• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method*

    2016-10-18 05:36:42MingleiSHAN單鳴雷ChangpingZHU朱昌平XiZHOU周曦ChengYIN殷澄
    關(guān)鍵詞:韓慶昌平

    Ming-lei SHAN (單鳴雷), Chang-ping ZHU (朱昌平), Xi ZHOU (周曦), Cheng YIN (殷澄),

    Qing-bang HAN (韓慶邦)

    College of Internet of Things Engineering and Jiangsu Key Laboratory of Power Transmission and Distribution

    Equipment Technology, Hohai University, Changzhou 213022, China, E-mail: shanming2003@126.com

    ?

    Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method*

    Ming-lei SHAN (單鳴雷), Chang-ping ZHU (朱昌平), Xi ZHOU (周曦), Cheng YIN (殷澄),

    Qing-bang HAN (韓慶邦)

    College of Internet of Things Engineering and Jiangsu Key Laboratory of Power Transmission and Distribution

    Equipment Technology, Hohai University, Changzhou 213022, China, E-mail: shanming2003@126.com

    The dynamics of the bubble collapse near a rigid boundary is a fundamental issue for the bubble collapse application and prevention. In this paper, the bubble collapse is modeled by adopting the lattice Boltzmann method (LBM) and is verified, and then the dynamic characteristics of the collapsing bubble with the second collapse is investigated. The widely used Shan-Chen model in the LBM multiphase community is modified by coupling with the Carnahan-Starling equation of state (C-S EOS) and the exact difference method (EDM) for the forcing term treatment. The simulation results of the bubble profile evolution by the LBM are in excellent agreements with the theoretical and experimental results. From the two-dimensional pressure field evolution, the dynamic characteristics of the different parts during the bubble collapse stage are studied. The role of the second collapse in the rigid boundary damage is discussed, and the impeding effect between two collapses is demonstrated.

    cavitation mechanics, lattice Boltzmann method, bubble collapse, rigid boundary

    Introduction

    The bubble collapse near a rigid boundary may lead to a serious material damage owing to the resulted high velocities, pressures, temperature, but on the other hand, it could also be utilized in various important applications, such as for environmental protection,high-intensity ultrasonic therapy and material surface cleaning[1]. However, as too many phenomena are involved, a theoretical model is difficult to establish,and under particular boundary conditions, the analytical solution is usually impossible. Therefore, the numerical simulation becomes a powerful way to gain an understanding. The conventional numerical simulation methods for the non-spherical cavitation bubble mainly include the finite volume method (FVM), the finite element method (FEM) and the boundary element method (BEM)[2]. In the numerical simulations based on the classical partial differential equation, the methods to track or capture the interfaces are required(such as the volume of fluid (VOF) method or the level set method (LSM)[3]). In addition, the Poisson equation needs to be solved to satisfy the continuity equation, which drastically reduces the computational efficiency[4].

    During the past decades the lattice Boltzmann method (LBM) has emerged as a powerful tool for simulating multiphase flow problems[4-7]. As a powerful tool for the numerical simulations and investigations of the multiphase flows, the LBM has many advantages, including clear physical pictures, easy implementation of boundary conditions, and fully parallel algorithms[4]. Particularly, it is not required to track or capture the interfaces in the LBM models due to their mesoscopic nature. The Shan-Chen model,which is widely used in the LBM multiphase community due to its simplicity, high computational efficiency and high flexibility, has been introduced into the field of the bubble cavitation recently. The first attempt to validate the application of the Shan-Chen model in the LBM for cavitation problems was made bySukop and Or[8]. Chen et al.[9]simulated the cavitating bubble growth using a modified Shan-Chen model with a large density ratio in both quiescent and shear flows, and the results were compared with the Rayleigh-Plesset equation. The acoustic cavitation of the spherical bubble was simulated recently by Zhou et al.[10]using the original Shan-Chen pseudopotential model, and the result was compared with the Keller equation. Mishra et al.[11]introduced a model of cavitation based on the Shan-Chen multiphase model that allows for coupling between the hydrodynamics of a collapsing cavity and the supported solute chemical species. However, the pressure field evolution in the bubble collapse stage near a rigid boundary has not been extensively investigated yet, in particular, when multiple collapses exist. In addition, due to the inherent parallelism, the LBM promises to be a powerful tool for the studies of the multi-bubbles collapse and even the cavitation field.

    The evolutions of the bubble profile and the jet velocity were investigated by experiments with respect to the dynamics of the bubble collapse near rigid boundary[12-14]. As an intuitive clue to investigate the mechanism of the collapsing bubble, the pressure field evolution and the damage of the rigid boundary are more complex and diverse when multiple collapses exist. However, the direct measurement by the experimental method is difficult because all the intrusive measurements will disturb the original pressure field,and the non-intrusive methods cannot be applied unless the fluctuation of the pressure is large enough. In order to visualize the impulsive high pressure regions around the collapsing bubbles, Philipp[12]used the shadow graph method in a high-speed photograph. But the details of the pressure field cannot be obtained except by the emitted shock waves. In Ref.[15], the velocity field and the pressure distribution around the bubble in the dielectric fluid were studied numerically. By solving the Navier-Stokes equation, Liu[16]simulated the pressure distribution numerically outside a nonlinear resonance bubble in one dimension. However, the 2-D pressure distribution and the evolution of a collapsing bubble throughout the whole collapsing stage were not obtained. Since the pressure distribution can be directly obtained by solving the equation of state (EOS), the LBM is very effective to simulate the 2-D or 3-D pressure field and the evolution of a collapsing bubble near a rigid boundary.

    In the present work, an approach of bubble collapse simulation is developed based on a modified Shan-Chen model to investigate the bubble collapse near a rigid boundary, especially to investigate the 2-D pressure filed evolution around a collapsing bubble associated with twice collapses. The modified Shan-Chen model is coupled with the Carnahan-Starling equation of state (C-S EOS) and the exact difference method (EDM) in the interaction forcing term treatment, to obtain a large density ratio liquidvapor system while reducing the spurious currents and minimizing the thermodynamics inconsistency. In this work, the simulations by the LBM is verified through a comparison between the simulation results of the bubble profile evolution and the experimental results. Subsequently, the 2-D pressure field evolution around the collapsing bubble associated with twice collapses is investigated, and the role of the second collapse in the rigid boundary damage is discussed.

    1. Numerical model

    The LBM is a mesoscopic numerical simulation method based on statistical physics and can well simulate the Navier-Stokes equations at the macroscopic scale[4-6]. In the LBM, the motion of fluid is described by a set of particle distribution functions. The standard LBM with a force term based on Bhatnagar-Gross-Krook (BGK) collision term, called the LBGK, can be expressed as follows

    The equilibrium distribution function satisfying the Maxwell distribution in the D2Q9 model is expressed as

    Based on the aforementioned LBGK model, the inter-particle interaction force is introduced into the Shan-Chen model to simulate the single component multiphase flows[17]. In the D2Q9 model, the nearest neighbor interactions are expressed as

    With this method, various EOS can be substituted into Eq.(6). For the C-S EOS, which modifies the vdW EOS, we can obtain

    It is shown that the EDM leads to the relaxation time independence and a relatively wide temperature range[19]. In the EDM[20], the force term in Eq.(1) can be expressed as

    Fig.1 Computational domain

    2. Results and discussions

    The simulations of the bubble collapse stage near a rigid boundary are divided into two main parts. In the first part, the simulations are verified by comparing with the classic results of numerical calculations and experiments. In the second part, the pressure field evolution around a collapsing bubble is obtained in detail. In both parts, the computational domain is set as 401×401 for the bubble collapse simulation as shown in Fig.1, whereis the initial radius of bubble,is the distance from the bubble center to the rigid boundary,is thevapor pressure in bubble,is the ambient pressure. In the simulation, with the reduced temperature in the CS-EOS ,the equilibrium pressureis obtained. The pressure boundary conditions are applied in the inlet,and the initial value of the pressure is equal to the equilibrium pressure. Corresponding to the experiments in Refs.[12] and [13], an infinite medium area needs to be established in the computational domain. On account of both symmetrical and asymmetrical situations, a non-equilibrium extrapolation scheme[22]of the boundary condition is applied on both left and right sides to make an infinite area regardless of reflected waves. The bottom boundary is set as a plane rigid boundary with a bounce-back boundary condition. Under the assumptions set by Plesset and Chapman[23], the simulation can be characterized by the stand-off parameterand the constant pressure differencebetween the ambient liquid and the bubble vapor. Unless otherwise specified, the unit adopted in this paper is the lattice unit of the LBM, and the lattice spacing and the time step are equal to unity in this work.

    Fig.2 Comparison of bubble profile evolution between the LBM and the experimental results[12]

    Fig.3 Comparison of bubble surfaces evolution between the simulation of LBM () and the experimental results[13]and calculations[23]

    2.1 Bubble profile evolution

    With the modified Shan-Chen model, a large density ratio liquid-vapor system can be obtained with different temperatures and different relaxation timesThe coexisting densities of vapor and liquid,and, are determined by the phase segregation simulation with slight random perturbations in the initial density.can be varied slightly in the simulation to obtain an additional pressure difference between the inside and the outside of the bubble after the equilibrium of the fluid in the whole computational domain.

    Fig.4 Pressure field evolution around collapsing bubble near rigid boundary (,R0=80,)

    Two bubbles with same initial radii and different stand-off parameters are simulated. From the figures of the density field, the bubble profiles can be distinguished visually. In Fig.2, the bubble profile evolutions during the collapse stage are compared with experimental results of Philipp[12]. In both cases, the bubble profile evolutions are in qualitatively good agreement with the experimental results.

    With the time step matching, the time evolution of the bubble surfaces can be obtained. The liquid and vapor interface is defined as the locations with the density. For every obtained interface by post-processing is just one set of discrete points, a cubic interpolation is used to obtain a smooth interface. The results are shown in Fig.3. For the convenience, the generalized initial bubble radius is adopted. The LBM simulation results agree better with experimental results[13]than the numerical calculations[23]. In Ref.[23], Plesset and Chapman computed the time evolution of the bubble collapse stage using the boundary element method from the generalized Bernoulli equation. In the definition of the problem, Plesset and Chapman made six assumptions, such as, negligible surface tension, constant vapor pressure and ambient pressure, incompressible liquid, non-viscous flow, no permanent gas, which are difficult to be satisfied in the experiment and the LBM simulation.

    From Fig.2 and Fig.3, we can find that the initially spherical bubble starts to collapse due to the pressure difference between the outside and the inside of the bubble. Owing to the rigid wall, the radial liquid flow is retarded, and a region with lower density/pressure is formed near the rigid wall. Therefore, the collapsing bubble is deformed and the jet is originated from the upper wall to the lower one. It is obvious that different stand-off parametersand/or pressure differencewill lead to different morphologies of collapsing bubbles, which should be investigated. In order to be more intuitive, the pressure field evolution of the collapsing bubble is investigated in the next section.

    2.2 Pressure field evolution

    The simulated pressure field at typical moments are shown in Fig.4. From 4(a) to 4(c) in Fig.4, the bubble deforms from a spherical bubble to an elonga-ted one in the direction normal to the rigid boundary due to the lower pressure region formed near the rigid boundary. The rebound effect of the liquid and the relatively higher speed motion of the upper portion of the bubble cause the forming of a conical high pressure region just above the bubble, which plays a crucial role in the second deformation part, as shown in 4(d)and 4(e). The first collapse, the formation of a circular bubble and the second collapse are illustrated in 4(f),4(g), 4(h), respectively. After the second collapse, the visible bubble surface disappears completely. The circular negative-pressure region formed after the second collapse, as shown from 4(i) to 4(m), is a non-negligible cause of the next collapse or the high frequency oscillation. The interactions between pressure waves lead to a complex sound field in the liquid domain and twice damages of the rigid boundary (as shown in 4(k)and 4(m)).

    Making a comprehensive survey throughout the pressure field evolution, the whole process of evolution can be divided into the following typical parts: the first deformation part, the second deformation part,the first collapse, the circular bubble formation part,the second collapse and the post-collapse part. The collapse mechanism aforementioned can be confirmed by the experiment of Philipp[12], and more details of the post-collapse part are shown in our simulation.

    Fig.5 Collapse time

    3. Discussions

    For a spherical collapsing bubble, the collapse time, i.e., the time duration between the initial stage and the first collapse, can be estimated by the Rayleigh collapse time

    Fig.6 Intervals between first and second collapses

    As compared with the pressure field in the case of a single collapse, the pressure field in the case of two collapses is more complex, and the process of the damage of the rigid boundary caused by the collapsing bubble is much varied. In Fig.6, the interval between the first and second collapses,, under variable conditions, is determined for a given. With a highdecreases with the increase of. But for a lower, the interval curve will have an extreme point, which shifts to the right with the decrease of. To better understand this phenomenon, the images of the pressure field evolution corresponding to the case of a lowin Fig.6 are displayed in Fig.7. Essentially,is related with the velocity of the deformation of the collapsing bubble in the second deformation part, and bothandaffect the deformation velocity of the collapsing bubble. Whenis very low, the velocity of collapsing is low. So when the first collapse occurs, a smaller circular bubble is formed (as shown in Fig.7(a)). Due to the low collapsing velocity, the smaller circular bubble can last for a considerable time. However, if theis small enough in this state, the retarding effect of the rigid wall would make the circular bubble further reduce its size, and then shorten the time. For a higherin Fig.7(b), a greater pressure gradient cause a higher deformation velocity of the bubble and then a larger circular bubble, which can last for a longer time. But a very high deformation velocity will, instead, lead to a decrease ofas in the highercases shown in Fig.6. Ifis small enough as shown in Fig.7(b), the pressure wave created by the first collapse and its echo from the rigid wall will accelerate the collapse and then shorten the time

    Fig.7 Pressure field at first and second collapses for lowercases in Fig.6

    Fig.8 Time sequences ofandon the rigid boundary with different

    The crucial role of the pressure and the jet velocity on the wall damage is shown by the comparison in Fig.8 visualizing the time sequences of two parameters,and, which are the pressure and the normal jet velocity against the rigid boundary, respectively. With the decrease of, the distinction between the first collapse and the second one, according toand, is more and more blurred. The maximums ofandvary oppositely to that of the distance between the bubble and the rigid boundary. But, when, both ofandare reduced more than when. Therefore, it can be speculated that there exists an impeding effect between the two collapses at a certain

    4. Conclusions

    In this paper, the modified Shan-Chen model of the LBM is adopted to simulate the bubble collapse near a rigid boundary. The simulated bubble profile evolution and the bubble surface evolution are in excellent agreements with the theoretical and experimental results. The pressure field evolutions give clear physical pictures for understanding the mechanism of the bubble collapse near a rigid boundary. In particular, the pressure field evolution provides more details after the second collapse. It is shown that the number of parts during the collapse stage and the time intervals among different parts can be adjusted by some parameters, such as.The second collapse makes the pressure field more complex and the process of the damage of the rigid boundary more varied. Additionally, the impeding effect between two collapses at certainis found. It is demonstrated that the LBM is a powerful tool for the study of cavitation under sophisticated boundary conditions and with a large scale cavitation field. Moreover, the investigation of the different parts during the bubble collapse stage and the role of the second collapse provide some insights for the engineering bubble collapse applications or preventions.

    Acknowledgments

    This work was supported by the Fundamental Research Funds for the Central Universities of Hohai University (Grant No. 2013B08814).

    References

    [1] FRANC J. P., MICHEL J. M. Fundamentals of cavitation[M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004, 5-6.

    [2] LINDS. J., PHILLIPST. N.The effect of viscoelasticity on the dynamics of two gas bubbles near a rigid boundary[J]. IMA Journal of Applied Mathematics, 2012,77(5): 652-677.

    [3] SAMIEI E., SHAMS M. and EBRAHIMI R. A novel numerical scheme for the investigation of surface tension effects on growth and collapse stages of cavitation bubbles[J]. European Journal of Mechanics-B/Fluids, 2011, 30(1): 41-50.

    [4]SUKOP M. C., THORNE D. T. Lattice Boltzmann modeling: An introduction for geoscientists and engineers[M]. New York, USA: Springer-Verlag, 2006, 1-4.

    [5] CHEN L., KANG Q. and MU Y. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76(6): 210-236.

    [6] XU Ai-guo, ZHANG Guang-cai and LI Ying-jun et al. Modeling and simulation of nonequilibrium and multiphase complex system-lattice Boltzmann kinetic theory and application[J]. Progress in Physics, 2014, 34(3): 136-167(in Chinese).

    [7] DIAO Wei, CHENG Yong-guang and ZHANG Chun-ze et al. Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method: Validation[J]. Journal of Hydrodynamics, 2015, 27(2): 248-256.

    [8] SUKOP M., OR D. Lattice Boltzmann method for homogeneous and heterogeneous cavitation[J].Physical Review E, 2005, 71(4): 046703.

    [9] CHEN X. P., ZHONG C. W. and YUAN X. L. Lattice Boltzmann simulation of cavitating bubble growth with large density ratio[J]. Computers and Mathematics with Applications, 2011, 61(12): 3577-3584.

    [10] ZHOU X., SHAN M. and ZHU C. et al. Simulation of acoustic cavitation bubble motion by lattice Boltzmann method[C]. 4th International Conference on Civil Engineering, Architecture and Building Materials. Wuhan,China, 2014, 3098-3105.

    [11] MISHRA S. K., DEYMIER P. A. and MURALIDHARAN K. et al. Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity[J]. Ultrasonics Sonochemistry, 2010, 17(1): 258-265.

    [12] PHILIPP A., LAUTERBORN W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998, 361: 75-116.

    [13] LAUTERBORN W., BOLLE H. Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1975,72(2): 391-399.

    [14] WANG Q. X., YANG Y. X. and TAN D. S. et al. Nonspherical multi-oscillations of a bubble in a compressible liquid[J]. Journal of Hydrodynamics, 2015, 26(6): 848-855.

    [15] SHERVANI-TABAR M. T., MOBADERSANY N. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM[J]. Ultrasonics, 2013, 53(5): 943-955.

    [16] LIU Hai-jun. Pressure distribution outside a single cavitation bubble[J]. Acta Physica Sinica, 2004, 53(5): 1406- 1412(in Chinese).

    [17]SHAN X., CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J].Physical Review E, 1993, 47(3): 1815-1819.

    [18] YUAN P., SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101.

    [19] LI Q., LUO K. H. and LI X. J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J].Physical Review E , 20 12, 8 6(1): 016709.

    [20] KUPERSHTOKHA.L.,MEDVEDEVD.A.and KARPOV D. I. On equations of state in a lattice Boltzmann method[J]. Computers and Mathematics with Applications, 2009, 58(5): 965-974.

    [21] KLASEBOER E., KHOO B. C. and HUNG K. C. Dynamics of an oscillating bubble near a floating structure[J]. Journal of Fluids and Structures, 2005, 21(4): 395-412.

    [22] GUO Zhao-li, ZHENG Chu-guang. Theory and applications of lattice Boltzmann method[M]. Beijing, China: Science Press, 2008, 65-67(in Chinese).

    [23] PLESSET M. S., CHAPMAN R. B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971, 47: 283-290.

    November 11, 2014, Revised January 19, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092, 11274091 and 1140040119), the Natural Science Foundation of Jiangsu Province (Grant No. SBK2014043338).

    Biography: Ming-lei SHAN (1977-), Male,

    Ph. D. Candidate, Lecturer

    猜你喜歡
    韓慶昌平
    Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
    “丹麥小馬達(dá)”環(huán)球航線:愛(ài)跟上奮斗的節(jié)奏
    昌平濱河森林公園健身綠道系統(tǒng)建設(shè)
    Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
    窗外的迷你世界
    俄羅斯套娃
    Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM?
    韓慶芳:我站立的地方, 就是我的陣地
    昌平博物館升級(jí)改造古代昌平文物展開(kāi)展
    Time difference based measurement of ultrasonic cavitations in wastewater treatment①
    91大片在线观看| 国产精品九九99| 久久精品国产亚洲av高清一级| 最黄视频免费看| 亚洲欧洲精品一区二区精品久久久| 美国免费a级毛片| 少妇粗大呻吟视频| 中文字幕人妻丝袜一区二区| 一级,二级,三级黄色视频| 大码成人一级视频| 亚洲欧美一区二区三区久久| 国产精品久久久久久精品古装| 另类亚洲欧美激情| 日韩欧美免费精品| 国产成人一区二区三区免费视频网站| 一级毛片女人18水好多| 韩国高清视频一区二区三区| 人妻 亚洲 视频| 男女下面插进去视频免费观看| 日韩大片免费观看网站| 丝袜美足系列| 三上悠亚av全集在线观看| 欧美黑人欧美精品刺激| 这个男人来自地球电影免费观看| 午夜久久久在线观看| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡| 久久女婷五月综合色啪小说| 在线观看免费午夜福利视频| 一级毛片女人18水好多| 性色av一级| 欧美变态另类bdsm刘玥| 亚洲精品粉嫩美女一区| 亚洲七黄色美女视频| 欧美激情极品国产一区二区三区| 无限看片的www在线观看| av免费在线观看网站| 亚洲成人免费电影在线观看| 在线观看人妻少妇| 成年人免费黄色播放视频| 亚洲九九香蕉| 欧美亚洲 丝袜 人妻 在线| 热99re8久久精品国产| 中文精品一卡2卡3卡4更新| xxxhd国产人妻xxx| 无限看片的www在线观看| 麻豆乱淫一区二区| 女人高潮潮喷娇喘18禁视频| 精品一区二区三卡| 久久久欧美国产精品| 精品人妻在线不人妻| 成人免费观看视频高清| 母亲3免费完整高清在线观看| 伊人亚洲综合成人网| 男女边摸边吃奶| 日韩人妻精品一区2区三区| 欧美日韩成人在线一区二区| 日本av免费视频播放| 久久久久久久久久久久大奶| 久久香蕉激情| 国产片内射在线| 又紧又爽又黄一区二区| 久久天堂一区二区三区四区| 日韩人妻精品一区2区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合一区二区三区| 一区二区日韩欧美中文字幕| 亚洲精华国产精华精| 免费久久久久久久精品成人欧美视频| 免费日韩欧美在线观看| 国产又爽黄色视频| 亚洲av日韩在线播放| 大片电影免费在线观看免费| 欧美日韩精品网址| 亚洲精品久久成人aⅴ小说| 久久久久久久久久久久大奶| 男女高潮啪啪啪动态图| 亚洲精品一卡2卡三卡4卡5卡 | 国产黄色免费在线视频| 男女高潮啪啪啪动态图| 99热全是精品| a级片在线免费高清观看视频| 又大又爽又粗| 我的亚洲天堂| 老司机靠b影院| 大香蕉久久网| 波多野结衣一区麻豆| 免费在线观看日本一区| 久久久久久久国产电影| 国产免费现黄频在线看| 菩萨蛮人人尽说江南好唐韦庄| 王馨瑶露胸无遮挡在线观看| av在线app专区| 狠狠婷婷综合久久久久久88av| 可以免费在线观看a视频的电影网站| av有码第一页| 欧美日韩一级在线毛片| 亚洲成人手机| 亚洲伊人色综图| 亚洲av电影在线进入| 国产成人免费观看mmmm| 免费在线观看视频国产中文字幕亚洲 | 日韩三级视频一区二区三区| 亚洲五月婷婷丁香| 免费在线观看日本一区| 成人国产一区最新在线观看| 最近中文字幕2019免费版| 欧美黄色淫秽网站| 热99国产精品久久久久久7| 女人高潮潮喷娇喘18禁视频| 51午夜福利影视在线观看| 夫妻午夜视频| 亚洲成人免费电影在线观看| 老汉色av国产亚洲站长工具| 99热国产这里只有精品6| 咕卡用的链子| 国产真人三级小视频在线观看| 满18在线观看网站| 亚洲欧洲精品一区二区精品久久久| 妹子高潮喷水视频| 国产精品九九99| e午夜精品久久久久久久| 99国产精品一区二区三区| 国产精品香港三级国产av潘金莲| 18在线观看网站| 久久综合国产亚洲精品| 欧美 日韩 精品 国产| 久久久国产精品麻豆| 日本一区二区免费在线视频| 人妻人人澡人人爽人人| 巨乳人妻的诱惑在线观看| 中国美女看黄片| 青青草视频在线视频观看| 成年av动漫网址| 免费观看人在逋| 夜夜夜夜夜久久久久| 岛国在线观看网站| av天堂在线播放| 午夜福利一区二区在线看| 青草久久国产| 丝袜美足系列| 美女中出高潮动态图| 一区二区三区精品91| 国精品久久久久久国模美| 国产野战对白在线观看| 欧美精品人与动牲交sv欧美| 亚洲av电影在线观看一区二区三区| 12—13女人毛片做爰片一| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 久久人人97超碰香蕉20202| 久久久久久人人人人人| 日韩熟女老妇一区二区性免费视频| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久成人av| 午夜福利一区二区在线看| 国产精品偷伦视频观看了| 99国产精品99久久久久| videos熟女内射| 亚洲一码二码三码区别大吗| 制服人妻中文乱码| 久久人人97超碰香蕉20202| 亚洲av日韩在线播放| 9色porny在线观看| 十八禁高潮呻吟视频| 电影成人av| av在线播放精品| 搡老岳熟女国产| 午夜福利在线观看吧| 丁香六月欧美| 国产xxxxx性猛交| 欧美日韩成人在线一区二区| 精品少妇内射三级| 男人添女人高潮全过程视频| 亚洲五月婷婷丁香| 黑人操中国人逼视频| 国产淫语在线视频| tocl精华| 国产在视频线精品| 蜜桃在线观看..| 精品国产一区二区久久| 欧美日韩av久久| 亚洲精品粉嫩美女一区| 爱豆传媒免费全集在线观看| 亚洲欧美激情在线| 国产成人精品在线电影| 欧美另类一区| 欧美+亚洲+日韩+国产| 在线看a的网站| 91老司机精品| av在线app专区| 汤姆久久久久久久影院中文字幕| 91精品伊人久久大香线蕉| 亚洲精品久久成人aⅴ小说| 99精品久久久久人妻精品| www日本在线高清视频| 免费在线观看完整版高清| 精品国产一区二区久久| 97精品久久久久久久久久精品| 亚洲中文av在线| 欧美一级毛片孕妇| 动漫黄色视频在线观看| 成在线人永久免费视频| 男女国产视频网站| 国产在线一区二区三区精| 视频在线观看一区二区三区| 精品国产乱子伦一区二区三区 | 国产男人的电影天堂91| 国产亚洲一区二区精品| 天天添夜夜摸| 精品第一国产精品| 亚洲少妇的诱惑av| a在线观看视频网站| 国产精品 欧美亚洲| 老熟妇乱子伦视频在线观看 | 国产人伦9x9x在线观看| 老熟妇仑乱视频hdxx| 91精品三级在线观看| 欧美日韩一级在线毛片| 国产99久久九九免费精品| 久久久精品区二区三区| 国产精品自产拍在线观看55亚洲 | 国产国语露脸激情在线看| 欧美激情久久久久久爽电影 | 精品国产一区二区久久| 国产精品1区2区在线观看. | 一个人免费看片子| 久久性视频一级片| 亚洲专区字幕在线| 日本精品一区二区三区蜜桃| 少妇的丰满在线观看| 亚洲精品国产区一区二| 久久精品国产亚洲av高清一级| 黄色怎么调成土黄色| 99国产极品粉嫩在线观看| 久久精品成人免费网站| 国产亚洲精品一区二区www | 国产野战对白在线观看| 国产黄频视频在线观看| 超碰成人久久| 国产三级黄色录像| 国产亚洲午夜精品一区二区久久| 91字幕亚洲| 亚洲激情五月婷婷啪啪| 91九色精品人成在线观看| 深夜精品福利| 一级片'在线观看视频| 飞空精品影院首页| 久久免费观看电影| 色播在线永久视频| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av高清一级| 中文字幕av电影在线播放| 国产av一区二区精品久久| 日本wwww免费看| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 9色porny在线观看| 国产淫语在线视频| 夜夜夜夜夜久久久久| 亚洲国产欧美日韩在线播放| a级毛片在线看网站| 人妻人人澡人人爽人人| 国产在线视频一区二区| 国产片内射在线| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩福利视频一区二区| 日韩 亚洲 欧美在线| 精品国产乱码久久久久久男人| 淫妇啪啪啪对白视频 | 两人在一起打扑克的视频| 亚洲精品中文字幕在线视频| 国产精品 国内视频| 日韩熟女老妇一区二区性免费视频| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情久久久久久久| 成年人免费黄色播放视频| 老司机午夜福利在线观看视频 | 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美亚洲二区| cao死你这个sao货| 正在播放国产对白刺激| 久久久久久人人人人人| 成人亚洲精品一区在线观看| 在线av久久热| 欧美日韩黄片免| 精品国产乱码久久久久久男人| 久久综合国产亚洲精品| 国产真人三级小视频在线观看| 91国产中文字幕| 老司机亚洲免费影院| 美女高潮到喷水免费观看| 各种免费的搞黄视频| 亚洲中文字幕日韩| videosex国产| 国产亚洲欧美精品永久| 国产精品久久久久久精品电影小说| 久久精品aⅴ一区二区三区四区| 最新的欧美精品一区二区| 又紧又爽又黄一区二区| 欧美亚洲日本最大视频资源| 91麻豆精品激情在线观看国产 | 国产精品免费大片| 女性被躁到高潮视频| 考比视频在线观看| 午夜福利在线观看吧| av天堂久久9| 超碰97精品在线观看| 欧美激情极品国产一区二区三区| 中国国产av一级| 欧美黑人精品巨大| 欧美一级毛片孕妇| 久久久国产欧美日韩av| 精品国产一区二区久久| 少妇粗大呻吟视频| 成年人黄色毛片网站| 色老头精品视频在线观看| 亚洲成人国产一区在线观看| 最黄视频免费看| 亚洲精品国产av成人精品| 久久毛片免费看一区二区三区| videosex国产| 欧美日韩福利视频一区二区| 国产日韩一区二区三区精品不卡| 中文字幕制服av| 一二三四社区在线视频社区8| 欧美黄色淫秽网站| 亚洲欧美日韩另类电影网站| 亚洲久久久国产精品| 麻豆国产av国片精品| 人妻人人澡人人爽人人| 两个人免费观看高清视频| 麻豆国产av国片精品| 99久久99久久久精品蜜桃| 午夜免费观看性视频| 嫁个100分男人电影在线观看| 9色porny在线观看| 男人舔女人的私密视频| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 在线永久观看黄色视频| 欧美少妇被猛烈插入视频| 国产精品香港三级国产av潘金莲| 自拍欧美九色日韩亚洲蝌蚪91| tube8黄色片| 日本撒尿小便嘘嘘汇集6| 不卡一级毛片| 高清黄色对白视频在线免费看| 日日夜夜操网爽| 日本91视频免费播放| 丝袜美腿诱惑在线| 久久人人爽av亚洲精品天堂| 日韩欧美国产一区二区入口| 久久人妻熟女aⅴ| 精品欧美一区二区三区在线| 侵犯人妻中文字幕一二三四区| www.av在线官网国产| 一本色道久久久久久精品综合| 999精品在线视频| 最近最新中文字幕大全免费视频| 精品国内亚洲2022精品成人 | 亚洲色图 男人天堂 中文字幕| 国产有黄有色有爽视频| 国产亚洲欧美精品永久| 丝袜喷水一区| 成年av动漫网址| 99国产综合亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产看品久久| 女人精品久久久久毛片| 久久影院123| 久久精品国产亚洲av香蕉五月 | 日韩电影二区| 中文欧美无线码| 丝袜脚勾引网站| 国产有黄有色有爽视频| 一级毛片女人18水好多| 亚洲少妇的诱惑av| 国产色视频综合| 国产精品1区2区在线观看. | 国产成人精品久久二区二区免费| netflix在线观看网站| 无遮挡黄片免费观看| 嫁个100分男人电影在线观看| 国产精品免费视频内射| 亚洲精品久久成人aⅴ小说| 成人国语在线视频| 国产成人免费无遮挡视频| 国产在线视频一区二区| 精品第一国产精品| 国产精品久久久av美女十八| 91国产中文字幕| 国产精品免费视频内射| 女性生殖器流出的白浆| 天堂8中文在线网| 考比视频在线观看| 亚洲avbb在线观看| 久久国产亚洲av麻豆专区| 精品少妇黑人巨大在线播放| 两个人看的免费小视频| 日韩欧美一区视频在线观看| 亚洲精品乱久久久久久| 嫩草影视91久久| 精品亚洲成a人片在线观看| 中亚洲国语对白在线视频| 欧美日韩国产mv在线观看视频| 欧美黑人精品巨大| 精品国产一区二区久久| 亚洲成人免费电影在线观看| 黄频高清免费视频| 日日夜夜操网爽| 亚洲成人国产一区在线观看| 成年女人毛片免费观看观看9 | 狠狠婷婷综合久久久久久88av| 亚洲色图综合在线观看| 国产精品国产av在线观看| 国产区一区二久久| 亚洲国产成人一精品久久久| 久久久久久久久久久久大奶| 色播在线永久视频| 一二三四社区在线视频社区8| 多毛熟女@视频| 新久久久久国产一级毛片| 免费观看a级毛片全部| 亚洲精品国产区一区二| 91国产中文字幕| 国产在视频线精品| 免费观看人在逋| 欧美 亚洲 国产 日韩一| 亚洲一码二码三码区别大吗| 老司机在亚洲福利影院| 18在线观看网站| 老司机靠b影院| 国产一区二区在线观看av| 国产在线观看jvid| 欧美中文综合在线视频| 欧美黄色片欧美黄色片| 美女福利国产在线| 香蕉丝袜av| 亚洲一区中文字幕在线| 大香蕉久久成人网| 亚洲精品国产av蜜桃| 两人在一起打扑克的视频| 男女无遮挡免费网站观看| av天堂久久9| 日韩三级视频一区二区三区| 午夜福利影视在线免费观看| 国产精品 国内视频| 超碰97精品在线观看| 国产精品秋霞免费鲁丝片| 国产精品久久久av美女十八| 国产高清videossex| 国产一区二区三区综合在线观看| 欧美乱码精品一区二区三区| 久久久久久久久久久久大奶| 婷婷成人精品国产| e午夜精品久久久久久久| 日韩电影二区| 午夜免费鲁丝| 午夜福利在线免费观看网站| 国产老妇伦熟女老妇高清| 欧美亚洲 丝袜 人妻 在线| 久久久久久久国产电影| a 毛片基地| 大香蕉久久成人网| 精品亚洲乱码少妇综合久久| 夫妻午夜视频| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美软件| 欧美亚洲 丝袜 人妻 在线| 91字幕亚洲| 老司机福利观看| 黄片小视频在线播放| 美女福利国产在线| 亚洲av欧美aⅴ国产| 蜜桃国产av成人99| 成人国产av品久久久| 99精品欧美一区二区三区四区| 窝窝影院91人妻| 性色av乱码一区二区三区2| 美女国产高潮福利片在线看| 久久精品亚洲av国产电影网| av线在线观看网站| 亚洲综合色网址| 亚洲视频免费观看视频| 午夜福利视频精品| 啪啪无遮挡十八禁网站| 中文字幕制服av| 久久久久视频综合| 日韩欧美一区视频在线观看| 一级毛片精品| 最近最新中文字幕大全免费视频| 婷婷色av中文字幕| 日韩中文字幕视频在线看片| 久久av网站| 亚洲欧美一区二区三区久久| 久久精品成人免费网站| 国产精品影院久久| 夫妻午夜视频| videosex国产| 日韩 亚洲 欧美在线| 操出白浆在线播放| 在线观看免费视频网站a站| 午夜免费鲁丝| 狠狠狠狠99中文字幕| 激情视频va一区二区三区| 日本wwww免费看| 欧美黑人精品巨大| 午夜福利视频精品| 亚洲精华国产精华精| 女人被躁到高潮嗷嗷叫费观| 一级片'在线观看视频| 亚洲精品美女久久久久99蜜臀| 又黄又粗又硬又大视频| 久久精品亚洲av国产电影网| 国产亚洲av片在线观看秒播厂| 国产精品欧美亚洲77777| 久久亚洲精品不卡| 欧美另类一区| 男女午夜视频在线观看| 久久av网站| 久久午夜综合久久蜜桃| 午夜福利,免费看| 久久99热这里只频精品6学生| 亚洲精品美女久久av网站| 亚洲情色 制服丝袜| 精品国产一区二区三区四区第35| 成年女人毛片免费观看观看9 | 亚洲精品中文字幕一二三四区 | 男女免费视频国产| 免费日韩欧美在线观看| av网站免费在线观看视频| 久热爱精品视频在线9| 又大又爽又粗| 不卡一级毛片| 视频区图区小说| 涩涩av久久男人的天堂| 久久久久国产一级毛片高清牌| 日韩电影二区| av天堂久久9| www.999成人在线观看| 99国产精品99久久久久| 大陆偷拍与自拍| 超碰成人久久| 欧美精品一区二区大全| 精品福利观看| 欧美日韩成人在线一区二区| 国产精品久久久久久精品古装| 国产熟女午夜一区二区三区| 成人av一区二区三区在线看 | 伊人久久大香线蕉亚洲五| 日本vs欧美在线观看视频| 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| h视频一区二区三区| 正在播放国产对白刺激| 精品人妻熟女毛片av久久网站| 超色免费av| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 午夜福利视频在线观看免费| 亚洲第一欧美日韩一区二区三区 | 午夜精品国产一区二区电影| 极品人妻少妇av视频| 国产精品久久久av美女十八| 多毛熟女@视频| 久久久精品免费免费高清| 人人澡人人妻人| 国产欧美亚洲国产| 女人爽到高潮嗷嗷叫在线视频| 久久99一区二区三区| 一边摸一边做爽爽视频免费| 后天国语完整版免费观看| 男女无遮挡免费网站观看| 免费一级毛片在线播放高清视频 | 伦理电影免费视频| 俄罗斯特黄特色一大片| 动漫黄色视频在线观看| 午夜激情久久久久久久| 91成年电影在线观看| 日韩一区二区三区影片| 18禁裸乳无遮挡动漫免费视频| 国产一区二区三区综合在线观看| av免费在线观看网站| 国产区一区二久久| 日本av手机在线免费观看| 黄频高清免费视频| 亚洲专区中文字幕在线| 久久午夜综合久久蜜桃| 男女之事视频高清在线观看| 成人av一区二区三区在线看 | 日韩熟女老妇一区二区性免费视频| 亚洲精品成人av观看孕妇| 国产区一区二久久| 亚洲国产日韩一区二区| 久久国产精品影院| 老司机午夜福利在线观看视频 | 亚洲黑人精品在线| 精品人妻一区二区三区麻豆| 久久99热这里只频精品6学生| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品第一综合不卡| 一区二区三区四区激情视频| 视频在线观看一区二区三区| 国产野战对白在线观看| 国精品久久久久久国模美| 久久久久久久久久久久大奶| 国产精品影院久久| 国产高清videossex| 国产有黄有色有爽视频| 国产欧美日韩一区二区三区在线| 一级毛片电影观看| 日本a在线网址|