• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      硅橋調(diào)控的聚茂釩體系電子結(jié)構(gòu)和輸運性質(zhì)

      2016-11-22 09:48:53張桂玲孫翠翠
      物理化學(xué)學(xué)報 2016年10期
      關(guān)鍵詞:鐵磁性基態(tài)導(dǎo)電性

      裴 蕾 張桂玲 尚 巖 孫翠翠 甘 甜

      (哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,哈爾濱150080)

      硅橋調(diào)控的聚茂釩體系電子結(jié)構(gòu)和輸運性質(zhì)

      裴蕾張桂玲*尚巖孫翠翠甘甜

      (哈爾濱理工大學(xué)化學(xué)與環(huán)境工程學(xué)院,哈爾濱150080)

      利用密度泛函理論和非平衡格林函數(shù)的方法對硅橋調(diào)控后的聚茂釩體系([V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c);m=∞;Cp=環(huán)戊二烯基))的電子結(jié)構(gòu)和輸運性質(zhì)進行了研究。研究結(jié)果表明:隨著硅橋的增長,V-V的鐵磁性耦合變?nèi)醵磋F磁性耦合增強。a和b證實為鐵磁性基態(tài),而c更傾向為反鐵磁性基態(tài)。a和b的鐵磁性基態(tài)中的每個釩原子的磁距為3.0μB,超過釩-苯絡(luò)合物或者純聚茂釩體系的3倍。a-c的輸運性質(zhì)同它們的電子結(jié)構(gòu)相一致,導(dǎo)電性變化規(guī)律為c>b>a。對于a和b,自旋向下狀態(tài)的導(dǎo)電性略強于自旋向上狀態(tài)。a和c都發(fā)生了明顯的負微分電阻效應(yīng)而b卻沒有,這主要是由于兩個二茂釩的排列取向不同:a和c(SiH2為奇數(shù))中二茂釩呈V-型取向排列,進而導(dǎo)致了類似于離子鍵的量子點耦合,而b(SiH2是偶數(shù))中二茂釩是平行-型取向排列,從而導(dǎo)致了類似于共價鍵的量子點耦合。此外,由于散射區(qū)和兩個電極之間的不對稱耦合,a-c的導(dǎo)電性對電壓施加方向較敏感。

      硅橋鍵;聚茂釩;電子結(jié)構(gòu);輸運性質(zhì);理論研究

      1 Introduction

      Bridge linked polymetallocenes have attracted continuous interest over the past decade due to their unusual electrical,magnetic,and optical properties1-8.Abroad variety of such polymers has been synthesized in laboratory.The bridge moiety can vary fromgroup 13(B,Al,Ga,In)9-12to group 14(Si,Ge,Sn)13-17,group 15(P,As)18-20,and group 16 elements(S,Se)21,22.The metallocene can cover almost the whole first-row transition metal series(Sc-Ni)and some second-and third-row transition metal species(Zr, Hf,Pt)23-27.Much of the interest in these polymers has been focused on the saturated silicon-bridged polymetallocenes;representative examples are the silicon-bridged polyferrocenes28-33.It is confirmed that these copolymers can be utilized as charge dissipation coatings,variable refractive index sensing materials, and magnetic ceramic precursors over a range of length scales34-39.

      The silicon linkages possess a remarkable ability to tune the physicochemistry property of the resulting bridged polymetallocenes.The frontier orbitals of a metallocene largely preserve the d character of the transition metal atom;the cyclic π-coordinated carbon ligands confine the d states,making the metal atom an intrinsic molecular quantum dot.The saturated silicon bridges block the adjacent metallocene units spatially and energetically, ensuring the quantum dot behavior of the metal atom40.Quantum dots are of great interest in many research applications such as transistors,solar cells,light emitting diodes(LEDs),and diode lasers because electron transport through quantum dots can be precisely controlled by tailoring the molecular size41,42.The length of the silicon bridge plays a significant role in the interdot coupling.For example,Dement′ev et al.43have shown that the Fe-Fe interaction decreases with increasing of the bridge length in a series of silicon-bridged biferrocenes.Experiments have demonstrated that the conducting behavior of ferrocenylsilane polymers is highly dependent on the length of silicon bridge44. Studying the silicon moiety effect on the electronic and transport properties of the silicon-bridged polymetallocenes is desirable for the generation of functioned molecular devices.

      Recently,polymers derived from sandwiched vanadium complexes are of particular hot topics owing to the high density of unpaired spins of V atoms which are expected to exhibit remarkable physical properties with regard to magnetism or conductivity19.So far,much effort has been invested in the synthesis of silicon bridged polymers of vanadium complexes.Pioneering work in this area includes that of Elschenbroich et al.44-49and Braunschweig et al.50-52,who were the first to obtain such silicon bridged polymers by using ring-opening polymerization method of[V(η6-C6H5)2SiMeiPr]and[V(η5-C5H5)(η7-C7H7)SiMeiPr].They demonstrated that these polymers show a pronounced intramolecular electronic and magnetic communication.The silicon bridged vanadium containing polymers[V(Cp)2(SiH2)n]mare expected to be excellent candidates for exploring novel functional materials with fantastic magnetism and conductivity.Similar to the case in ferrocenylsilane polymers41,the silicon bridge length n in [V(Cp)2(SiH2)n]mmay play important role in governing the electronic and transport properties.

      In this context,three polyvanadocenes,[V(Cp)2(SiH2)n]m(n= 1,2,3;Cp=cyclopentadienyl),are the major focus of our studies by using density functional method(DFT)and non-equilibrium Green′s function(NEGF)methods(Fig.1).We first investigate the electronic properties of their infinite long systems(n=∞),followed by computing the transport properties of their two-probe devices by curving out one supercell(n=2)sandwiched between two Au electrodes.For the sake of facilitating discussions,we denote infinite long systems of[V(Cp)2(SiH2)]∞,[V(Cp)2(SiH2)2]∞, and[V(Cp)2(SiH2)3]∞as a,b,and c,respectively(Fig.1(a));we also denote two-probe devices of Au/[V(Cp)2(SiH2)]2/Au,Au/ [V(Cp)2(SiH2)2]2/Au,andAu/[V(Cp)2(SiH2)3]2/Au as D-a,D-b,and D-c(Fig.1(b)).We find that the length of the silicon moiety has notable effects on the electronic and transport properties of the silicon bridged polyvanadocenes.

      2 Models and computational methods

      For computing electronic structures,the infinite long systemsof a,b,and c are modeled via using the periodic condition in the axial direction(Fig.1(a)).Each repeated cell included two vanadocene units.Such supercell could facilitate to consider the magnetic coupling between V atoms.The polymers are separated by~2.4 nm from each other to neglect inter-chain interaction.All the periodic systems are fully optimized until the maximum absolute force is less than 0.2 eV·nm-1.

      Table 1 Calculation results of reaction energy(ΔEreaction),supercell length(L),total energy in the FM andAFM states(ETot,FMand ETot,AFM), energy difference between FM andAFM states(ΔEFM-AFM),magnetic moment(S)for a,b,c,D-a,D-b,and D-c

      For computing transport properties,the two-probe devices of D-a,D-b,and D-c are adopted(Fig.1(b)).We carved out one supercell,i.e.,[V(Cp)2(SiH2)]2,[V(Cp)2(SiH2)2]2,and[V(Cp)2(SiH2)3]2,as the central scatter region based on the optimized periodic structures to be sandwiched between two Au electrodes. The semi-infinite Au electrodes were modeled by two Au(111)-(3×3)surfaces,and five layers were used for the left and right sides.As the sulfur atom has good affinity with the gold surface, dithiolate derivatives have been used for the construction of metal/ molecule/metal junctions in general53-56.Therefore,in the present work,we also used the sulfur atom as the junction to link the Au electrode and the bivanadocene system.The sulfur atom was set to the hollow site of the electrode as most of the studies had elucidated that the hollow site was more favorable in energy than the top and bridge adsorption sites53-56.In this model,the S-Au distance was set as 0.2341 nm according to the reported literature57,58.Calculations were carried out by changing the applied bias in the step of 0.2 V in the range of-1.0-1.0 V.

      All the computations for the infinitely long and two-probe systems are performed using an ab initio code package,Atomistix ToolKit(ATK),which is based on combination of DFT and NEGF methods59-62.Ageneralized gradient approximation(GGA)within the Perdew-Burke-Ernzerhof(PBE)formalism is employed to describe the exchange correlations between electrons.Spin polarization of V atom is considered in all calculations.The on-site correlation effects among 3d electrons of the Vatom are accounted for by using the GGA+U scheme62,where the parameter U-J (Ueff)62is set to be 3.4.A double-ζ basis functional with polarization(DZP)is used for all atoms.A(1×1×100)k-point in string Brillouin zone(x,y,z directions,respectively)is employed. 150 Ry cutoff energy is applied to describe the periodic wave function.

      3 Results and discussion

      The stability of introducing silicon bridge between vanadocenes is evaluated by the reaction energy ΔE as given following:

      Fig.2 Computed projected density of states(PDOS)of polymetallocenes a,b,and c

      The calculated ΔEreactionare listed in Table 1.These values of ΔEreactionare all negative indicating exothermic reaction.Hence, inserting silicon bridge between vanadocenes is energetically reasonable.

      In this section,we first show results of magnetism and band structures of a-c,followed by transport properties computed based on the two-probe devices of D-a-D-c.

      3.1Magnetism

      Both the AFM state and FM state of a-c are considered.The calculated energy differences ΔEFM-AFMbetween the FM and AFM states are listed in Table 1.The values of ΔEFM-AFMare-5.88,-0.11,and 0.53 meV for a,b,and c,respectively.This case clearly demonstrates that the length of the silicon bridge plays important role in governing the magnetism.With the lengthening of the silicon bridge,the V-V FM coupling is weakened while the AFM coupling is enhanced.The polymers a and b favor the FM ground state while c prefers the AFM state.The same case is also found for the two-probe devices D-a,D-b,and D-c(Table 1).In fact,the short SiH2unit in a serves as a FM coupling unit for two spin V atoms to be FM coupled.However,in c,the V spin dots are separated far away by the long(SiH2)3segment,direct V-V FM coupling is destroyed.The FM state of a and b shows a magnetic moment S~6.0μBper supercell,i.e.,~3.0μBper V atom(Table 1), three times larger than that of the V-benzene or V-cyclopentadiene multidecker complex63.This value is in agreement with that in vanadocene64.The magnetic behavior of the FM and AFM states is reflected in the projected density of states(PDOS)shown in Fig.2.For the FM state of a and b,the majority spin below the Fermi level(Ef)is greater than the minority spin.The spin polarization is mainly due to the Vatoms.For theAFM state of c,the majority spin and the minority spin are nearly the same near the Efso that their net magnetic moments are nearly zero.These novel magnetic properties of a-c may have potential applications for magnetic nanodevices.

      Fig.3 Computed band structures(left panels)of(a,b)polymetallocene a,(c,d)polymetallocene b,and(e,f)polymetallocene c and the Kohn-Sham orbitals(right panels)corresponding to the energy levels(highlighted in color lines)near Efat the Γ point The iso-surface value is 5 e·nm-3.

      3.2Band structure

      Fig.3 plots the band structures of a-c.It is known that in vanadocene the five d orbitals of V atom split into adz2(a1)orbital and two sets of doubly degeneratedxy,x2-y2(e2)anddxz,yz(e1)orbitals under the Cp ligand field.Here,the a-c supercell contains two V atoms which contribute ten d orbitals to couple with the Cp π orbitals,thereby resulting in ten bands:two a1-like bands,four e2-like bands,and four e1-like bands.In the spin-up state of a and b, the a1-like bands and the e2-likebands are occupied while the e1-likebands are unoccupied.However,in the spin-down state,all the a1-,e2-,and e1-like bands are unoccupied.Therefore,each vanadocene unit in a and b possesses a magnetic moment of S~3.0μB, in line with the computed magnetism.Clearly,the spin-down state has a slightly lower band gap than the spin-up state,suggesting a slightly stronger conductivity in the spin-down state of a and b. In the AFM c,the spin-up state and the spin-down state exhibit a symmetrical band structure.The band gaps are in the order of a> b>c,indicating that the conductivity should follow the sequence of c>b>a.Another feature can be found that the valence and conduction bands in the spin-down state of b display larger dispersion owing to the good coupling between the vanadocene unit and the silicon bridge while those of c show evident flat character due to the block effect of the long silicon bridge.From the PDOS, one can see that the valence band mainly comes from the Vd state, while the conduction band stems from both V d and Si p states. Therefore,the silicon σ orbitals can also participate in conducting by accepting electrons from the V atom.

      Fig.4 (a)Total I-V curves of D-a,D-b,and D-c two-probe devices;(b,c,d)Spin polarized I-V curves of D-a,D-b,and D-c two-probe devices,respectively

      3.3Transport properties

      To confirm the predication of the transport property based on the electronic structures,we have also computed transport properties of two-probe devices D-a,D-b,and D-c by sandwiched finite-sized a,b,and c between two Au electrodes(c.f.Fig.1(b)). The computed current-voltage(I-V)curves based on the twoprobe devices are shown in Fig.4,from which several characteristics attributable to silicon bridge can be found at the bias voltage of-1.0-1.0 V.

      First,the silicon bridge could remarkably tune the magnitude of total current(Fig.4(a)).Overall,the two-probe system D-c shows the highest conductivity,followed by D-b,while D-a is the lowest.This is in good agreement with the band structure analysis. Fig.5(a)gives the transmission spectra(TS)at 0.0 V bias voltage. Clearly,near the Ef,D-c shows the largest TS peak,while D-a has the smallest.

      Second,D-a and D-b systems show spin polarized transport property,i.e.,the spin-down state gives a higher conductivity than the spin-up state(Fig.4(b,c)).In contrast,for D-c,the spin-up state and the spin-down state exhibit close magnitude of current under a certain bias voltage,suggesting an unpolarized transport property.These results are consistent with electronic structures of their infinitely long systems.Fig.5(a)also indicates that the spindown states of D-a and D-b offer larger TS peaks than the spin-up state near Ef,while the spin-up state and spin-down state in D-c devote similar TS contributions.

      Third,D-a and D-c give rise to evident negative differentialresistance(NDR)peaks at the considered bias voltage-1.0-1.0 V,while D-b cannot.In fact,in metallocene polymers,the Cp ligands confine the d states of metal atom,making the metal atom an intrinsic molecular dot.Experiments have demonstrated that the metal-to-metal communication plays an important role in the conducting behavior65-67.Fig.6 plots the calculated electrostatic potential for D-a,D-b,and D-c two-probe devices.Evidently,in D-a and D-c,the saturated silicon bridge blocks the two vanadocene units effectively,leading to an ionic-like interdot coupling. Electronic transport through ionic-like coupled quantum dots are covered by Coulomb blockade theory68,69,which usually results in NDR behavior.In contrast,electron delocalization through silicon bridge becomes easier for the parallel orientation compared to the V-shape.The covalent-like interdot coupling occurs in D-b owing to the high electron delocalization through the silicon bridge.The strong covalent-like interdot coupling in D-b induces a coherent tunneling,and thus cannot give a significant NDR behavior.The above differences may be originated from the orientation of the two V(Cp)2,which is V-shape for a and c(odd-numbered SiH2unit)and parallel for b(even-numbered SiH2unit).The NDR phenomenon of D-a and D-c is of important application in multiple-valued logic devices.For D-a,NDR peaks appear at 0.2 and-0.8 V;and for D-c,NDR peaks locate at 0.6 and-0.8 V.This NDR feature can be further interpreted from the TS distribution exemplified by D-a in Fig.5(b).Clearly,at 0.2 V and near the Ef, the magnitude of the TS of D-a is much larger than that of 0.4 V, resulting in the sharp dropping of the current from 0.2 to 0.4 V.

      Fig.5 (a)Transmission spectra(TS)of D-a,D-b,and D-c twoprobe devices at 0.0 V bias voltage;(b)TS of D-a two-probe device at 0.0,0.2,and 0.4 V bias voltages;(c)TS of D-b two-probe device at 1.0 and-1.0 V bias voltages

      Last,the conductivity is sensitive to the current direction owing to the asymmetric coupling between the scatter region and the two electrodes.The magnitude of the current under a negative bias voltage is evidently larger than that under a corresponding positive bias voltage.This phenomenon can be reflected from the TS in Fig.5(c).Take D-b as an example,clearly,TS peaks near Efat V=-1.0 V are larger than those at V=1.0 V.

      Fig.6 Computed contour plot of potential distribution for D-a,D-b,and D-c

      4 Conclusions

      Silicon bridge tuned electronic and transport properties of polymetallocenes,[V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c); m=∞;Cp=cyclopentadienyl),are studied using DFT and NEGF methods.With the lengthening of the silicon bridge,the V-V FM coupling is weakened while the AFM coupling is enhanced.a and b favor the ferromagnetic(FM)state ground state,while c prefers the antiferromagnetic(AFM)ground state.Each V atom in the FMstate of a and b shows a magnetic moment of~3.0μB,three times larger than that in the V-benzene or V-cyclopentadiene multidecker complex.The transport properties of a-c are in good agreement with the electronic structures.The conductivity follows the sequence of c>b>a.For a and b,the spin-down state has a slightly stronger conductivity than the spin-up state.a and c can both give rise to evident negative differential resistance behavior while b cannot.This differences may be originated from the orientation of the two V(Cp)2:V-shape for a and c(odd-numbered SiH2unit) leading to ionic-like interdot coupling while parallel for b(evennumbered SiH2unit)leading to covalent-like interdot coupling.In addition,the conductivity of a-c is sensitive to the current direction owing to the asymmetric coupling between the scatter region and the two electrodes.

      References

      (1) Kim,K.T.;Han,J.;Ryu,C.Y.;Sun,F.C.;Sheiko,S.S.; Winnik,M.A.;Manners,I.Macromolecules 2006,39,7922. doi:10.1021/ma060607l

      (2)Hatanaka,Y.;Okada,S.;Minami,T.;Goto,M.;Shimada,K. Organometallics 2005,24,1053.doi:10.1021/om040132r

      (3) Liu,K.;Clendenning,S.B.;Friebe,L.;Chan,W.Y.;Zhu,X.B.; Freeman,M.R.;Yang,G.C.;Yip,C.M.;Grozea,D.;Lu,Z.H.; Manners,I.Chem.Mater.2006,18,2591.doi:10.1021/ cm052339w

      (4) Friebe,L.;Liu,K.;Obermeier,B.;Petrov,S.;Dube,P.; Manners,I.Chem.Mater.2007,19,2630.doi:10.1021/ cm062470j

      (5) Kumar,M.;Metta-Magana,A.J.;Pannell,K.H. Organometallics 2008,27,6457.doi:10.1021/om800537b

      (6) Huo,J.;Wang,L.;Yu,H.J.;Deng,L.B.;Ding,J.H.;Tan,Q.H.; Liu,Q.Q.;Xiao,A.;Ren,G.Q.J.Phys.Chem.B 2008,112, 11490.doi:10.1021/jp7121888.

      (7) Michinobu,T.;Kumazawa,H.;Noguchi,K.;Shigehara,K. Macromolecules 2009,42,5903.doi:10.1021/ma9013324

      (8) Miles,D.;Ward,J.;Foucher,D.A.Macromolecules 2009,42, 9199.doi:10.1021/ma9018608

      (9) Berenbaum,A.;Braunschweig,H.;Dirk,R.;Englert,U.;Green, J.C.;Jakle,F.;Lough,A.J.;Manners,I.J.Am.Chem.Soc. 2000,122,5765.doi:10.1021/ja000311

      (10) Schachner,J.A.;Lund,C.L.;Quail,J.W.;Mueller,J. Organometallics 2005,24,785.doi:10.1021/om049004t

      (11) Schachner,J.A.;Lund,C.L.;Quail,J.W.;Mueller,J. Organometallics 2005,24,4483.doi:10.1021/om0503951

      (12) Bagh,B.;Sadeh,S.;Green,J.C.;Muller,J.Chem.Eur.J.2014, 20,2318.doi:10.1002/chem.201303925

      (13) Stoeckli-Evans,H.;Osborne,A.G.;Whiteley,R.H. J.Organomet.Chem.1980,194,91.doi:10.1016/S0022-328X (00)90341-3

      (14) Foucher,D.A.;Edwards,M.;Burrow,R.A.;Lough,A.J.; Manners,I.Organometallics 1994,13,4959.doi:10.1021/ om00024a044

      (15) Rulkens,R.;Lough,A.J.;Manners,I.Angew.Chem.1996,108, 1929.doi:10.1002/ange.19961081609

      (16) Jakle,F.;Rulkens,R.;Zech,G.;Foucher,D.A.;Lough,A.J.; Manners,I.Chem.Eur.J.1998,4,2117.doi:10.1002/(SICI) 1521-3765

      (17) Braunschweig,H.;Damme,A.;Demeshko,S.;Duck,K.; Kramer,T.;Krummenacher,I.;Meyer,F.;Radacki,K.;Stellwag-Konertz,S.;Whittell,G.R.J.Am.Chem.Soc.2015,137,1492. doi:10.1021/ja510884h

      (18) Withers,H.P.;Seyferth,D.Organometallics 1982,1,1283. doi:10.1021/om00070a005

      (19) Seyferth,D.;Withers,H.P.Organometallics 1982,1,1275. doi:10.1021/om00070a004

      (20) Butler,I.R.;Cullen,W.R.;Einstein,F.W.B.;Rettig,S.J.; Willis,A.J.Organometallics 1983,2,128.doi:10.1021/ om00073a024

      (21) Pudelski,J.K.;Gates,D.P.;Rulkens,R.;Lough,A.J.; Manners,I.Angew.Chem.1995,107,1633.doi:10.1002/ ange.19951071335

      (22) Rulkens,R.;Gates,D.P.;Balaishis,D.;Pudelski,J.K.; Mcintosh,D.F.;Lough,A.J.;Manners,I.J.Am.Chem.Soc. 1997,119,10976.doi:10.1021/ja972043u

      (23) Broussier,R.;Da Rold,A.;Gautheron,B.;Dromzee,Y.; Jeannin,Y.Inorg.Chem.1990,29,1817.doi:10.1021/ ic00335a011

      (24) Whittell,G.R.;Partridge,B.M.;Presley,O.C.;Adams,C.J.; Manners,I.Angew.Chem.2008,120,4426.doi:10.1002/ ange.200705672

      (25) Matas,I.;Whittell,G.R.;Partridge,B.M.;Holland,J.P.; Haddow,M.F.;Green,J.C.;Manners,I.J.Am.Chem.Soc. 2010,132,13279.doi:10.1021/ja103367e

      (26) Hu,Y.Q.;Zhu,N.;Han,L.M.Acta Phys.-Chim.Sin.2015,31, 227.[胡宇強,竺寧,韓利民.物理化學(xué)學(xué)報,2015,31,227.] doi:10.3866/PKU.WHXB201411061

      (27) Cao,Q.Y.;Lu,X.;Kuang,R.Y.;Li,Z.H.;Yang,Z.Y.Acta Phys.-Chim.Sin.2010,26,2158.[曹遷永,盧鑫,匡仁云,李志華,楊震宇.物理化學(xué)學(xué)報,2010,26,2158.]doi:10.3866/ PKU.WHXB20100822

      (28) Temple,K.;Dziadek,S.;Manners,I.Organometallics 2002,21, 4377.doi:10.1021/om020492j

      (29) Pannell,K.H.;Dementiev,V.V.;Li,H.;Cervantes-Lee,F.; Nguyen,M.T.;Diaz,A.F.Organometallics 1994,13,3644. doi:10.1021/om00021a043

      (30) Foucher,D.;Ziembinski,R.;Petersen,R.;Pudelski,J.; Edwards,M.;Ni,Y.Z.;Massey,J.;Jaeger,C.R.;Vansco,G.J.; Manners,I.Macromolecules 1994,27,3992.doi:10.1021/ ma00092a046

      (31) Rulkens,R.;Lough,A.J.;Manners,I.J.Am.Chem.Soc.1994, 116,797.doi:10.1021/ja00081a062

      (32) Du,H.;Park,K.C.;Wang,F.;Wang,S.;Liu,Q.;Zhang,S.W.;Huang,Y.L.;Shi,S.J.Organometallics 2007,26,6219. doi:10.1021/om7004468

      (33) Altmann,R.;Gausset,O.;Horn,D.;Jurkschat,K.;Schürmann, M.Organometallics 2000,19,430.doi:10.1021/om9905660

      (34) Resendes,R.;Berenbaum,A.;Stojevic,G.;J?kle,F.;Bartole, A.;Zamanian,F.;Dubois,G.;Hersom,C.;Balmain,K.; Manners,I.Adv.Mater.2000,12,327.doi:10.1002/(SICI)1521-4095(200003)

      (35) Massey,J.A.;Winnik,M.A.;Manners,I.J.Am.Chem.Soc. 2001,123,3147.doi:10.1021/ja003174p

      (36)MacLachlan,M.J.;Ginzburg,M.;Coombs,N.;Coyle,T.W.; Raju,N.P.;Greedan,J.E.;Ozin,G.A.;Manners,I.Science 2000,287,1460.doi:10.1126/science.287.5457.1460

      (37) MacLachlan,M.J.;Ginzburg,M.;Coombs,N.;Raju,N.P.; Greedan,J.E.;Ozin,G.A.;Manners,I.J.Am.Chem.Soc.2000, 122,3878.doi:10.1021/ja992006y

      (38) Kulbaba,K.;Resendes,R.;Cheng,A.;Bartole,A.;Safa-Sefat, A.;Coombs,N.;Stover,H.D.H.;Greedan,J.E.;Ozin,G.A.; Manners,I.Adv.Mater.2001,13,732.doi:10.1002/1521-4095 (200105)13

      (39) Espada,L.I.;Shadaram,M.;Robillard,J.;Pannell,K.H. J.Inorg.Organomet.Polym.2000,10(4),169.doi:10.1023/A: 1016634505173

      (40) Liu,R.;Ke,S.H.;Baranger,H.U.;Yang,W.T.J.Am.Chem. Soc.2006,128,6274.doi:10.1021/ja057054z

      (41) Murray,C.B.;Kagan,C.R.;Bawendi,M.G.Annu.Rev.Mater. Sci.2000,30,545.doi:10.1146/annurev.matsci.30.1.545

      (42) VanderWiel,W.G.;De Franceschi,S.;Elzerman,J.M.; Fujisawa,T.;Tarucha,S.;Kouwenhoven,L.P.Rev.Mod.Phys. 2003,75,1.doi:10.1103/RevModPhys.75.1

      (43) Dement′ev,V.V.;Cervantes-Lee,F.;Parkanyi,L.;Sharma,H.; Pannell,K.H.Organometallics 1993,12,1983.doi:10.1021/ om00029a067

      (44) Elschenbroich,C.;Bretschneider-Hurley,A.;Hurley,J.;Massa, W.;Wocadlo,S.;Pebler,J.Inorg.Chem.1993,32,5421. doi:10.1021/ic00075a080

      (45) Elschenbroich,C.;Bretschneider-Hurley,A.;Hurley,J.; Behrendt,A.;Massa,W.;Wocadlo,S.;Reijerse,E.Inorg.Chem. 1995,34,743.doi:10.1021/ic00107a028

      (46) Elschenbroich,C.;Lu,F.;Nowotny,M.;Burghaus,O.; Pietzonka,C.;Harms,K.Organometallics 2007,26,4025. doi:10.1021/om700300j

      (47) Elschenbroich,C.;Lu,F.;Burghaus,O.;Pietzonka,C.;Harms, K.Chem.Commun.2007,30,3201.doi:10.1039/b703349d

      (48) Pannell,K.H.;Imshennik,V.I.;Maksimov,Y.V.;Il′ina,M.N.; Sharma,H.K.;Papkov,V.S.;Suzdalev,I.P.Chem.Mater.2005, 17,1844.doi:10.1021/cm0403558

      (49) Zhang,G.L.;Pei,L.;Yu,J.;Shang,Y.;Zhang,H.;Liu,B.Theor. Chem.Acc.2013,132,1386.doi:10.1007/s00214-013-1386-0

      (50) Adams,C.J.;Braunschweig,H.;Fu?,M.;Kraft,K.;Kupfer,T. Manners,I.Radacki,K.;Whittell,G.R.Chem.Eur.J.2011,17, 10379.doi:10.1002/chem.201100919

      (51) Braunschweig,H.;Kaupp,M.;Adams,C.J.;Kupfer,T.; Radacki,K.;Schinzel,S.J.Am.Chem.Soc.2008,130,11376. doi:10.1021/ja802034p

      (52) Braunschweig,H.;Adams,C.J.;Kupfer,T.;Manners,I.; Richardson,R.M.Whittell,G.R.Angew.Chem.Int.Ed.2008, 47,3826.doi:10.1002/anie.200800081

      (53) Gr?nbeck,H.;Curioni,A.;Andreoni,W.J.Am.Chem.Soc. 2000,122,3839.doi:10.1021/ja993622x

      (54) Johansson,?.;Stafstr?m,S.Chem.Phys.Lett.2000,322,301. doi:10.1016/S0009-2614(00)00468-1

      (55) Kaun,C.C.;Larade,B.;Guo,H.Phys.Rev.B.2003,67,121411 (R).doi:10.1103/PhysRevB.67.121411

      (56)Yin,X.;Liu,H.M;Zhao,J.W.J.Chem.Phys.2006,125, 094711.doi:org/10.1063/1.2345061

      (57)Yin,X.;Li,Y.W.;Zhang,Y.;Li,P.;Zhao,J.W.Chem.Phys. Lett.2006,422,111.doi:10.1016/j.cplett.2006.02.020

      (58) Staykov,A.;Nozaki,D.;Yoshizawa,K.J.Phys.Chem.C 2007, 111,3517.doi:10.1021/jp067612b

      (59) Taylor,J.;Guo,H.;Wang,J.Phys.Rev.B 2001,63,245407. doi:10.1103/PhysRevB.63.245407

      (60) Brandbyge,M.;Mozos,J.L.;Ordejón,P.;Taylor,J.;Stokbro,K. Phys.Rev.B.2002,65,165401.doi:10.1103/ PhysRevB.65.165401

      (61) Soler,J.M.;Artacho,E.;Gale,J.D.;Garcia,A.;Junquera,J.; Ordejon,P.;Sanchez-Portal,D.J.Phys.Condens.Matter 2002, 14,2745.doi:10.1088/0953-8984/14/11/302

      (62)ATK,Version 13.8,atomistix a/s,www.quantumwise.com (accessed Oct 27,2015).

      (63) Miyajima,K.;Nakajima,A.;Yabushita,S.;Knickelbein,M.B.; Kaya,K.J.Am.Chem.Soc.2004,126,13202.doi:10.1021/ ja046151+

      (65) Park,P.;Lough,A.J.;Foucher,D.A.Macromolecules 2002,35, 3810.doi:10.1021/ma0120052

      (66) Rulkens,R.;Lough,A.J.;Manners,I.;Lovelace,S.R.;Grant, C.;Geiger,W.E.J.Am.Chem.Soc.1996,118,12683. doi:10.1021/ja962470s

      (67) Foucher,D.A.;Honeyman,C.H.;Nelson,J.M.;Tang,B.Z.; Manners,I.Angew.Chem.Int.Ed.Engl.1993,32,1709. doi:10.1002/anie.199317091

      (68)Averin,D.V.;Likharev,K.K.J.Low Temp.Phys.1986,62, 345.doi:10.1007/BF00683469

      (69) Van der Vaart,N.C.;Kouwenhoven,L.P.;De Ruyter van Steveninck,M.P.;Nazarov,Y.V.;Harmans,C.J.P.M.Phys. Rev.B 1997,55,9746.doi:10.1103/PhysRevB.55.9746

      Silicon Bridge-Tuned Electronic Structures and Transport Properties of Polymetallocenes

      PEI LeiZHANG Gui-Ling*SHANG YanSUN Cui-CuiGAN Tian
      (College of Chemical and Environmental Engineering,Harbin University of Science and Technology,Harbin 150080,P.R.China)

      Silicon bridge-tuned electronic structures and transport properties of polymetallocenes, [V(Cp)2(SiH2)n]m(n=1(a),n=2(b),n=3(c);m=∞;Cp=cyclopentadienyl),are studied using the density functional theory(DFT)and non-equilibrium Green′s function(NEGF)methods.As the silicon bridge is lengthened,the V-V ferromagnetic(FM)coupling is weakened,while the antiferromagnetic(AFM)coupling is strengthened.Polymetallocenes a and b favor the FM ground state,while c prefers the AFM ground state.Each V atom in the FM state of a and b has a magnetic moment of~3.0μB,three times larger than that in the V-benzene or V-cyclopentadiene multidecker complex.The transport properties of a-c are in good agreement with their electronic structures.Their conductivities follow the sequence c>b>a.For a and b,the spin-down state has slightly higher conductivity than the spin-up state.Polymetallocenes a and c can both display evident negative differential resistance(NDR)behavior,while b cannot.This difference may originate from the orientation of the two V(Cp)2units,which is V-shaped for a and c(odd number of SiH2units),leading to ioniclike inter-quantum dot coupling,and parallel for b(even number of SiH2units),leading to covalent-like interquantum dot coupling.In addition,the conductivity of a-c is sensitive to the current direction because of the asymmetric coupling between the scattering region and two electrodes.

      Silicon bridge;Polymetallocene;Electronic structure;Transport property;Theoretical study

      April 5,2016;Revised:June 28,2016;Published online:June 29,2016.

      .Email:guiling-002@163.com;Tel:+86-451-86392705.

      O641

      10.3866/PKU.WHXB201606295

      The project was supported by the National Natural Science Foundation of China(51473042).國家自然科學(xué)基金(51473042)資助項目?Editorial office ofActa Physico-Chimica Sinica

      (64) Barlow,S.;O′Hare,D.Chem.Rev.1997,97,637.10.1021/ cr960083v

      猜你喜歡
      鐵磁性基態(tài)導(dǎo)電性
      鐵磁性物質(zhì)對地磁觀測影響的野外測試
      一類非線性Choquard方程基態(tài)解的存在性
      擬相對論薛定諤方程基態(tài)解的存在性與爆破行為
      一類反應(yīng)擴散方程的Nehari-Pankov型基態(tài)解
      加入超高分子量聚合物的石墨烯纖維導(dǎo)電性優(yōu)異
      非線性臨界Kirchhoff型問題的正基態(tài)解
      大提離下脈沖渦流對鐵磁性材料測厚研究
      中國測試(2021年4期)2021-07-16 07:48:54
      PPy/Ni/NanoG復(fù)合材料的制備及導(dǎo)電性能研究
      中國塑料(2016年3期)2016-06-15 20:30:00
      碳納米管陣列/環(huán)氧樹脂的導(dǎo)熱導(dǎo)電性能
      核電站鐵磁性高加管漏磁檢測技術(shù)淺析
      科技視界(2015年30期)2015-10-22 11:26:44
      福泉市| 阿鲁科尔沁旗| 临沧市| 习水县| 双江| 临江市| 桑日县| 钟祥市| 腾冲县| 安徽省| 乾安县| 高要市| 道孚县| 新龙县| 沙洋县| 曲麻莱县| 邵阳县| 宁化县| 胶南市| 公安县| 黄陵县| 新龙县| 张北县| 泽库县| 辉县市| 阿瓦提县| 临泉县| 杭锦旗| 新密市| 新巴尔虎左旗| 二连浩特市| 巫溪县| 礼泉县| 兴文县| 万荣县| 余姚市| 江安县| 蛟河市| 民和| 巴塘县| 南丹县|