層滲透率變化特征的研究?jī)H選取SD改進(jìn)模型開展相關(guān)研究。
從滲透率動(dòng)態(tài)變化趨勢(shì)看,開發(fā)過程中區(qū)內(nèi)主力煤儲(chǔ)層間滲透率動(dòng)態(tài)變化特征存在明顯的差異性(圖3)。其中,3#煤層有效應(yīng)力效應(yīng)引起的滲透率傷害最小,平均僅傷害43%,滲透率最終改善效果最好,平均達(dá)到24.76;5#煤層有效應(yīng)力效應(yīng)引起的傷害較小,平均傷害為48%,滲透率最終反彈改善效果最差,平均僅為6.66;而11#煤層的有效應(yīng)力效應(yīng)引起的傷害最為嚴(yán)重,傷害量達(dá)到72%,但其滲透率最終改善效果較為理想,平均達(dá)到20.06(表2)。
4.3韓城煤儲(chǔ)層滲透率動(dòng)態(tài)變化影響因素分析
相關(guān)性研究顯示影響韓城煤儲(chǔ)層滲透率動(dòng)態(tài)變化的主要因素是含氣飽和度和地解壓差(圖3)。影響滲透率最終改善效果的主要因素是含氣飽和度,而非蘭氏體積、蘭氏壓力、原始儲(chǔ)層壓力和含氣量(圖3)。含氣飽和度越大,滲透率改善效果越顯著。相同機(jī)械力學(xué)性質(zhì)下,煤儲(chǔ)層受到的有效應(yīng)力效應(yīng)傷害主要取決于地解壓差。地解壓差越大,煤儲(chǔ)層受有效應(yīng)力效應(yīng)傷害也越大(圖3),而地解壓差受控于吸附態(tài)煤層氣的含氣飽和度;因此,含氣飽和度越大,地解壓差就越小,煤儲(chǔ)層滲透率受有效應(yīng)力傷害也就越小,有利于儲(chǔ)煤層滲透率后期改善反彈的壓降幅度也越大,越有利于煤基質(zhì)收縮和氣體滑脫效應(yīng)充分作用于煤儲(chǔ)層,最終煤儲(chǔ)層滲透率改善效果也越好,如HC04、HC06和HC16。
(1)在欠飽和煤層氣開發(fā)機(jī)理和現(xiàn)有常用的滲透率模型的基礎(chǔ)上,對(duì)原有的PM模型和SD模型進(jìn)行改進(jìn),并引入克林肯伯格效應(yīng),建立適合于欠飽和煤層氣藏的滲透率動(dòng)態(tài)的改進(jìn)模型。
(2)通過對(duì)比研究發(fā)現(xiàn),改進(jìn)模型比原有模型更適合描述欠飽和煤層氣藏的生產(chǎn)規(guī)律,更能刻畫其煤儲(chǔ)層滲透率的變化特征。同時(shí)研究顯示SD改進(jìn)模型優(yōu)于PM改進(jìn)模型。
(3)實(shí)例分析顯示韓城地區(qū)區(qū)內(nèi)不同煤層以及同一煤層內(nèi)存在嚴(yán)重的非均質(zhì)性,其中3#煤層滲透率反彈效果最好,達(dá)24.76倍;5#煤層滲透率反彈效果最差;而11#煤層反彈效果居中。
(4)韓城地區(qū)煤儲(chǔ)層滲透率動(dòng)態(tài)影響因素分析發(fā)現(xiàn),吸附態(tài)含氣飽和度對(duì)滲透率最終改善效果影響最為明顯,而地解壓差與滲透率應(yīng)力傷害呈正比。
[1]陳金剛, 徐平, 賴永星, 等. 煤儲(chǔ)層滲透率動(dòng)態(tài)變化效應(yīng)研究[J]. 巖土力學(xué), 2011, 32(8): 2512-2516.
[2]周軍平, 鮮學(xué)福, 姜永東, 等. 考慮基質(zhì)收縮效應(yīng)的煤層氣應(yīng)力場(chǎng)-滲流場(chǎng)耦合作用分析[J]. 巖土力學(xué), 2010, 31(7): 2317-2323.
[3]張春會(huì), 于永江, 岳宏亮, 等. 考慮Klinkenberg效應(yīng)的煤中應(yīng)力-滲流耦合數(shù)學(xué)模型[J]. 巖土力學(xué), 2010, 31(10): 3217-3222.
[4]楊永杰, 宋揚(yáng), 陳紹杰. 煤巖全應(yīng)力應(yīng)變過程滲透性特征試驗(yàn)研究[J]. 巖土力學(xué), 2007, 28(2): 381-385.
[5]肖曉春, 潘一山. 滑脫效應(yīng)影響的低滲煤層氣運(yùn)移實(shí)驗(yàn)研究[J]. 巖土工程學(xué)報(bào), 2009, 31(10): 1554-1558.
[6]汪吉林, 秦勇, 傅雪海. 多因素疊加作用下煤儲(chǔ)層滲透率的動(dòng)態(tài)變化規(guī)律[J]. 煤炭學(xué)報(bào), 2012, 37(8): 1348-1353.
[7]鄧澤, 康永尚, 劉洪林, 等. 開發(fā)過程中煤儲(chǔ)層滲透率動(dòng)態(tài)變化特征[J]. 煤炭學(xué)報(bào), 2009, 34(7): 947-951.
[8]GRAY I. Reservoir engineering in coal seams, part 1—the physical process of gas storage and movement in coal seams[J]. SPE Reservoir Engineering, 1987, 2(1): 28-34.
[9]SAWYER W K, ZUBER M D, KUUSKRAA V A. Using reservoir simulation andeld data to dene mechanisms controlling coalbed methane production[M]//CMS. Proceedings of the 1987 Coalbed Methane Symposium. Tuscaloosa: Eastern Region Coalbed Methane Resource Center, 1988: 295-307.
[10]SEIDLE J R, HUITT L G. Experimental measurement of coal matrix shrinkage due to gas desorption and implications for cleat permeability increases[M]//SPE. International Meeting on Petroleum Engineering. Beijing: SPE, 1995: 1-2.
[11]HARPALANI S, CHEN G L. Influence of gas production induced volumetric strain on permeability of coal[J]. Geotechnical and Geological Engineering, 1997, 15(4): 303-325
[12]LEVINE J R. Model study of the inuence of matrix shrinkage on absolute permeability of coal bed reservoirs[M]//GAYER R, HARRIS I. Coalbed Methane and Coal Geology. London: Geological Society Special Publication, 1996: 197-212.
[13]PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds, a new model[M]//SPE. SPE Annual Technical Conference and Exhibition. Denver: SPE, 1996:1-2.
[14]PALMER I, MANSOORI J. Permeability depends on stress and pore pressure in coalbeds, a new model[J]. SPE Reservoir Evaluation and Engineering, 1998,1(6): 539-544.
[15]SHI J Q, DURUCAN S. A numerical simulation study of the Allison Unit CO2-ECBM pilot: the effect of matrix shrinkage and swelling on ECBM production and CO2injectivity[M]//MALCOLM W, RUBIN E S. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies, September 5-9, Vancouver, Canada. London: Elsevier Science, 2004: 431-442.
[16]SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: a new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56:1-16.
[17]SHI J Q, DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recovery[J]. SPE Reservoir Evaluation and Engineering, 2005, 8(4): 291-299.
[18]CUI X, BUSTIN R M. Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams[J]. AAPG Bulletin, 2005, 89(9): 1181-1202.
[19]CUI X, BUSTIN R M, CHIKATAMARLA L. Adsorption-induced coal swelling and stress, implications for methane production and acid gas sequestration into coal seams[J]. Journal of Geophysical Research-Solid Earth, 2007, 112:1-5.
[20]ROBERTSON E P, CHRISTIANSEN R L. A permeability model for coal and other fractured, sorptive-elastic media[M]//SPE. SPE Eastern Regional Meeting.Canton: Society of Petroleum Engineers, 2006:1-2.
[21]LIU H H, RUTQVIST J. A new coal-permeability model, internal swelling stress and fracture-matrix interaction[J]. Transport in Porous Media, 2010, 82(1): 157-171.
[22]LIU J, CHEN Z, ELSWORTH D, et al. Linking gas-sorption induced changes in coal permeability to directional strains through a modulus reduction ratio[J]. International Journal of Coal Geology, 2010, 83(1): 21-30.
[23]CONNELL L D, LU M, PAN Z. An analytical coal permeability model for tri-axial strain and stress conditions[J]. International Journal of Coal Geology, 2010, 84(2): 103-114.
[24]劉大錳, 姚艷斌, 蔡益棟, 等. 華北石炭系—二疊系煤的孔滲特征及主控因素[J]. 現(xiàn)代地質(zhì), 2010, 24(6): 1198-1203.
[25]劉大錳, 姚艷斌, 劉志華, 等. 華北安鶴煤田煤儲(chǔ)層特征與煤層氣有利區(qū)分布[J]. 現(xiàn)代地質(zhì), 2008, 22(5): 787-793.
[26]王明壽, 湯達(dá)禎, 許浩, 等. 鄂爾多斯盆地東緣煤層氣的地質(zhì)特征[J]. 現(xiàn)代地質(zhì), 2005, 19(4): 176-180.
[27]YAO Y B, LIU D M, QIU Y K. Variable gas content, saturation, and accumulation characteristics of Weibei coalbed methane pilot-production field in the southeastern Ordos Basin, China[J]. AAPG Bulletin, 2013, 97(8): 1371-1393.
[28]YAO Y B, LIU D M, TANG D Z, et al. Preliminary evaluation of the coalbed methane production potential and its geological controls in the Weibei Coal field, Southeastern Ordos Basin, China[J]. International Journal of Coal Geology, 2009, 78(1):1-15.
[29]Gas Research Institute. A guide to coalbed methane reservoir engineering[R]. S.l.:Report GRI-94/ 0397, 2002.
[30]MAVOR M J, GUNTER W D. Secondary porosity and permeability of coal: gas composition and pressure[M]//SPE. SPE Annual Technical Conference and Exhibition. Houston: SPE, 2004: 26-29.
[31]ZAHNER R. Application of material balance to determine ultimate recovery of a San Juan Fruitland coal well[M]//SPE. SPE Annual Technical Conference and Exhibition. Texas:SPE, 1997:1-2.
[32]MAVOR M J, VAUGHN J E. Increasing coal absolute permeability in the San Juan basin Fruitland formation[J]. SPE Reservoir Evaluation and Engineering, 1998, 1(3):201-206.
[33]LIU S, HARPALANI S, MALLIKARJUN P. Laboratory measurement and modeling of coal permeability with continued methane production: Part 2- Modeling results[J]. Fuel, 2012, 94, 117-124.
[34]JONES S C. A rapid accurate unsteady-state Klinkenberg parameter[J]. SPE Formation Evaluation, 1972, 12(5):383-397.
[35]TANIKAWA W, SHIMAMOTO T. Klinkenberg effect for gas permeability and its comparison to water permeability for porous sedimentary rocks[J]. Hydrology & Earth System Sciences Discussions, 2006, 3(4):1315-1338.
Permeability Variation Models and Case Studies for Undersaturated Coalbed Methane Reservoirs
Lü Yumin1,2, LIU Yinghong1, TANG Dazhen2, LI Zhiping2
(1. CNOOC Research Institute, Beijing100028; 2. School of Energy Resources, China University of Geosciences, Beijing100083)
Coal reservoir permeability is under very complicated change due to the combination of the effective stress effect and matrix shrinkage effect during the depletion of reservoir pressure. Nowadays a large number of models have been established to describe permeability variation with the depletion of reservoir pressure. However, no attempt has been made to draw enough attention to the difference of the effect of various factors on permeability variation in different production stages of unsaturated coalbed methane (CBM) reservoirs. This paper summaries the existing and common permeability models, and determines the relationship among various effects (effective stress effect, matrix shrinkage effect and Klinkenberg effect) and desorption characteristics of the recovery of unsaturated CBM reservoirs, then establishes two improved models to describe quantificationally permeability variation by improving the existing models, and finally discusses influence factors on permeability variation with a case study of Hancheng CBM field in Ordos Basin. Results show that the permeability variation during the recovery of unsaturated CBM reservoirs can be divided into two stages: the first one is that the permeability variation is only affected by the effective stress effect, and the second is that the permeability variation is affected by the combination of effective stress effect, matrix shrinkage effect and Klinkenberg effect. In the second stage, matrix shrinkage effect and Klinkenberg effect play much more significant role than effective stress effect, leading to the increase of permeability with depletion of reservoir pressure. A comparative study of the improved models indicates that the improved SD model is more sensitive to various parameters than the improved PM model and the improved models, and can describe dynamic permeability variation more exactly than the original ones. Thus, the case study, by improved SD model, on Hancheng CBM field shows that the increase in coal reservoir permeability is determined by gas saturation, and the damage in coal reservoir permeability is controlled by the difference between the initial reservoir pressure and critical desorbed pressure, and the descending order of the average increment is 3#, 11#and 5#.
coalbed methane reservoir; permeability; dynamic variation; Hancheng mining area
2015-04-25;改回日期:2016-03-27;責(zé)任編輯:潘令枝。
國家科技重大專項(xiàng)(2011ZX05034-001,2011ZX05038-001);國家自然科學(xué)基金項(xiàng)目(41272175);博士后科研基金項(xiàng)目(2014M561020);中海油科技項(xiàng)目(CNOOC-KY125,YXKY-2015-ZY-08)。
呂玉民, 男, 博士, 1985年出生, 礦產(chǎn)普查與勘探專業(yè),主要從事非常規(guī)油氣地質(zhì)與開發(fā)研究。Email: lvym@cnooc.com.cn
TE132.2
A
1000-8527(2016)04-0914-08