• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      不同施肥處理下小麥季潮土氨揮發(fā)損失及其影響因素研究

      2016-11-11 09:37:08肖嬌樊建凌葉桂萍劉德燕閻靜LUOJiafaHOULBROOKEDavid丁維新
      關(guān)鍵詞:牛糞損失率基肥

      肖嬌,樊建凌,葉桂萍,劉德燕,閻靜,LUO Jia-fa,HOULBROOKE David J,丁維新*

      (1.土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京210008;2.中國(guó)科學(xué)院大學(xué),北京100049;3.恒天然(北京)牧場(chǎng)管理咨詢(xún)有限公司,北京100006;4.Land and Environment,AgResearch,Hamilton 3240,新西蘭)

      不同施肥處理下小麥季潮土氨揮發(fā)損失及其影響因素研究

      肖嬌1,2,樊建凌1,葉桂萍1,2,劉德燕1,閻靜3,LUO Jia-fa4,HOULBROOKE David J4,丁維新1*

      (1.土壤與農(nóng)業(yè)可持續(xù)發(fā)展國(guó)家重點(diǎn)實(shí)驗(yàn)室(中國(guó)科學(xué)院南京土壤研究所),南京210008;2.中國(guó)科學(xué)院大學(xué),北京100049;3.恒天然(北京)牧場(chǎng)管理咨詢(xún)有限公司,北京100006;4.Land and Environment,AgResearch,Hamilton 3240,新西蘭)

      氨揮發(fā)是肥料氮素?fù)p失的重要途徑之一,由于土壤類(lèi)型、氣候條件、肥料種類(lèi)、用量和施用時(shí)間等因素不同而存在很大差異。試驗(yàn)采用間歇式密閉室通氣法,對(duì)華北平原不同施肥處理(新鮮牛糞與尿素配施、堆腐牛糞與尿素配施和NPK單施)下,冬小麥生長(zhǎng)季粘質(zhì)潮土氨揮發(fā)及其影響因素進(jìn)行了研究。結(jié)果表明:冬小麥季土壤氨揮發(fā)總量占肥料氮用量的1.23%~1.97%,主要來(lái)源于追肥,占整個(gè)小麥生長(zhǎng)季氨揮發(fā)總量的80%左右。不同施肥處理強(qiáng)烈影響氨揮發(fā)強(qiáng)度,新鮮牛糞與尿素配施處理氨揮發(fā)損失量最高,氮素?fù)p失率為1.97%,顯著高于堆腐牛糞與尿素配施和NPK單施?;势诎睋]發(fā)速率與氣溫密切相關(guān),追肥期土壤含水量和NH+4-N濃度是影響氨揮發(fā)的主控因子。

      冬小麥;新鮮牛糞;堆腐牛糞;氨揮發(fā)

      冬小麥?zhǔn)侨A北地區(qū)主要糧食作物之一,2014年該區(qū)小麥播種面積占全國(guó)小麥播種面積的15.4%[1]。近年來(lái),畜禽糞便在華北地區(qū)冬小麥-夏玉米輪作體系中有了較大的投入,有機(jī)肥氮在該地區(qū)的平均施用量已達(dá)74 kg N·hm-2·a-1[2]。隨著養(yǎng)殖業(yè)的進(jìn)一步發(fā)展,畜禽糞便排放量處于進(jìn)一步增加的態(tài)勢(shì)[3],有機(jī)肥氮在農(nóng)田生態(tài)系統(tǒng)的投入量勢(shì)必會(huì)繼續(xù)增加。氨揮發(fā)是農(nóng)田氮素?fù)p失的重要途徑,也是氮肥利用率低的重要原因之一[4-5]。研究表明,我國(guó)主要糧食作物氮肥利用率為30%~35%,每年農(nóng)田氮肥損失率為33.3%~73.6%,農(nóng)田氨揮發(fā)損失占總施氮量的1%~47%[6-7]。如何將畜禽糞便無(wú)害化、資源化投入到農(nóng)田生產(chǎn)中,降低氨揮發(fā)損失,提高氮肥利用率,充分發(fā)揮氮肥增產(chǎn)效益,保護(hù)生態(tài)環(huán)境成為我國(guó)農(nóng)業(yè)亟待解決的問(wèn)題。目前,新西蘭等國(guó)家主張禽畜糞便固液分離,固體糞渣(干物質(zhì)含量高于15%)直接還田或發(fā)酵生產(chǎn)有機(jī)肥[8],通過(guò)研究新西蘭草地施用牛糞糞渣的氮素利用及損失發(fā)現(xiàn),牛糞固液分離的糞渣可不同程度提高土壤質(zhì)量,實(shí)現(xiàn)畜牧-農(nóng)業(yè)結(jié)合的可持續(xù)發(fā)展[9-10]。近年來(lái),國(guó)內(nèi)科研工作者對(duì)不同土壤環(huán)境條件、肥料類(lèi)型、氮肥用量、施肥方法以及環(huán)境因素對(duì)無(wú)機(jī)肥氨揮發(fā)影響等方面做了較多的研究[11-13],對(duì)畜禽糞便氨揮發(fā)的研究工作大都基于盆栽,溫室培養(yǎng)及蔬菜地[14-16]。而對(duì)有機(jī)無(wú)機(jī)肥配合施用,尤其是利用畜禽糞便固液分離后的糞渣等有機(jī)肥在農(nóng)田施用過(guò)程中氨揮發(fā)損失的關(guān)注較少。為此,本研究以占我國(guó)畜禽糞便氮排放比例最高的牛糞[17]為對(duì)象,研究了固液分離后的新鮮牛糞、堆腐牛糞和無(wú)機(jī)氮肥在華北平原冬小麥生長(zhǎng)土壤上的氨揮發(fā)損失,以期為牛糞資源合理利用和創(chuàng)建適宜的氮肥管理模式提供科學(xué)數(shù)據(jù)。

      表1 土壤基本理化性質(zhì)Table 1 Basic physical and chemical properties of soil

      表2 供試有機(jī)肥基本性質(zhì)Table 2 Basic properties of organic manures

      1 材料與方法

      1.1 試驗(yàn)區(qū)域和供試土壤

      試驗(yàn)地點(diǎn)位于河北省唐山市玉田縣楊家板橋鎮(zhèn)恒天然玉田第二牧場(chǎng)(39°45′29″N,117°37′48″E),地處河北省東北部,唐山市最西端。屬北溫帶大陸性季風(fēng)氣候,年均降水量693 mm,年均氣溫11.2℃,無(wú)霜期193 d。供試土壤為粉砂粘質(zhì)潮土,土壤理化性質(zhì)見(jiàn)表1。

      1.2 試驗(yàn)設(shè)計(jì)

      試驗(yàn)共設(shè)4個(gè)處理,分別為:不施肥的對(duì)照(CK)、化肥(NPK)、50%牛糞堆肥+50%尿素(COM)和50%新鮮牛糞+50%尿素(RAW),每個(gè)處理4次重復(fù),隨機(jī)區(qū)組排列。施肥處理為氮磷鉀等量輸入,氮、磷和鉀用量分別為225 kg N·hm-2、112.5 kg P2O5·hm-2和112.5 kg K2O·hm-2。氮用量的基肥追肥比例為1∶1,全部的P肥、K肥和50%的N肥以基肥一次施入(即基肥時(shí),有機(jī)肥施用前進(jìn)行氮磷鉀全量養(yǎng)分含量測(cè)定,以基肥氮輸入量112.5 kg N·hm-2為基準(zhǔn),換算所需有機(jī)肥量,有機(jī)肥中不足的P和K用無(wú)機(jī)磷鉀肥分別補(bǔ)充至112.5 kg P2O5·hm-2和112.5 kg K2O·hm-2),追肥時(shí)施肥處理均追施尿素(112.5 kg N·hm-2)。肥料品種:無(wú)機(jī)氮肥為尿素,磷肥為過(guò)磷酸鈣,鉀肥為硫酸鉀。新鮮牛糞為恒天然牧場(chǎng)內(nèi)當(dāng)天產(chǎn)生后進(jìn)行固液分離的牛糞糞渣,堆肥為恒天然牧場(chǎng)固液分離后的牛糞糞渣經(jīng)過(guò)4個(gè)月發(fā)酵腐熟。供試有機(jī)肥性質(zhì)見(jiàn)表2。

      基肥于2013年10月26日表施,并立即翻耕,10月27日播種后灌水。追肥時(shí)間為2014年4月2日,施肥當(dāng)日灌水?;屎妥贩适┯煤蟠稳臻_(kāi)始氨揮發(fā)測(cè)定。2014年5月30日小麥?zhǔn)斋@青貯。以CK處理的測(cè)定值作土壤背景氨揮發(fā)量,用于計(jì)算施肥處理中肥料的氨揮發(fā)強(qiáng)度。

      1.3 氨揮發(fā)測(cè)定

      氨揮發(fā)原位測(cè)定采用間歇密閉抽氣法[18]。利用真空泵減壓抽氣使密閉室內(nèi)土壤揮發(fā)出的氨(NH3)隨氣流通過(guò)裝有2%硼酸的洗氣瓶,使其吸收于硼酸溶液中,收集溶液用0.01 mol·L-1H2SO4滴定,計(jì)算吸收氮量。裝置由不透明PVC材料制成的密閉室(高8 cm,直徑15 cm)、250 mL洗氣瓶和轉(zhuǎn)速為2500 r· min-1的真空泵組成(圖1)。測(cè)定時(shí),密閉室置于底座上并用密封圈密封,換氣速率為15~20次·min-1。施肥后,每天上午8:30—10:30和下午2:30—4:30測(cè)定,以4 h的測(cè)定值計(jì)算每天氨揮發(fā)通量,持續(xù)測(cè)定至各施肥處理氨揮發(fā)通量接近背景值?;屎妥贩适┯煤蟮臏y(cè)定時(shí)間分別為18 d和15 d。

      氨揮發(fā)速率計(jì)算公式如下:

      式中:F為氨揮發(fā)速率,kg N·hm-2·d-1;C為標(biāo)準(zhǔn)酸濃度,mol·L-1;V為樣品滴定消耗的標(biāo)準(zhǔn)酸體積,mL;V0為空白滴定消耗的標(biāo)準(zhǔn)酸體積,mL;M為密閉室覆蓋的土壤面積,m2;h為每天測(cè)定氨揮發(fā)的時(shí)間,h;24與100為換算系數(shù)。

      1.4 土壤樣品采集和分析

      每次施肥后的第1、3、5、7、10、13、15、17 d,用直徑2 cm的土鉆采集各小區(qū)0~10 cm的多點(diǎn)土壤樣品,形成混合土樣。土壤含水量用烘干法測(cè)定。和含量用2 mol·L-1KCl溶液浸提(水土比5∶1),流動(dòng)分析儀(Skalar,荷蘭)測(cè)定。pH值采用1∶1土水比,電位計(jì)法測(cè)定;土壤有機(jī)質(zhì)、全氮、全磷和全鉀含量采用常規(guī)方法測(cè)定。

      圖1 氨揮發(fā)田間捕獲裝置示意圖Figure 1 Sketch of monitoring system for ammonia volatilization

      1.5 數(shù)據(jù)處理

      采用SPSS 20.0軟件對(duì)數(shù)據(jù)進(jìn)行方差分析以及LSD檢驗(yàn),用Origin 8.5作圖。

      2 結(jié)果分析

      圖2 施肥后土壤氨揮發(fā)速率的動(dòng)態(tài)變化Figure 2 Temporal variation of ammonia volatilization flux after fertilizer application

      2.1 不同處理土壤氨揮發(fā)速率的動(dòng)態(tài)變化

      基肥施用后,各處理土壤氨揮發(fā)速率變化趨勢(shì)一致。在整個(gè)測(cè)定過(guò)程中,氨揮發(fā)速率一直較低,變化范圍為0.01~0.25 kg N·hm-2·d-1(圖2)。氨揮發(fā)速率隨著施肥后時(shí)間的延長(zhǎng)逐漸增強(qiáng),在第5 d達(dá)到峰值。其中,COM處理的峰值最高,為0.23 kg N·hm-2·d-1。隨后氨揮發(fā)速率逐漸降低,到第17 d氨揮發(fā)通量降到0~0.027 kg N·hm-2·d-1,與土壤背景氨揮發(fā)速率無(wú)明顯差異。

      不同施肥處理的追肥均為尿素。與基肥施用后的情形明顯不同,追肥后土壤氨揮發(fā)速率迅速增大(圖2)。施肥后第1 d氨揮發(fā)速率即達(dá)到最高值,不同處理峰值依次為:RAW>COM>NPK>CK,RAW處理的氨揮發(fā)速率顯著高于其他處理(P<0.05)。第2 d氨揮發(fā)速率降至0.03~0.27 kg N·hm-2·d-1,降幅達(dá)64.4%~81.0%。到第12 d,不同處理氨揮發(fā)速率已無(wú)明顯差異,介于0.018~0.13 kg N·hm-2·d-1。

      2.2 不同施肥處理對(duì)土壤累積氨揮發(fā)的影響

      小麥生長(zhǎng)季累積氨揮發(fā)量見(jiàn)圖3和表3?;适?/p>

      用后累積氨揮發(fā)量一直緩慢增加,不同處理的累積氨揮發(fā)量表現(xiàn)為:RAW>NPK>COM>CK,RAW處理顯著高于NPK和COM處理,但COM與NPK處理間差異不顯著。追肥后各處理的累積氨揮發(fā)量明顯高于基肥后,其中RAW處理的累積氨揮發(fā)量最高,達(dá)到4.21 kg N·hm-2,COM處理為3.05 kg N·hm-2,NPK處理為2.68 kg N·hm-2。RAW處理的累積氨揮發(fā)量顯著高于其他處理(P<0.05)。在整個(gè)小麥生長(zhǎng)季,RAW、COM和NPK處理氨揮發(fā)量分別為5.06、3.76、3.40 kg N· hm-2,追肥后的氨揮發(fā)量占2次施肥累積氨揮發(fā)量的80%左右。RAW處理的氨揮發(fā)量比COM和NPK處理分別高出25.7%和32.8%,差異達(dá)到顯著水平(P<0.05)。COM處理比NPK處理高0.36 kg N·hm-2,但差異不顯著(P>0.05)。

      施肥處理中氨揮發(fā)損失一是來(lái)自土壤氮,二是施入的肥料氮。假設(shè)施肥處理來(lái)自土壤氮的氨揮發(fā)損失量等于不施氮處理的氨揮發(fā)損失量,那么施肥處理來(lái)自肥料氮的氨揮發(fā)損失率可由其與不施肥處理的差值計(jì)算獲得[19]。從表3可見(jiàn),基肥的氨揮發(fā)損失率為0.38%~0.50%,追肥氨揮發(fā)損失率略高,在2.08%~3.44%之間,RAW、COM和NPK處理2次施肥的氨揮發(fā)量占肥料氮總量的比例分別為1.97%、1.39%和1.23%。與無(wú)機(jī)肥相比,有機(jī)肥RAW和COM氨揮發(fā)損失率分別高出0.74%和0.16%。

      圖3 小麥生長(zhǎng)期間累積氨揮發(fā)量Figure 3 Cumulative amount of ammonia volatilization flux during wheat growing season

      表3 小麥生長(zhǎng)季肥料氮氨揮發(fā)損失量和損失率Table 3 Cumulative amount of N losses through ammonia volatilization and its ratio to N applied during wheat growing season

      將不同處理累積氨揮發(fā)排放量(y)與時(shí)間(t)用Elovish動(dòng)力學(xué)方程(y=a+b×lnt)進(jìn)行擬合(表4)。結(jié)果表明,相關(guān)系數(shù)均達(dá)到顯著水平,說(shuō)明該方程是適宜的。方程中常數(shù)a為第1 d的氨揮發(fā)量,a<0表示氨揮發(fā)量很低或者檢測(cè)不到,a>0表示有可測(cè)氨揮發(fā)量?;势谥挥蠳PK處理的a值為正值,有機(jī)肥和對(duì)照處理均為負(fù)值,表明基肥施用后第1 d有機(jī)肥中無(wú)機(jī)態(tài)氮的水解還未完成,作為氨揮發(fā)源的NH+4含量不足,氨揮發(fā)量均極低甚至無(wú)法檢出。方程中的b值是氨揮發(fā)量y隨ln(t)的變化速率,b=dy/dlnt,追肥期土壤氨揮發(fā)累積量的b值均大于基肥期,其中NPK處理累積氨揮發(fā)量的b值約為基肥的5.2倍,COM和RAW處理分別為基肥期的3.25和3.73倍,數(shù)據(jù)的對(duì)數(shù)方程擬合參數(shù)再現(xiàn)了追肥期氨揮發(fā)強(qiáng)于基肥期。

      2.3 土壤性質(zhì)和氣候因素對(duì)氨揮發(fā)的影響

      由圖4a可知,基肥施用后氣溫呈波浪式遞減,波動(dòng)在5.33~15℃之間。追肥測(cè)定期氣溫回升,平均為17.6℃,明顯高于基肥測(cè)定期的平均溫度。

      基肥施用后,0~10 cm土壤含水量(圖4b)變化在19.9%~35.3%之間,追肥期則為14.6%~34.8%,總體上呈逐步下降的態(tài)勢(shì)(圖4c)。兩次施肥后灌水時(shí)間和灌水量相同,土壤水分含量的差異可能與溫度和作物需水量不同有關(guān)。

      相關(guān)分析表明,基肥施用后氨揮發(fā)速率與氣溫存在著顯著相關(guān)關(guān)系(表5),土壤含水量與有機(jī)肥處理的氨揮發(fā)速率也顯著相關(guān),但這種關(guān)系未出現(xiàn)在無(wú)機(jī)肥處理中。土壤含量與氨揮發(fā)速率也呈一定的相關(guān),但沒(méi)有達(dá)到顯著水平。追肥期,土壤水分和含量與氨揮發(fā)通量呈顯著正相關(guān),氣溫與氨揮發(fā)速率的相關(guān)關(guān)系則未達(dá)到顯著水平。

      表4 不同處理累積氨揮發(fā)量(y)與時(shí)間(t)的動(dòng)力學(xué)方程擬合曲線(xiàn)Table 4 Fitting of kinetics equation between cumulative ammonia loss(y)and time(t)

      圖4 麥季氨揮發(fā)測(cè)定期間氣溫和耕層土壤含水量的變化Figure 4 Dynamic variations of air temperature and soil moisture content in surface layer during monitoring period

      圖5 施肥后土壤N-N含量的動(dòng)態(tài)變化Figure 5 Temporal variation of N-N concentrations in soil during monitoring period

      3 討論

      3.1 不同施肥處理對(duì)土壤氨揮發(fā)損失的影響

      本研究中冬小麥不同施肥處理累積氨揮發(fā)量為3.40~5.06 kg N·hm-2,肥料氮的氨揮發(fā)損失率為1.23%~1.97%。對(duì)于河南封丘壤質(zhì)潮土,Cai等[20]報(bào)道麥季肥料氮的氨揮發(fā)損失率變化在1%~20%之間,倪康等[21]測(cè)定的小麥季氨揮發(fā)量為13.31~17.89 kg N· hm-2,肥料氮的損失率為7.54%~11.93%。吉艷芝等[22]在河北保定輕壤質(zhì)潮土上測(cè)定的冬小麥氮肥的氨揮發(fā)損失率為9.5%。本試驗(yàn)結(jié)果與前人在潮土上測(cè)定相比,肥料氮的氨揮發(fā)損失率較低,但接近于王玨等[23]在河北潮褐土上獲得的結(jié)果,他們發(fā)現(xiàn)麥季來(lái)自氮肥

      的氨揮發(fā)損失率為1%~4.2%。究其原因可能與土壤性質(zhì)有關(guān),本試驗(yàn)供試土壤為粘質(zhì)潮土,粘粒含量多且有機(jī)質(zhì)含量較高(表1),質(zhì)地黏重土壤一般對(duì)有較強(qiáng)的吸附力,有效降低了土壤液相中含量,從而減少了氨的揮發(fā)損失[24]。Reynolds等[25]證實(shí)粘粒含量與土壤氨揮發(fā)呈顯著的負(fù)相關(guān)關(guān)系。

      施用基肥后,氨揮發(fā)損失率以RAW最強(qiáng),顯著高于NPK和COM處理。NPK處理和COM處理氨揮發(fā)損失相近,差異不顯著。基肥RAW處理氨揮發(fā)量高的原因可能是供試新鮮牛糞的全氮含量低于腐熟牛糞,而無(wú)機(jī)氮含量差異不大,在等氮量設(shè)計(jì)下RAW中無(wú)機(jī)和全氮比例高,使得RAW帶入了更多的無(wú)機(jī)氮。此外,固體有機(jī)肥中干物質(zhì)含量也顯著影響著氨揮發(fā)強(qiáng)度[26]。Petersen等[27]認(rèn)為,有機(jī)肥干物質(zhì)含量高,由于持水能力強(qiáng)、粘度較高,施入土壤后無(wú)機(jī)氮不易下滲,從而提高了氨揮發(fā)強(qiáng)度。Li等[28]將有機(jī)肥施用到草地時(shí)發(fā)現(xiàn),有機(jī)肥中干物質(zhì)含量越高,氨揮發(fā)強(qiáng)度就越大。本研究中,等氮輸入時(shí)新鮮牛糞輸入的干物質(zhì)量約為牛糞堆肥處理的3倍,施肥后灌水,無(wú)機(jī)肥處理的無(wú)機(jī)氮隨水下滲,新鮮牛糞處理中較多的干物質(zhì)可能會(huì)阻止氮的下滲,為氨揮發(fā)提供較多,使氨揮發(fā)損失率要高于COM和NPK處理。

      追肥期,不同施肥處理追施等量尿素,與單施無(wú)機(jī)肥處理相比,有機(jī)肥與尿素配施提高了氨揮發(fā)損失量。原因可能是有機(jī)肥中有機(jī)物質(zhì)能夠阻礙進(jìn)入黏土礦物,減少銨的固定,增加有效性,促進(jìn)氨揮發(fā)[29]。這與目前國(guó)內(nèi)外許多報(bào)道結(jié)果不盡一致,一般認(rèn)為有機(jī)無(wú)機(jī)配施能夠降低土壤氨揮發(fā),原因在于有機(jī)肥分解過(guò)程中可以產(chǎn)生大量有機(jī)酸,降低土壤pH,同時(shí)形成的腐殖質(zhì),提高土壤的吸附能力,吸附更多的NH+4,降低土壤氨揮發(fā)損失[21,30-32]。本試驗(yàn)有機(jī)肥施用增加追肥尿素氮素?fù)p失的機(jī)制有待進(jìn)一步研究。

      表5 氨揮發(fā)通量與氣溫、土壤含水量和NH+4-N含量的相關(guān)關(guān)系Table 5 Correlation between NH3flux and air temperature,NH+4-N concentration or soil moisture following fertilization during wheat growing season

      3.2 土壤氨揮發(fā)的影響因子

      土壤含水量對(duì)氨揮發(fā)的影響報(bào)道不一。Fenn等[35]認(rèn)為,較高的土壤含水量降低了液相中含量,降低了氨分壓和氨揮發(fā)速率。張志瑩等[36]將不同處理的牛糞施入土壤,發(fā)現(xiàn)含水量50%~70%的土壤中各種糞肥的累積氨揮發(fā)量均顯著高于含水量10%~30%的土壤。堆腐牛糞在土壤含水量為50%時(shí),氨揮發(fā)量最大;土壤含水量70%時(shí),新鮮牛糞的氨揮發(fā)損失最多。張承先等[36]發(fā)現(xiàn),有機(jī)無(wú)機(jī)配施時(shí),氨揮發(fā)速率隨土壤含水量增加而增大。從圖3可見(jiàn),雖然基肥期有機(jī)肥處理土壤含水量波動(dòng)較小,但也顯著影響著有機(jī)肥的氨揮發(fā)速率。有機(jī)肥相對(duì)難溶,不易隨水下滲,但容易在土壤中形成堿性環(huán)境,發(fā)生氨化反應(yīng)。追施尿素后,有機(jī)肥處理耕層土壤的含量迅速增加,它不僅來(lái)自尿素,也可能來(lái)自先前施入的有機(jī)肥,為氨揮發(fā)提供了更多的底物。隨著監(jiān)測(cè)時(shí)間的延長(zhǎng),土壤含水量不斷降低,耕層土壤硝化作用增強(qiáng)很快轉(zhuǎn)化為,使得氨揮發(fā)速率不斷降低[37]。對(duì)無(wú)機(jī)肥處理,基肥期溫度低,尿素水解速率慢,加之氮素可能隨水下滲或者土壤固定,使得土壤水分對(duì)氨揮發(fā)的影

      響不顯著。追肥期,當(dāng)溫度不再是限制因子時(shí),以及氨揮發(fā)底物供應(yīng)充足,土壤水分對(duì)氨揮發(fā)的影響得以充分體現(xiàn)。

      4 結(jié)論

      不同施肥期氨揮發(fā)損失量差異顯著,冬小麥氨揮發(fā)損失主要來(lái)自追肥。新鮮牛糞與尿素配施的氨揮發(fā)損失量最大,顯著高于牛糞堆肥與尿素配施和NPK平衡施肥?;势诎睋]發(fā)速率與氣溫密切相關(guān),追肥期土壤含水量和濃度是影響氨揮發(fā)的主控因子。在供試土壤上,無(wú)機(jī)和有機(jī)肥的氨揮發(fā)損失率小于2%,表明氨揮發(fā)在粘質(zhì)潮土肥料氮損失較低。

      [1]中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局.中國(guó)統(tǒng)計(jì)年鑒-2015年[M].北京:中國(guó)統(tǒng)計(jì)出版社,2015.

      National Bureau of Statistics of the People′s Republic of China.China statistical year book-2015[M].Beijing:China Statistics Press,2015.

      [2]裴宏偉,沈彥俊,劉昌明.華北平原典型農(nóng)田氮素與水分循環(huán)[J].應(yīng)用生態(tài)學(xué)報(bào),2015,26(1):283-296.

      PEI Hong-wei,SHEN Yan-jun,LIU Chang-ming.Nitrogen and water cycling of typical cropland in the North China Plain[J].Chinese Journal of Applied Ecology,2015,26(1):283-296.

      [3]Liao Q,Wei G P,Jiang Z P,et al.Research progress on resource utilization of livestock and poultry manure[J].Agricultural Science&Technology,2014,15(1):105-110.

      [4]Bouwman A F,Boumans L J M,Batjes N H.Estimation of global NH3volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands[J].Global Biogeochemical Cycles,2002,16(2):1024-1039.

      [5]Mosier A R.Exchange of gaseous nitrogen compounds between agriculturalsystemsandtheatmosphere[J].PlantandSoil,2001,228:17-27.

      [6]薛利紅,楊林章,施衛(wèi)明,等.農(nóng)村面源污染治理的“4R”理論與工程實(shí)踐:源頭減量技術(shù)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(5):881-888.

      XUE Li-hong,YANG Lin-zhang,SHI Wei-ming,et al.Reduce-retainreuse-restore technology for controlling the agricultural non-point pollution in countryside in China:Source reduction technology[J].Journal of Agro-Environment Science,2013,32(5):881-888.

      [7]朱兆良.中國(guó)土壤氮素研究[J].土壤學(xué)報(bào),2008,45(5):778-783.

      ZHU Zhao-liang.Research on soil nitrogen in China[J].Acta Pedologica Sinica,2008,45(5):778-783.

      [8]Longhurst B,Houlbrooke D,Orchiston T,et al.Characterising dairy manures and slurries[R].Advanced Nutrient Management:Gains from the Past-Goals for the Future,2012:1-6.

      [9]Spiehs M J,Woodbury B L,Tarkalson D D,et al.Long term effects of annual additions of animal manure on soil chemical,physical,and biological properties in the Great Plains[C]//International Symposium on Air Quality and Manure Management for Agriculture Conference Proceedings,13-16 September 2010,Dallas,Texas.American Society of Agricultural and Biological Engineers,2010:1.

      [10]Li J,Shi Y,Luo J,et al.Use of nitrogen process inhibitors for reducing gaseous nitrogen losses from land-applied farm effluents[J].Biology and Fertility of Soils,2014,50(1):133-145.

      [11]馬銀麗,吉艷芝,李鑫,等.施氮水平對(duì)小麥-玉米輪作體系氨揮發(fā)與氧化亞氮排放的影響[J].生態(tài)環(huán)境學(xué)報(bào),2012,21(2):225-230.

      MA Yin-li,JI Yan-zhi,LI Xin,et al.Effects of N fertilization rates on the NH3volatilization and N2O emissions from the wheat-maize rotation system in North China Plain[J].Ecology and Environmental Sciences,2012,21(2):225-230.

      [12]俞映倞,薛利紅,楊林章.太湖地區(qū)稻田不同氮肥管理模式下氨揮發(fā)特征研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(8):1682-1689.

      YU Ying-liang,XUE Li-hong,YANG Lin-zhang,et al.Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J].Journal of Agro-Environment Science,2013,32(8):1682-1689.

      [13]董文旭,胡春勝,陳素英,等.耕作對(duì)冬小麥-夏玉米農(nóng)田氮肥氨揮發(fā)損失的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2013,46(11):2278-2284.

      DONG Wen-xu,HU Chun-sheng,CHEN Su-ying,et al.Effect of conservation tillage on ammonia volatilization from nitrogen fertilizer in winter wheat-summer maize cropping system[J].Scientia Agricultura Sinica,2013,46(11):2278-2284.

      [14]郝小雨,高偉,王玉軍,等.有機(jī)無(wú)機(jī)肥料配合施用對(duì)日光溫室土壤氨揮發(fā)的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2012,45(21):4403-4414.

      HAOXiao-yu,GAOWei,WANGYu-jun,etal.Effects of combined application of organic manure and chemical fertilizers on ammonia volatilization from greenhouse vegetable soil[J].Scientia Agricultura Sinica,2012,45(21):4403-4414.

      [15]靳紅梅,常志州,郭德杰,等.追施豬糞沼液對(duì)菜地氨揮發(fā)的影響[J].土壤學(xué)報(bào),2012,49(1):86-95.

      JIN Hong-mei,CHANG Zhi-zhou,GUO De-jie,et al.Effect of topdressing with digested pig slurry on ammonia volatilization in vegetable fields[J].Acta Pedologica Sinica,2012,49(1):86-95.

      [16]李喜喜,楊娟,王昌全,等.豬糞施用對(duì)成都平原稻季氨揮發(fā)特征的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(11):2236-2244.

      LI Xi-xi,YANG Juan,WANG Chang-quan,et al.Effects of pig manure applications on ammonia volatilization in soil during rice season in Chengdu Plain[J].Journal of Agro-Environment Science,2015,34(11):2236-2244.

      [17]國(guó)輝,袁紅莉,耿兵,等.牛糞便資源化利用的研究進(jìn)展[J].環(huán)境科學(xué)與技術(shù),2013,36(5):68-75.

      GUO Hui,YUAN Hong-li,GENG Bing,et al.Research progress in resource utilization of cattle manure[J].Environmental Science&Technology,2013,36(5):68-75.

      [18]Tian G M,Gao J L,Cai Z C,et al.Ammonia volatilization from winter wheat field top-dressed with urea[J].Pedosphere,1998,8(4):331-336.

      [19]王朝輝,劉學(xué)軍,巨曉棠,等.田間土壤氨揮發(fā)的原位測(cè)定——通氣法[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2004,8(2):205-209.

      WANG Zhao-hui,LIU Xue-jun,JU Xiao-tang,et al.Field in situ determination of ammonia volatilization from soil venting method[J].Plant

      Nutrition and Fertilizer Science,2002,8(2):205-209.

      [20]Cai G X,Chen D L,Ding H,et al.Nitrogen losses from fertilizers applied to maize,wheat and rice in the North China Plain[J].Nutrient Cycling in Agroecosystems,2002,63(2/3):187-195.

      [21]倪康,丁維新,蔡祖聰.有機(jī)無(wú)機(jī)肥長(zhǎng)期定位試驗(yàn)土壤小麥季氨揮發(fā)損失及其影響因素研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(12):2614-2622.

      NI Kang,DING Wei-xin,CAI Zu-cong.Ammonia volatilization from soil as affected by long-term application of organic manure and chemical fertilizers during wheat growing season[J].Journal of Agro-Environment Science,2009,28(12):2614-2622.

      [22]吉艷芝,巨曉棠,劉新宇,等.不同施氮量對(duì)冬小麥田氮去向和氣態(tài)損失的影響[J].水土保持學(xué)報(bào),2010,24(3):113-118.

      JI Yan-zhi,JU Xiao-tang,LIU Xin-yu,et al.Impact of different nitrogen application on nitrogen movement and gaseous loss of winter wheat fields[J].Soil and Water Conservation,2010,24(3):113-118.

      [23]王玨,巨曉棠,張麗娟,等.華北平原小麥季氮肥氨揮發(fā)損失及影響因素研究[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2009,32(3):5-11.

      WANG Jue,JU Xiao-tang,ZHANG Li-juan,et al.Ammonia volatilization of N fertilizer and influencing factors in the North China Plain[J]. Journal of Agricultural University of Hebei,2009,32(3):5-11.

      [24]段爭(zhēng)虎,周玉麟.土壤特性和環(huán)境因子對(duì)氨揮發(fā)的影響[J].土壤通報(bào),1990,21(3):131-134,139.

      DUAN Zheng-hu,ZHOU Yu-lin.Study on effects of soil characteristics and environmental factors on ammonia volatilization[J].Chinese Journal of Soil Science,1990,21(3):131-134,139.

      [25]Reynolds C M,Wolf D C.1987:Influence of urease activity and soil properties on ammonia volatilization from urea[J].Soil Science,143:418-425.

      [26]Sommer S G,Hutchings N J.Ammonia emission from field applied manure and its reduction—invited paper[J].European Journal of Agronomy,2001,15(1):1-15.

      [27]Petersen S O,Andersen M.Influence of soil water potential and slurry type on denitrification activity[J].Soil Biology Biochemistry,1996,28:977-980.

      [28]Li J,Shi Y,Luo J,et al.Effects of form of effluent,season and urease inhibitor on ammonia volatilization from dairy farm effluent applied to pasture[J].Journal of Soils&Sediments,2014,14(8):1341-1349.

      [29]StevensonFJ,DhariwalAPS.Distributionoffixedammoniuminsoils[J]. Soil Science Society of America Journal,1959,23(2):121-125.

      [30]李菊梅,徐明崗,秦道珠,等.有機(jī)肥無(wú)機(jī)肥配施對(duì)稻田氨揮發(fā)和水稻產(chǎn)量的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2005,11(1):51-56.

      LI Ju-mei,XU Ming-gang,QIN Dao-zhu,et al.Effects of chemical fertilizers application combined with manure on ammonia volatilization and rice yield in red paddy soil[J].Plant Nutrition and Fertilizer Science,2005,11(1):51-56.

      [31]劉紅梅,龐鳳梅,賴(lài)欣,等.供氮水平和有機(jī)無(wú)機(jī)配施對(duì)麥田土壤氨揮發(fā)的影響[J].安徽農(nóng)業(yè)科學(xué),2012,40(12):7119-7122.

      LIU Hong-mei,PANG Feng-mei,LAI Xin,et al.Effects of nitrogen fertilizers rate and combined application of organic manure and chemical fertilizer on soil ammonia volatilization in winter wheat field[J]. Journal of Anhui Agricultural Sciences,2012,40(12):7119-7122.

      [32]葛順?lè)澹h(yuǎn)茂,彭福田,等.春季有機(jī)肥和化肥配施對(duì)蘋(píng)果園土壤氨揮發(fā)的影響[J].水土保持學(xué)報(bào),2010,24(5):199-203.

      GE Shun-feng,JIANG Yuan-mao,PENG Fu-tian,et al.Effect of chemical fertilizers application combined with organic manure on ammonia volatilization in spring in apple orchard[J].Soil Water Conservation,2010,24(5):199-203.

      [33]Sharpe R R,Harper L A.Soil,plant and atmospheric conditions as they relate to ammonia volatilization[J].Fertilizer Research,1995,42:149-158.

      [34]Freney J R,Simpson J R,Denmead O T.Volatilization of ammonia[M]// Gaseous Loss of Nitrogen from Plant-Soil Systems.Springer Netherlands,1983:1-32.

      [35]Fenn L B,Richards J.Ammonia loss from surface applied urea-acid products[J].Fertilizer Research,1986,9:265-275.

      [36]張志瑩,吳景貴,楊天悅,等.不同處理牛糞與氮肥混配氨揮發(fā)的模擬研究[J].水土保持學(xué)報(bào),2013,27(6):285-289.

      ZHANG Zhi-ying,WU Jing-gui,YANG Tian-yue,et al.Ammonia volatilizationofdifferentcattlemanuresmixedwithNitrogenfertilizer[J]. Soil Water Conservation,2013,27(6):285-289.

      [37]張承先,武雪萍,吳會(huì)軍,等.不同土壤水分條件下華北冬小麥基施不同氮肥的氨揮發(fā)研究[J].中國(guó)土壤與肥料,2008(5):28-32.

      ZHANG Cheng-xian,WU Xue-ping,WU Hui-jun,et al.Research on the relationship of ammonia volatilization rate and fertilizer type with irrigation treatments for winter wheat in North China[J].Soil and Fertilizer Sciences in China,2008(5):28-32.

      Ammonia volatilization from fluvo-aquic clay soil and its influencing factors during wheat growing season under different fertilization

      XIAO Jiao1,2,F(xiàn)AN Jian-ling1,YE Gui-ping1,2,LIU De-yan1,YAN Jing3,LUO Jia-fa4,HOULBROOKE David J4,DING Wei-xin1*
      (1.Key State Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;3.Fonterra-Farm Management Consulting(Beijing)Co.Ltd,Beijing 100006,China;4.Land and Environment,AgResearch,Hamilton 3240,New Zealand)

      Ammonia(NH3)volatilization is a major path of N losses from applied nitrogen fertilizers,which not only results in economic losses,but also poses risks to the environment.A field experiment was set up in Yutian county,Hebei Province,to evaluate the NH3volatilization in fluvo-aquic clay soil under applications of different fertilizers.There were four treatments with four replicates per treatment:fresh cow manure+urea(RAW),composted cow manure+urea(COM),NPK fertilizer(NPK),and control with no N fertilizer(CK).The manures and chemical fertilizer were applied at a rate of 225 kg N·hm-2,with half mixed into the soil as basal fertilization before planting and the other half applied to the soil as a top dressing after plant emergence.A continuous air-flow enclosure method was used to monitor NH3volatilization rates during a winter wheat growing season.The highest cumulative amount of NH3volatilization during the wheat growing season was measured in the RAW treatment with a net loss through NH3volatilization of 1.97%of the N applied,which was significantly higher than that in the COM and NPK treatments.Up to 80%of the total NH3volatilization occurred after top-dressing.Soil temperature was identified as a key factor affecting NH3volatilization during the basal fertilization period and the flux of NH3volatilization was significantly correlated with soil moisture and NH+4-N contents after top-dressing.

      winter wheat;fresh cow manure;composted cow manure;ammonia volatilization

      X511

      A

      1672-2043(2016)10-2011-08

      10.11654/jaes.2016-0263

      肖嬌,樊建凌,葉桂萍,等.不同施肥處理下小麥季潮土氨揮發(fā)損失及其影響因素研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(10):2011-2018.

      XIAO Jiao,F(xiàn)AN Jian-ling,YE Gui-ping,et al.Ammonia volatilization from fluvo-aquic clay soil and its influencing factors during wheat growing season under different fertilization[J].Journal of Agro-Environment Science,2016,35(10):2011-2018.

      2016-03-02

      新西蘭恒天然-中國(guó)科學(xué)院國(guó)際合作項(xiàng)目International Collaborative Research on Dairy Farm Waste application to land supported by Fonterra(Beijing)Farm Management Consulting Co.Ltd

      肖嬌(1989—),女,碩士研究生,主要研究方向?yàn)檗r(nóng)田土壤碳氮循環(huán)。E-mail:jxiao@issas.ac.cn

      *通信作者:丁維新E-mail:wxding@issas.ac.cn

      猜你喜歡
      牛糞損失率基肥
      石牛糞金
      意林彩版(2022年2期)2022-05-03 10:23:56
      不同基肥對(duì)濕加松生長(zhǎng)的影響*
      丟失的牛糞
      桃樹(shù)施基肥“五字訣”
      農(nóng)業(yè)農(nóng)村部印發(fā)《意見(jiàn)》提出到2025年農(nóng)產(chǎn)品加工環(huán)節(jié)損失率降到5%以下
      帶有治療函數(shù)及免疫損失率的SIRS流行病模型的動(dòng)力學(xué)分析
      屎殼郎大戰(zhàn)牛糞
      野保糗事之撿牛糞
      12部使用一年后最廉價(jià)轉(zhuǎn)售車(chē)
      海外星云(2016年19期)2016-10-24 11:53:42
      2014~2015年冬季美國(guó)蜂群損失調(diào)查
      广平县| 峡江县| 讷河市| 宣恩县| 大城县| 新营市| 苗栗县| 陵川县| 新竹县| 星座| 依安县| 文水县| 鄂尔多斯市| 竹山县| 梁平县| 泌阳县| 珲春市| 策勒县| 康乐县| 河源市| 新建县| 门源| 钟山县| 土默特左旗| 易门县| 广灵县| 临颍县| 平顺县| 胶南市| 礼泉县| 徐州市| 武威市| 阿拉善左旗| 黄平县| 翁源县| 县级市| 云梦县| 南投市| 会东县| 太和县| 黄龙县|