夏永高,劉兆平
?
鋰離子電池高容量富鋰錳基正極材料研究進(jìn)展
夏永高,劉兆平
(中國(guó)科學(xué)院寧波材料技術(shù)與工程研究所,浙江寧波 315201;中國(guó)科學(xué)院先導(dǎo)專項(xiàng)長(zhǎng)續(xù)航鋰電池項(xiàng)目研究組)
富鋰錳基正極材料因具有高的放電比容量,有望成為下一代400 W·h/kg動(dòng)力電池最有前景的正極材料。本文簡(jiǎn)要介紹了本研究團(tuán)隊(duì)在富鋰錳基正極材料方面的研究進(jìn)展。通過(guò)團(tuán)隊(duì)多年研發(fā),材料的首次不可逆容量、倍率性能、循環(huán)穩(wěn)定性得到明顯的改善,而且,電壓衰減被有效的抑制。同時(shí),研制出基于富鋰錳基正極材料和納米硅碳負(fù)極材料的新型24 A·h高容量鋰離子電池,其質(zhì)量能量密度達(dá)到374 W·h/kg,體積能量密度達(dá)到 577 W·h/L。
鋰離子電池;富鋰錳基正極材料;電壓衰減;高能量密度;電動(dòng)汽車
電動(dòng)汽車是解決能源和環(huán)境問(wèn)題的新型戰(zhàn)略產(chǎn)品,但目前電動(dòng)汽車仍面臨續(xù)航里程短,成本偏高和安全性等問(wèn)題,這些嚴(yán)重制約了電動(dòng)汽車大規(guī)模推廣應(yīng)用。為了消除電動(dòng)汽車?yán)锍探箲],使電動(dòng)汽車?yán)m(xù)航里程超過(guò)500公里,實(shí)現(xiàn)電動(dòng)汽車的大規(guī)模推廣,研究開發(fā)新一代300~400 W·h/kg動(dòng)力鋰電池,是未來(lái)鋰電材料及技術(shù)的必然趨勢(shì)。同時(shí),從目前的技術(shù)來(lái)看,通過(guò)降低電芯中非活性物質(zhì)的質(zhì)量比來(lái)提高電池的能量密度,經(jīng)過(guò)24年的研發(fā),幾乎已經(jīng)達(dá)到了技術(shù)的極限。采用具有更高能量密度的正極和負(fù)極材料是提高電池能量密度更為有效的技術(shù)途徑。由于目前負(fù)極的比容量遠(yuǎn)大于正極材料,因此對(duì)于新一代高容量正極材料的研發(fā)顯得尤為迫切。在已知正極材料中,富鋰錳基正極材料放電比容量達(dá)300 mA·h/g,幾乎是目前已商業(yè)化正極材料實(shí)際容量的兩倍左右,同時(shí)這種材料中以Mn元素為主體,與常用的鈷酸鋰和鎳鈷錳三元系正極材料相比,不僅價(jià)格低,而且安全性好。因此,富鋰錳基正極材料被視為下一代動(dòng)力鋰離子電池的理想之選。
雖然富鋰錳基正極材料具有高比容量、高電壓和優(yōu)異的高溫性能等優(yōu)點(diǎn),但其仍存在首次循環(huán)不可逆容量高、倍率性能差和循環(huán)過(guò)程中電壓衰減等問(wèn)題有待于進(jìn)一步解決。針對(duì)這些缺點(diǎn),動(dòng)力鋰離子電池研究團(tuán)隊(duì)于2009年部署了富鋰錳基正極材料的研究。如圖1所示,整個(gè)研究過(guò)程經(jīng)歷了4個(gè)階段,從前期簡(jiǎn)單的制備方法探索到過(guò)渡金屬和鋰的組分優(yōu)化,到后期的充放電機(jī)理研究和表面改性等研究工作。經(jīng)過(guò)這幾年努力,富鋰錳基正極材料的首次放電比容量取得了顯著的提高,從2011年的250 mA·h/g發(fā)展到現(xiàn)在的320 mA·h/g左右。最近,又摒棄了采用金屬氧化物、氟化物或者磷酸鹽等固相包覆的傳統(tǒng)路線,創(chuàng)新地發(fā)展了新型的處理方法對(duì)材料進(jìn)行表面處理,通過(guò)調(diào)節(jié)材料界面的結(jié)構(gòu),有效地解決了長(zhǎng)久以來(lái)困擾人們的材料首次效率低、倍率性能差和循環(huán)壽命短的難題。
另外,富鋰錳基正極材料在循環(huán)過(guò)程中電壓衰減被認(rèn)為是該材料最難解決的問(wèn)題。動(dòng)力鋰離子電池研究團(tuán)隊(duì)前期通過(guò)調(diào)節(jié)不同的電壓范圍可以實(shí)現(xiàn)放電電壓的穩(wěn)定[8-9],但是這個(gè)穩(wěn)定的前提是以犧牲容量為代價(jià),這個(gè)對(duì)于高容量富鋰錳基正極材料的實(shí)際應(yīng)用來(lái)說(shuō)沒(méi)有太大的意義。為了解決這一難題,團(tuán)隊(duì)通過(guò)調(diào)控富鋰錳基正極材料的體相結(jié)構(gòu)發(fā)現(xiàn)能夠顯著地抑制其在循環(huán)過(guò)程中的電壓降,同時(shí)保持著跟原始材料相同的放電比容量(圖2)。
基于上述基礎(chǔ)研究,研究團(tuán)隊(duì)自行設(shè)計(jì)了新型處理設(shè)備,實(shí)現(xiàn)對(duì)富鋰錳基材料表面結(jié)構(gòu)的可控修飾,并搭建了從碳酸鹽/氫氧化物前驅(qū)體合成、固相混料、高溫?zé)Y(jié)和后處理在內(nèi)的批次百公斤級(jí)中試實(shí)驗(yàn)線,中試樣品的0.1 C放電比容量超過(guò)300 mA·h/g,1 C放電比容量高達(dá)250 mA·h/g,0.1 C倍率下80次循環(huán)容量無(wú)衰減,表現(xiàn)了良好的循環(huán)性能(圖3)。
采用中試富鋰錳基樣品,最近,動(dòng)力鋰離子電池研究團(tuán)隊(duì)又聯(lián)合中國(guó)科學(xué)院物理研究所李泓研究員及其團(tuán)隊(duì),采用高容量的納米硅碳負(fù)極材料,合作研制了一款軟包鋰離子電池(圖4),單體鋰離子電池容量為24 A·h,其質(zhì)量能量密度達(dá)到374 W·h/kg,體積能量密度達(dá)到577 W·h/L,其質(zhì)量能量密度是我們前期開發(fā)的基于磷酸錳鋰/三元復(fù)合材料的鋰離子電池(約為180W·h/kg)的2倍左右。
雖然經(jīng)過(guò)團(tuán)隊(duì)多年的研究,材料的首次不可逆容量、倍率性能和循環(huán)穩(wěn)定性都得到明顯的改善,而且在電壓衰減抑制方面也獲得了令人振奮的研究成果,但該材料的實(shí)際應(yīng)用還需要解決低溫性能差、壓實(shí)密度低等問(wèn)題。同時(shí),除了富鋰錳基正極材料的自身結(jié)構(gòu)性能的優(yōu)化外,還急需開發(fā)與富鋰錳基正極材料匹配的高容量負(fù)極、高電壓電解液、黏結(jié)劑和耐高電壓隔膜等。另外,由于富鋰材料相對(duì)于其它傳統(tǒng)層狀正極材料,在儲(chǔ)鋰機(jī)制上存在很大的不同,很難用傳統(tǒng)的電化學(xué)機(jī)理進(jìn)行解釋。目前的研究主要集中在氧和氧空位的行為以及過(guò)渡金屬的行為對(duì)富鋰材料儲(chǔ)鋰機(jī)理的影響進(jìn)行解釋。雖然這些研究都取得了突破性的進(jìn)展,但在原子尺度的微觀反應(yīng)機(jī)理及結(jié)構(gòu)演化認(rèn)識(shí)上還不全面,還需要深入細(xì)致的基礎(chǔ)科學(xué)研究。
[1] WANG Jun,YUAN Guoxia,ZHANG Minghao,QIU Bao,XIA Yonggao,LIU Zhaoping . The structure,morphology,and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2(0.1≤≤0.7) cathode materials[J]. Electrochimica Acta,2012,66:61-66.
[2] WANG Jun,QIU Bao,CAO Hailiang,XIA Yonggao,LIU Zhaoping. Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2·0.4LiNiMnCo1?x?yO2cathode materials for lithium-ion batteries[J]. Journal of Power Sources,2012,218:128-133.
[3] QIU Bao,WANG Jun,XIA Yonggao,ZHEN Wei,HAN Shaojie,LIU Zhaoping. Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes[J]. ACS Applied Materials & Interfaces,2014,6:9185-9193.
[4] HAN Shaojie,QIU Bao,WEI Zhen,XIA Yongga,LIU Zhaoping. Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material[J]. Journal of Power Sources,2014,268:683-691.
[5] QIU Bao,WANG Jun,XIA Yonggao,WEI Zhen,HAN Shaojie,LIU Zhaoping. Temperature dependence of the initial coulombic efficiency in Li-rich layered Li[Li0.144Ni0.136Co0.136Mn0.544]O2oxide for lithium-ions batteries[J]. Journal of Power Sources,2014,268:517-521.
[6] QIU Bao,WANG Jun,XIA Yonggao,LIU Yuanzhuang,QIN Laifen,YAO Xiayin,LIU Zhaoping. Effects of Na+contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2cathode materials[J]. Journal of Power Sources,2013,240:530-535.
[7] QIU Bao,ZHANG Qian,HU Huasheng,WANG Jun,LIU Juanjuan,XIA Yonggao,ZENG Yongfeng,WANG Xiaolan,LIU Zhaoping. Electrochemical investigation of Li-excess layered oxide cathode materials/mesocarbon microbead in 18650 batteries[J]. Electrochimica. Acta,2014,123:317-324.
[8] WEI Zhen,ZHANG Wei,WANG FENG,ZHANG Qian,QIU Bao,HAN Shaojie,XIA Yonggao,ZHU Yimei,LIU Zhaoping. Eliminating voltage decay of lithium-rich Li1.14Mn0.54Ni0.14Co0.14O2cathodes by controlling the electrochemical process[J]. Chemistry-A European Journal,2015,21:7503-7510.
[9] WEI Zhen,XIA Yonggao,QIU Bao,ZHANG Qian,HAN Shaojie,LIU Zhaoping. Correlation between transition metal ion migration and the voltage ranges of electrochemical process for lithium-rich manganese-based material[J]. Journal of Power Sources,2015,281:7-10.
[10] WANG Jun,ZHANG Minghao,TANG Changlin,XIA Yonggao,LIU Zhaoping. Microwave-irradiation synthesis of Li1.3NiCoMn1--O2.4cathode materials for lithium ion batteries[J]. Electrochimica Acta,2012,80(1):15-21.
[11] HAN Shaojie,XIA Yonggao,WEI Zhen,QIU Bao,PAN Lingchao,GU Qingwen,LIU Zhaoping,GUO Zhiyong. A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2,Li2MnO3,LiNi0.5Co0.2Mn0.3O2and LiCoO2for the initial charge discharge[J]. Journal of Materials Chemistry A,2015,22:11930-11939.
[12] WANG Jun,YAO Xiayin,ZHOU Xufeng,LIU Zhaoping. Synthesis and electrochemical properties of layered lithium transition metal oxides[J]. Journal of Materials Chemistry A,2011,21:2544-2549.
[13] WANG Jun,XIA Yonggao,YAO Xiayin,ZHANG Minghao,ZHANG Yiming,LIU Zhaoping. Synthesis and electrochemical feature of a multiple-phases Li-rich nickel manganese oxides cathode material[J]. International Journal of Electrochemical Science,2011,6:6670-6681.
Research progress on the Li-excess Mn-based cathode materials with high capacity for lithium-ion battery
,
(Ningbo Institute of Industrial Technology, Chinese Academic of Science, Ningbo 315201, Zhejiang, China; CAS Research Group on High Energy Density Lithium Batteries for EV)
It is a goal for all-electric vehicles that the requirement of the energy density for Li-ion batteries must be over 400 W·h/kg in demand. In this review, the recent progresses of Li-rich layered oxide cathode materials in our group are briefly introduced. After many years’ research, their initial coulombic efficiency, the rate capability and cycling performance were improved significantly. Moreover, the voltage decay was suppressed effectively. Based on these processes we also manufactured a 24 A·h-class cell using a Li-rich layered cathode and a Nano Si/C anode. The cell is confirmed to have the mass energy density of 374 W·h/kg and the volumetric energy density of 577 W·h/L.
Li-ion batteries; Li-rich layered cathode; voltage decay; high energy density; EV
10.3969/j.issn.2095-4239.2016.03.016
TM 911
A
2095-4239(2016)03-384-04
2016-03-21;修改稿日期:2016-04-01。
中國(guó)科學(xué)院戰(zhàn)略先導(dǎo)A類項(xiàng)目(長(zhǎng)續(xù)航動(dòng)力鋰電池)(XDA09010101)。
夏永高(1979—),男,博士,研究方向?yàn)殇囯x子電池材料,E-mail:xiayg@nimte.ac.cn;通訊聯(lián)系人:劉兆平,研究員,研究方向?yàn)殇囯x子電池材料,E-mail:liuzp@nimte.ac.cn。