田海燕,陳 富,康淑瑰
(山西大同大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,山西大同 037009)
?
具有體液免疫反應(yīng)的傳染病模型穩(wěn)定性分析*
田海燕,陳 富,康淑瑰
(山西大同大學(xué)數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院,山西大同 037009)
建立考慮潛伏感染細(xì)胞并具有體液免疫反應(yīng)的傳染病模型,討論其解的非負(fù)性和有界性,得到確定模型動(dòng)力學(xué)性態(tài)的基本再生數(shù),再通過構(gòu)造適當(dāng)?shù)腖yapunov泛函,并利用LaSalle不變原理證明模型無病平衡點(diǎn)的全局漸近穩(wěn)定性.
病毒感染 全局穩(wěn)定性 免疫反應(yīng) 李雅普諾夫函數(shù)
近年來,越來越多的學(xué)者利用數(shù)學(xué)模型分析宿主細(xì)胞和病毒之間的相互作用, 研究過的病毒有人類免疫缺陷病毒(HIV),乙肝病毒(HBV) ,丙肝病毒(HCV),SEIR傳染病毒等[1-7].為了描述易感染細(xì)胞,感染細(xì)胞以及乙肝病毒顆粒之間的關(guān)系,建立了如下基本的病毒動(dòng)力學(xué)模型:
(1)
然而要建立更精確的病毒感染數(shù)學(xué)模型,必須考慮免疫反應(yīng).免疫系統(tǒng)中對病毒感染有影響的兩個(gè)主要反應(yīng)是細(xì)胞免疫和體液免疫.細(xì)胞免疫中細(xì)胞毒性T淋巴細(xì)胞在病毒防御中起著關(guān)鍵的作用, 因?yàn)榧?xì)胞毒性T淋巴細(xì)胞可以攻擊并殺死被感染細(xì)胞.而體液免疫是基于B細(xì)胞產(chǎn)生的抗體攻擊并殺死被感染細(xì)胞.在一些病毒感染中,比如瘧疾,細(xì)胞免疫比體液免疫的效果差[8-10].Muras等[9]已經(jīng)建立了體液免疫的基本動(dòng)力學(xué)模型:
(2)
其中x,y,v分別表示易感染細(xì)胞,受感染細(xì)胞以及游離病毒顆粒的數(shù)量,z表示B細(xì)胞的數(shù)量.未感染細(xì)胞以常速率λ產(chǎn)生,死亡速率dx,細(xì)胞被感染的速率為βxv,受感染的細(xì)胞死亡率為by.游離病毒顆粒從受感染的細(xì)胞中產(chǎn)生的速率為ky,死亡率為uv,同時(shí)被抗體作用移除體內(nèi)的速率為rzv.B細(xì)胞被激活的速率為gzv,死亡率為μz.所有系數(shù)為正.
(3)
其中γ和α是正常數(shù),w和y分別表示潛伏的感染細(xì)胞和活動(dòng)性感染細(xì)胞的濃度.潛伏感染細(xì)胞死亡的速率ew, 轉(zhuǎn)化為活動(dòng)性感染細(xì)胞的速率δw.1-q和q(0 系統(tǒng)(3)的所有解都非負(fù)有界.解的非負(fù)性從生物學(xué)意義上講顯然成立,只需證明其有界性. 定理1 系統(tǒng)(3)的所有解x(t),w(t),y(t),v(t),z(t)都是非負(fù)且有界的,即存在Mi>0,i=1,2,3使得0≤x(t),w(t),y(t)≤M1,0≤v(t)≤M2,0≤z(t)≤M3成立. 證明 設(shè)X1(t)=x(t)+w(t)+y(t),則有 所以0≤x(t),w(t),y(t)≤M1. 證明 構(gòu)造Lyapunov函數(shù): 結(jié)合系統(tǒng)(3)有 (4) 本文討論了一類考慮潛伏感染細(xì)胞的具有體液免疫反應(yīng)的傳染病模型,該模型描述了未受感染的靶細(xì)胞,潛伏感染的細(xì)胞,活動(dòng)性感染的細(xì)胞,自由的病毒顆粒與B細(xì)胞之間的相互作用.利用Lyapunov函數(shù)和LaSalle不變原理,證明了當(dāng)基本再生數(shù)R0≤1時(shí),模型無病平衡點(diǎn)全局漸近穩(wěn)定. [1] 譚光興,陳少白,毛宗源.一類時(shí)滯免疫反應(yīng)系統(tǒng)穩(wěn)定性分析[J].廣西科學(xué),2006,13(1):19-22,26. TAN G X,CHEN S B,MAO Z Y.Stability analyze in a class of time-delay immune response system[J].Guangxi Sciences,2006,13(1):19-22,26. [2] GOURLEY S A,KUANG Y,NAGY J D.Dynamics of a delay differential equation model of hepatitis B virus infection[J].Journal of Biological Dynamics,2008,2(2):140-153. [3] 韓曉麗,靳禎.具有免疫反應(yīng)的乙肝病毒時(shí)滯動(dòng)力學(xué)模型[J].中北大學(xué)學(xué)報(bào):自然科學(xué)版,2011,32(1):35-38. HAN X L,JIN Z.A dynamic model of hepatitis B virus with delayed immune response[J].Journal of North University of China:Natural Science Edition,2011,32(1):35-38. [4] NOWAK M A,BONHOEFFER S,HILL A M,et al. Viral dynamics in hepatitis B virus infection [J].Proceedings of the National academy of Sciences of the United States of America,1996,93(9):4398-4402. [5] 莊科俊.一類時(shí)滯乙肝病毒模型的穩(wěn)定性分析[J].中北大學(xué)學(xué)報(bào):自然科學(xué)版,2015,36(2):122-125. ZHUANG K J.Stability analysis for a hepatitis B virus model with time delay[J].Journal of North University of China:Natural Science Edition,2015,36(2):122-125. [6] KOROBEINIKOV A.Global properties of basic virus dynamics models[J].Bulletin of Mathematical Biology,2014,66(4):879-883. [7] 徐翠翠.一類SEIR傳染病模型周期解的存在性[J].廣西科學(xué),2011,18(1):17-21. XU C C.Periodic solution of a SEIR epidemic model[J].Guangxi Sciences,2011,18(1):17-21. [8] OBAID M A,ELAIW A M.Stability of virus infection models with antibodies and chronically infected cells[J].Abstract and Applied Analysis,2014,2014:650371. [9] MURASE A,SASAKI T,KAJIWARA T.Stability analysis of pathogen-immune interaction dynamics [J].Journal of Mathematical Biology,2005,51(3):247-267. [10] WANG S F,ZOU D Y.Global stability of in-host viral models with humoral immunity and intracellular delays[J].Applied Mathematical Modelling,2012,36(3):1313-1322. [11] HUANG G,MA W B,TAKEUCHI Y.Global properties for virus dynamics model with Beddington-DeAngelis functional response[J].Applied Mathematics Letters,2009,22(11):1690-1693. [12] ELAIW A M,AZOZ S A.Global properties of a class of HIV infection models with Beddington-DeAngelis functional response[J].Mathematical Methods in the Applied Sciences,2013,36(4):383-394. (責(zé)任編輯:尹 闖) Stability Analysis of an Infection Model with Humoral Immunity TIAN Haiyan,CHEN Fu,KANG Shugui (School of Mathematics and Computer Science,Datong University,Datong,Shanxi,037009,China) In this paper,we built a virus dynamics model with humoral immune response including latently infected cells,and then discussed the nonnegativity and boundedness of the solution.The basic reproduction number was obtained,which determined the dynamical behaviors of the infection model.By constructing suitable Lyapunov functions and applying LaSalle’s invariance principle we proved that the infection-free equilibrium was globally asymptotically stable. virus infection,global stability,immune response,Lyapunov function 2016-03-20 田海燕(1984-), 女,助教,主要從事微分方程定性理論研究,E-mail:tianhaiyan668@163.com。 *國家青年科學(xué)基金項(xiàng)目(11301312),山西大同大學(xué)青年科學(xué)基金項(xiàng)目(2014Q10)和山西大同大學(xué)青年科學(xué)基金(2015K5)資助。 網(wǎng)絡(luò)優(yōu)先數(shù)字出版時(shí)間:2016-09-13 【DOI】10.13656/j.cnki.gxkx.20160913.006 http://www.cnki.net/kcms/detail/45.1206.G3.20160913.0948.012.html O175 A 1005-9164(2016)04-0378-03 廣西科學(xué)Guangxi Sciences 2016,23(4):378~3801 模型基本性質(zhì)
2 模型無病平衡點(diǎn)的穩(wěn)定性
3 結(jié)論