艾智勇, 蔡建邦
(1. 同濟(jì)大學(xué) 土木工程學(xué)院, 上海 200092; 2. 同濟(jì)大學(xué) 巖土及地下工程教育部重點(diǎn)實(shí)驗(yàn)室, 上海 200092)
?
艾智勇1,2, 蔡建邦1,2
(1. 同濟(jì)大學(xué) 土木工程學(xué)院, 上海 200092; 2. 同濟(jì)大學(xué) 巖土及地下工程教育部重點(diǎn)實(shí)驗(yàn)室, 上海 200092)
分別對地基接觸面和梁進(jìn)行離散,假定地基反力的分布情況,并確定梁單元節(jié)點(diǎn)和反力未知量;將無限長Euler-Bernoulli梁的基本解作為梁邊界單元法的核函數(shù),然后把Euler-Bernoulli梁邊界積分方程應(yīng)用到各節(jié)點(diǎn),建立起基礎(chǔ)梁的邊界積分方程組;將層狀地基的基本解作為地基邊界積分方程的核函數(shù),通過邊界積分方程建立起梁各節(jié)點(diǎn)豎向位移與地基反力未知量的沉降-反力柔度矩陣;最后,根據(jù)地基與梁接觸面的位移協(xié)調(diào)條件,建立起層狀地基與Euler-Bernoulli梁共同作用問題總的邊界元-邊界元耦合方程組.根據(jù)該理論,編制了相應(yīng)的程序,通過與現(xiàn)有文獻(xiàn)對比驗(yàn)證該理論的正確性,并分析了分層地基特性對基礎(chǔ)梁的影響.研究結(jié)果表明:相比有限元-邊界元耦合法,邊界元-邊界元耦合法的效率更高.
層狀地基; Euler-Bernoulli梁; 邊界元-邊界元耦合法
在對諸如條形基礎(chǔ)、地下市政管線等結(jié)構(gòu)構(gòu)件進(jìn)行分析時(shí),往往會把它們簡化為地基梁問題來處理.地基梁問題是經(jīng)典的研究課題,國內(nèi)外很多學(xué)者對此進(jìn)行過研究,取得了很多成果.地基與梁相互作用問題的分析方法主要有:鏈桿法[1]、有限差分法[2]、有限單元法[3-6]、邊界單元法[7-8]、有限差分-邊界元耦合法[9],以及有限單元-邊界元耦合法[10]等.另一方面,目前對地基梁問題的研究采用的多是Winkler地基模型、雙參數(shù)地基模型或彈性半空間地基模型,這些地基模型與實(shí)際情況存在較大差異.分層地基模型能很好地考慮到土體之間的剪切作用和天然的分層特性,更貼近工程實(shí)際情況.由于邊界單元法可使問題在求解過程中維數(shù)降低一階,并且有精度高等優(yōu)點(diǎn),故受到越來越多的青睞,而地基與梁的完全邊界單元法(本文稱之為邊界元-邊界元耦合法)方面的研究還較少.因此,采用邊界元-邊界元耦合法對層狀地基與Euler-Bernoulli梁共同作用問題進(jìn)行求解,并將該方法與FEM-BEM耦合法進(jìn)行對比分析.
1.1 Euler-Bernoulli梁內(nèi)任意點(diǎn)的邊界積分方程
圖1 成層地基上的Euler-Bernoulli梁
圖2 彈性地基梁的受力簡圖
Euler-Bernoulli梁彎曲的控制方程為
(1)
式中:s為梁的豎向位移;r為梁長度方向的坐標(biāo),r∈(0,L),其中0和L分別為梁兩端的坐標(biāo).
式(1)的一個(gè)基本解為[11]
(2)
假定r=ξ為Euler-Bernoulli梁上任意一內(nèi)點(diǎn),ξ∈(0,L),則ξ處的豎向位移的邊界積分方程可表示為[11]
(3)
(4)
(5)
(6)
對式(3)關(guān)于r進(jìn)行求導(dǎo),可得梁關(guān)于轉(zhuǎn)角的邊界積分方程
(7)
將式(3)和式(7)應(yīng)用到梁的每個(gè)節(jié)點(diǎn),可以得到地基梁總的邊界積分方程組,即式(8)和式(9).由于式(3)和式(7)只針對梁內(nèi)點(diǎn)(非梁兩端的邊界點(diǎn)),為了計(jì)算梁兩端節(jié)點(diǎn)的豎向位移和轉(zhuǎn)角,采用點(diǎn)r=0+ε和r=L-ε(ε→0)來替代梁兩端點(diǎn)來進(jìn)行計(jì)算.
(8)
(9)
式中,
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
由文獻(xiàn)[12],可得到層狀各向同性彈性地基的基本解δ(i,ψ,R),它表示層狀地基表面任意點(diǎn)ψ作用單位集中荷載引起的節(jié)點(diǎn)i的沉降,R為點(diǎn)ψ到點(diǎn)i的距離.將δ(i,ψ,R)作為地基邊界單元法的核函數(shù),則反力qj區(qū)域上作用單位均布荷載在梁節(jié)點(diǎn)i處引起的沉降為
(21)
由式(21)可得梁各節(jié)點(diǎn)豎向位移與地基反力之間的矩陣表達(dá)式為
(22)
式中,wi為梁節(jié)點(diǎn)i處的地基沉降.
根據(jù)地基與梁接觸面上的豎向位移協(xié)調(diào)條件有
s=w
(23)
將式(22)和式(23)代入式(8)和式(9),可得到地基梁邊界元-邊界元耦合解法的總方程組,即
(24)
求解式(24),可得地基梁的地基反力和轉(zhuǎn)角,再通過式(22)可求得梁的豎向位移.
2.1 驗(yàn)證性算例
為了驗(yàn)證本文理論及程序的正確性,將本文計(jì)算結(jié)果與文獻(xiàn)[1]結(jié)果進(jìn)行對比,其中計(jì)算模型見圖3.取深度1 000 m來模擬彈性半空間.從圖4中的對比結(jié)果可見:本文結(jié)果與鏈桿法[1]計(jì)算結(jié)果吻合較好,這說明本文理論和程序是正確的.
圖3 彈性半空間上Euler-Bernoulli梁
圖4 沿梁長方向地基反力對比
2.2 與FEM-BEM耦合法的對比
本例以三層土體組成的地基上的梁作為計(jì)算模型.梁上作用均布荷載,其中,L:hb:b:h1:h2:h3=10:1:1:25:25:25,νb=0.2,Eb:E1:E2:E3=3 200:1:4:2,ν1=ν2=ν3=0.4.分別采用本文方法和文獻(xiàn)[10]中的FEM-BEM耦合法對地基梁模型進(jìn)行分析,分析結(jié)果見圖5,其中,量綱為一的豎向位移為I1=Esw/(pb).
由圖5可知,相比于本文的BEM-BEM耦合法,F(xiàn)EM-BEM耦合法需要把梁離散成更多的單元才能達(dá)到相同的精度;而邊界元法花費(fèi)的時(shí)間更少,可以節(jié)省約1/3的計(jì)算時(shí)間.
圖5 地基梁兩種分析方法的沉降對比
2.3 地基成層性的影響
下面的算例通過對三種不同工況的對比,分析地基成層性對地基梁位移的影響.相關(guān)計(jì)算參數(shù)為:L:hb:b:h1:h2=8:1:1:4:50,νs1=νs2=0.35;工況一:Eb:Es1:Es2=3 000:1:4;工況二:Eb:Es1:Es2=3 000:2:4;工況三:Eb:Es1:Es2=3 000:1:8.
圖6為在三種工況下梁豎向位移沿梁長的變化情況,其中對豎向位移進(jìn)行量綱為一處理,取為Ebw/(pb).通過對比可知,土層彈性模量同樣增加一倍,上層土體彈性模量的改變對梁撓度的影響比下層土體模量的改變要大很多.這說明:第一層土的性質(zhì)對地基梁影響更大;而且首層土的彈性模量越大,梁的豎向位移越小.
圖6 均布荷載作用下地基梁的沉降
(1) 采用邊界元-邊界元耦合法求解多層地基上Euler-Bernoulli梁的靜力響應(yīng),并通過對比算例驗(yàn)證了本文理論及程序的正確性.
(2) 與FEM-BEM耦合法相比,邊界元-邊界元耦合法對梁劃分更少單元便能達(dá)到相同的精度,同時(shí)計(jì)算所需時(shí)間也更短,計(jì)算效率高.
(3) 數(shù)值結(jié)果計(jì)算表明,相比第二層土,第一層土的彈性模量對地基梁的沉降影響更大;而且,第一層土的彈性模量越大,梁的沉降越小.
[1] Zemochkin B N, Sinitsyn A P. Practical method for the calculation of foundation beams and plates on an elastic foundation[M]. Moscow: Stroizdat, 1962.
[2] 蔡四維. 彈性地基梁的新解法[J]. 土木工程學(xué)報(bào), 1959, 6(5): 337.
CHAI Siwei. New method for elastic foundation beam[J]. Journal of Civil Engineering, 1959, 6(5): 337.
[3] Cheung Y K, Nag D K. Plates and beams on elastic foundations—linear and non-linear behaviour[J]. Geotechnique, 1968, 18(2): 250.
[4] 張季容, 姚祖恩, 樓文娟. 有限單元法計(jì)算分層地基上的彈性地基梁[J]. 巖土工程學(xué)報(bào), 1986, 8(3): 16.
ZHANG Jirong, YAO Zuen, LOU Wenjuan. Computation of a beam on multilayer foundation using finite element method[J]. Chinese Journal of Geotechnical Engineering, 1986, 8(3): 16.
[5] 陳天愚, 張克緒, 單興波. 彈性地基梁的修正剛度矩陣解法[J]. 哈爾濱建筑大學(xué)學(xué)報(bào), 2000, 33 (2): 44.
CHEN Tianyu, ZHANG Kexu, SHAN Xingbo. Modifying stiffness matrix method of elastic foundation beam[J]. Journal of Harbin University of Civil Engineering & Architecture, 2000, 33(2): 44.
[6] 馬立博, 時(shí)偉, 周印章, 等. Winkler與三參數(shù)彈性地基梁模型的計(jì)算比較[J]. 青島理工大學(xué)學(xué)報(bào), 2008, 29 (4): 36.
MA Libo, SHI Wei, ZHOU Yinzhang,etal. The calculation comparision between Winkler and tri-parameter elastic foundation beam model[J]. Journal of Qingdao Technological University, 2008, 29(4): 36.
[7] 王林生. 基礎(chǔ)梁板的邊界元法[J]. 河海大學(xué)學(xué)報(bào), 1989, 17(1): 31.
WANG Linsheng. BEM for beams and plates on foundations[J]. Journal of Hohai University, 1989, 17(1): 31.
[8] 鄭建軍, 周欣竹. 考慮剪切變形時(shí)文克勒地基梁靜力分析的邊界元法[J]. 四川建筑科學(xué)研究, 1992(3): 44.
ZHENG Jianjun, ZHOU Xinzhu. The BEM for static analysis of Winkler foundation beam with considering shear effect[J]. Sichuan Building Science, 1992(3): 44.
[9] AI Zhiyong, LI Zhixiong, CHENG Yichong. BEM analysis of elastic foundation beams on multilayered isotropic soils[J]. Soils and Foundations, 2014, 54(4):667.
[10] 艾智勇, 蔡建邦. 層狀地基上彈性地基梁的有限元/邊界元耦合分析[J]. 巖土力學(xué), 2015, 36(S2): 685.
AI Zhiyong, CAI Jianbang. FEM/BEM coupling analysis of elastic foundation beam on layered soils[J]. Rock and Soil Mechanics, 2015, 36(S2): 685.
[11] Tanaka M, Matsumoto T, Oida S. A Boundary element method applied to the elastostatic bending problem of beam-stiffened plates[J]. Engineering Analysis with Boundary Elements, 2000, 24(10): 751.
[12] 艾智勇, 董洲,成怡沖. 多層地基軸對稱彈性空間問題的解析層元解[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2012, 33(4): 150.
AI Zhiyong, DONG Zhou, CHENG Yichong. Analytical layer element solution of axisymmetrically elastic problem for multilayerd soils[J]. Journal of Building Structures, 2012, 33(4): 150.
BEM-BEM Coupling Method for a Beam on Multilayered Soils
AI Zhiyong1, 2, CAI Jianbang1, 2
(1. College of Civil Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China)
Dividing the foundation interface and the beam into several segments, and assuming the distribution of the foundation reaction, the beam nodes and the reaction variables are confirmed. By taking the fundamental solutions of the infinite Euler-Bernoulli beam as the kernel functions of the boundary element method (BEM) of the beam, the boundary integral equation of Euler-Bernoulli beam is applied to each node so as to establish the boundary integral equations of the foundation beam. The settlement-reaction flexibility matrix between the vertical displacements of beam nodes and the foundation reacting forces is formed through Gauss integral by adopting the fundamental solution of layered soils as the kernel function of the boundary element method (BEM) of the subgrade. Finally, the global BEM-BEM coupling equations of the soil-beam interaction problem are obtained according to the compatible displacement condition at the soil-beam interface. According to the above theory, the corresponding program is compiled, and further the accuracy of the theory is verified by comprising the results of this paper with the existing reference. Moreover, the influence of the characteristics of the soil layers is analyzed, showing that the BEM-BEM coupling method is more efficient than the FEM-BEM coupling method.
layered foundation; Euler-Bernoulli beam; BEM-BEM coupling method
2015-07-13
艾智勇(1966—),男,教授,博士生導(dǎo)師,工學(xué)博士,主要研究方向?yàn)閹r士及地下工程.E-mail:zhiyongai@#edu.cn
TU470
A