尹濤 王震威
摘要: 脫層是復(fù)合材料層合結(jié)構(gòu)最主要的破壞形式之一。基于EulerBernoulli梁理論和譜有限元方法得到周期結(jié)構(gòu)中健康基本周期單元的動剛度矩陣。再考慮脫層位于周期結(jié)構(gòu)的某一基本周期單元中,并假設(shè)脫層邊緣處橫截面變形服從平截面假定,忽略脫層前沿的應(yīng)力奇異,建立分層模型,根據(jù)分層邊緣處各子單元位移、轉(zhuǎn)角連續(xù)及分層界面處力平衡條件形成含脫層的周期層合梁超單元動剛度矩陣?;趥鬟f矩陣法得到健康及含脫層周期單元的傳遞矩陣,進(jìn)而形成含脫層周期層合梁結(jié)構(gòu)的傳遞矩陣及總體動剛度矩陣,并通過傳遞矩陣計算獲得的波傳播常數(shù)來分析周期結(jié)構(gòu)的振動與波傳播特性。分別對無脫層情況與脫層引起局部失諧情況下一周期簡支梁結(jié)構(gòu)的波傳播特性進(jìn)行數(shù)值計算研究,并結(jié)合ANSYS有限元仿真分析,對方法進(jìn)行了驗證。
關(guān)鍵詞: 周期結(jié)構(gòu); 層合梁; 脫層; 譜有限元法; 傳播常數(shù)
中圖分類號: O327; O343文獻(xiàn)標(biāo)志碼: A文章編號: 10044523(2016)04056809
DOI:10.16385/j.cnki.issn.10044523.2016.04.002
引言
近年來,復(fù)合材料由于其強(qiáng)度高、自重輕等優(yōu)點(diǎn)在航空航天、機(jī)械、船舶、生物工程以及土木工程等領(lǐng)域都得到越來越廣泛的應(yīng)用。而對于復(fù)合材料層合結(jié)構(gòu)而言,脫層的出現(xiàn)能夠明顯改變其局部以及整體結(jié)構(gòu)的動力特性,對其進(jìn)行基于振動與波傳播理論的動力特性研究就顯得尤其重要,這同時也為脫層缺陷檢測提供理論依據(jù)。目前國內(nèi)外已有學(xué)者對含脫層復(fù)合材料層合結(jié)構(gòu)的動力特性進(jìn)行研究。如,王德明和錢管良分別通過模態(tài)分析法研究了含裂縫各向同性梁的振動問題[12];Wang等人對脫層梁的振動問題進(jìn)行了深入研究,并證明當(dāng)脫層較短時,梁的固有頻率不會發(fā)生顯著變化[3];Zhang從應(yīng)力波的頻散及反射現(xiàn)象角度對結(jié)構(gòu)內(nèi)部缺陷檢測進(jìn)行了較詳細(xì)研究[4];羅松南等對含有任意脫層復(fù)合材料梁中脫層位置及其長度對復(fù)合材料梁動力特性的影響進(jìn)行了研究[5] 。
另一方面,周期結(jié)構(gòu)在工程領(lǐng)域中獲得了廣泛的應(yīng)用,例如聲子晶體、超高層剪切型建筑、超長石油天然氣管道、多跨高架橋、航天器太陽能電池帆板、渦輪葉片以及復(fù)合材料層合結(jié)構(gòu)等。從20世紀(jì)60年代開始,國內(nèi)外學(xué)者對周期結(jié)構(gòu)進(jìn)行了較深入地研究,并發(fā)現(xiàn)周期結(jié)構(gòu)不同于其他結(jié)構(gòu)的一些特性:周期結(jié)構(gòu)中會產(chǎn)生特有的帶隙(即頻率通帶和阻帶)現(xiàn)象[68],其表現(xiàn)在當(dāng)波處在結(jié)構(gòu)的頻率通帶范圍內(nèi)時,波能夠傳遍整個結(jié)構(gòu)而不發(fā)生能量和振幅的衰減;但當(dāng)波處在結(jié)構(gòu)的頻率阻帶范圍時,波將發(fā)生能量與振幅衰減,而不能傳遍整個結(jié)構(gòu)。研究還發(fā)現(xiàn)失諧周期結(jié)構(gòu)會在單元的交界面處出現(xiàn)振動及波動的局部化現(xiàn)象[910],導(dǎo)致波動幅值沿失諧周期結(jié)構(gòu)以空間指數(shù)的形式衰減并產(chǎn)生能量集中現(xiàn)象,據(jù)此可以對振動波在結(jié)構(gòu)中特定頻率范圍內(nèi)的傳播規(guī)律進(jìn)行深入研究,有利于從理論上指導(dǎo)結(jié)構(gòu)的振動控制實(shí)施。
然而,目前對復(fù)合材料層合結(jié)構(gòu)脫層引起的結(jié)構(gòu)動力特性改變問題的研究基本都是針對非周期結(jié)構(gòu)開展的,而對于周期性復(fù)合材料層合結(jié)構(gòu)由脫層引起結(jié)構(gòu)失諧并導(dǎo)致其出現(xiàn)振動與波動局部化現(xiàn)象的研究尚鮮見報道。深入掌握其規(guī)律有助于基于振動和波傳播特性的周期復(fù)合材料層合結(jié)構(gòu)的脫層缺陷檢測。
本文對含局部脫層的周期簡支層合梁結(jié)構(gòu)的動力特性進(jìn)行研究?;贓ulerBernoulli梁理論與譜有限元法[11],分別建立健康與含橫向脫層基本周期單元的動剛度矩陣與超單元動剛度矩陣,并基于傳遞矩陣法分別獲得健康與含脫層基本周期單元傳遞矩陣,進(jìn)而形成含脫層周期梁結(jié)構(gòu)的傳遞矩陣。通過數(shù)值仿真分別研究基本周期單元長度、脫層幾何尺寸及位置等參數(shù)改變對于健康與含脫層基本周期單元傳播常數(shù)的影響,并對振動波在結(jié)構(gòu)中傳播時出現(xiàn)的幅值衰減和相位變化特征進(jìn)行分析。另通過單元組裝法建立周期結(jié)構(gòu)總體動剛度矩陣,對基于傳遞矩陣法的計算結(jié)果進(jìn)行了對比驗證。此外,基于ANSYS仿真計算,對健康和含脫層的周期結(jié)構(gòu)在頻率通帶與阻帶下諧響應(yīng)位移進(jìn)行計算,進(jìn)一步驗證本文方法關(guān)于通阻帶特性的傳播常數(shù)分析結(jié)果。
Abstract: Delamination is one of the main types of damage for composite laminated structures. The dynamic stiffness matrix of the undamaged periodic cell of the periodic structure is firstly derived by employing both the EulerBernoulli beam theory and spectral finite element method. Then, considering the delamination is located in one periodic cell of the periodic beam and neglecting the effect of stress singularity at the delamination tip, a delamination model is developed with the plain section assumption for the crosssection of delamination edges. The superelement dynamic stiffness matrix of delaminated periodic cell is formed by utilizing the continuous condition of displacement and rotation at the edge of each subelement as well as the force balance condition at the delamination interface. After that, the transfer matrices of both healthy and delaminated periodic cells are formulated based on transfer matrix method, and then the global transfer matrix as well as the global dynamic stiffness matrix is formulated. The propagation constants obtained from the transfer matrices are employed to investigate the wave propagation properties of the whole periodic structure. In addition, for verification purpose, a set of numerical simulations are carried out for investigating the wave propagation characteristics of a periodically simplysupported beam under both the healthy and disordered conditions. Furthermore, the ANSYS software is also utilized to verify the proposed methodology.
Key words: periodic structure; laminated beam; delamination; spectral finite element method; propagation constant