王傳飛,龔平,王小萍,*,姚檀棟
1. 中國科學院青藏高原研究所 中國科學院青藏高原環(huán)境變化與地表過程實驗室,北京 100101 2. 中國科學院青藏高原地球科學卓越創(chuàng)新中心,北京 100101
?
西藏農田土和農作物中多氯聯(lián)苯的分布、環(huán)境行為和健康風險評估
王傳飛1,2,龔平1,2,王小萍1,2,*,姚檀棟1,2
1. 中國科學院青藏高原研究所 中國科學院青藏高原環(huán)境變化與地表過程實驗室,北京 100101 2. 中國科學院青藏高原地球科學卓越創(chuàng)新中心,北京 100101
南亞排放的多氯聯(lián)苯類污染物(PCBs)可隨大氣傳輸?shù)轿鞑啬喜浚⒊两档睫r田等區(qū)域。農田中的PCBs能夠經食物鏈進入人體,從而可能對人體健康產生影響。但目前尚無西藏農田PCBs環(huán)境過程和農作物健康風險評估的研究。本研究通過同步采集西藏農田土壤和農作物,發(fā)現(xiàn)西藏農田土壤、青稞和油菜PCBs的濃度均值分別為5.1 pg·g-1dw、13.5 pg·g-1dw和10.9 pg·g-1dw,低于全球其他地區(qū)。青稞和油菜對PCBs的生物富集系數(shù)都大于1,說明PCBs在農作物中發(fā)生了生物富集現(xiàn)象。模型模擬結果顯示,農田土壤中99.6%的PCBs都富集在土壤有機質中,只有0.38%的PCBs進入了植物根系。因此,青稞直接從大氣中吸收PCBs是其對PCBs積累和富集的主要途徑?;陲嬍辰Y構 (青稞、牛肉、牛奶和酥油),西藏人群PCBs攝入均值為0.75 ng·kg-1bw·d-1,低于安全閾值約一個數(shù)量級。PCBs的食物攝入不會對西藏居民健康狀況產生明顯影響。
多氯聯(lián)苯;西藏;空間分布特征;逸度模型;健康風險
Received 2 December 2015 accepted 2 January 2016
多氯聯(lián)苯(polychlorinated biphenyls, PCBs)具有持久性、高毒性、生物富集和長距離傳輸?shù)奶卣?,在環(huán)境中廣泛分布,對生物體和人體健康具有嚴重的危害[1-3]。因而,PCBs受到全球科學家的廣泛關注[4-6],并成為首批加入《斯德哥爾摩公約》受控清單的持久性有機污染物(POPs)[1]。目前,雖然大多數(shù)國家都已經停止了PCBs的生產,但伴隨電子垃圾的焚燒[7]、拆卸[8]和污水灌溉[9],PCBs被再次釋放到環(huán)境中并產生了相應的生態(tài)風險。土壤富含有機質是污染物的重要“儲庫”[10-12],其不但是長距離大氣輸送污染物的主要受體,還是局地工農業(yè)活動所排放污染物的接收器。土壤對PCBs的全球循環(huán)起到重要的作用[13]。一方面,進入土壤的PCBs會發(fā)生再分配與遷移,在此過程中不同氯代的PCBs可能發(fā)生組成分餾現(xiàn)象,表現(xiàn)為小分子PCBs向土壤深處遷移而大分子PCBs則傾向于富集于表層有機質中[14];另一方面,土壤已然成為了小分子PCBs的二次源[15]。Li等[15]的研究表明全球大部分地區(qū)的土壤均在不同程度地向大氣揮發(fā)小分子PCBs。因此,從PCBs全球循環(huán)的角度看,由電子垃圾拆卸和焚燒所產生的一次PCBs排放及土壤揮發(fā)引發(fā)的二次排放過程是當前PCBs的主要排放源,而深海[16]和位于亞北極圈的北方森林[14]則是PCBs的匯。
在土壤的研究中,PCBs在農田土中的環(huán)境過程和農田食物鏈傳遞引起了廣泛關注。一方面,頻繁的耕作活動加速了PCBs的氣-地交換過程[17],促使了更多的PCBs向大氣揮發(fā);另一方面農作物對土壤PCBs的吸收,使得PCBs通過食物鏈的傳遞而在人體富集[8]。目前,相關研究主要集中在受電子垃圾和污灌直接影響的農田土壤中[9, 18]。
青藏高原被稱為地球“第三極”。相比南極、北極,它是唯一有著人類豐富生存活動的極地地帶。青藏高原工業(yè)貧瘠但是卻有較長時間的農墾活動[19]。此外,青藏高原毗鄰印度、尼泊爾、巴基斯坦等南亞國家,目前這些國家已經成為了發(fā)達國家電子垃圾的重要傾瀉地[20-21]。電子垃圾拆卸與焚燒產生了大量的PCBs,在印度季風的驅使下,印度排放的PCBs會經大氣傳輸?shù)竭_青藏高原[22-28]。農田土一般有較高含量的有機質,傳輸?shù)角嗖馗咴腜CBs是否會在高原農田土壤中積累,并產生怎樣的分布格局?西藏農田土壤中PCBs向空氣、水、有機質、礦物質及植物根系的傳輸過程怎樣?其是否會被高原典型農作物吸收并產生可能的食用風險。針對這些問題,本研究在青藏高原農田分布區(qū)同步采集農田土壤和農作物的樣品,旨在獲得農田土壤和農作物PCBs的濃度水平、空間分布特征,一方面借助土壤模型探討農田土壤中PCBs的環(huán)境行為,另一方面結合文獻報道的酥油[29-30]、牛奶[31]、牦牛肉[31]中PCBs的含量估算藏民由飲食途徑而攝入PCBs的風險。
1.1 樣品采集
據統(tǒng)計,藏南地區(qū)(包括拉薩市、日喀則地區(qū)、林芝地區(qū)、山南地區(qū)、昌都地區(qū))農田面積占西藏農田總面積的96%[19]。本研究于2011年8月在藏南采在農田中隨機選取100×100 m2樣地,在樣地的4個角和中心點用干凈的不銹鋼鏟各采集1份表層土壤樣品(0~10 cm),將這5份子樣本混合成1個樣品,該樣品可以代表所在該樣地的特征。用剪刀采集樣地內青稞和油菜的地上組織樣本,并用上述方法混合。所有樣品用2層鋁箔包裹并置于2層自封袋中密封保存。采集完的樣品盡快送回實驗室,于-20 ℃冷凍保存。土壤和農作物含水率按照文獻[29]進行測定:稱取10 g土壤或2 g農作物(均為濕重),將其置于烘箱中105 ℃烘20 min,之后90 ℃烘致恒重。通過比較烘干前后樣品的重量差而獲得含水率。本研究測得的農田土壤和農作物的含水量分別為13%±5%和37%±24%。
圖1 西藏農田土壤和農作物采樣點的分布Fig. 1 Sampling sites from the Tibetan agricultural regions
集農田土壤樣品32個,同步采集青稞(Hordeum vulgare Linn. var. nudum Hook. f.)樣品32個,隨機采集油菜(Brassica campestris L.)樣品4個,采樣點詳見圖1。
1.2 樣品的提取和分析方法
30 g新鮮農田土壤和30 g無水硫酸鈉的混合,用200 mL二氯甲烷(DCM)索式提取16 h,并加入2 ng回收率指示物質(PCB-30和Mirex)。經濃縮后,用氧化鋁硅膠柱(柱子內自上而下填充:2 g無水硫酸鈉,10 g氧化鋁,9 g硅膠)凈化,并用180 mL體積比為1:1的DCM:正己烷(hexane)混合溶液洗脫柱子。淋洗液濃縮至5 mL后用濃硫酸進行酸解,過凝膠色譜柱(GPC)。用46 mL DCM:hexane (1:1, V/V)洗脫液淋洗GPC柱,舍棄前16 mL洗脫液,只收集后30 mL溶液。將收集的洗脫液加入含2 ng內標物質(PCB-209和 PCNB)定容至100 μL。農作物的前處理方法與土壤相同,所用樣品量為20 g新鮮農作物樣品。實驗用DCM和Hexane均為HPLC級,購自J.T.Baker公司;無水硫酸鈉(優(yōu)級純)、層析用的中性氧化鋁和硅膠的生產商為國藥集團化學試劑有限公司。
化合物測定使用熱電公司(Thermo Electron Corporation)生產的離子阱氣相色譜-質譜/質譜聯(lián)用儀(GC-MS-MS,F(xiàn)innigan Trace GC/PolarisQ)。載氣為氦氣,流量為1 mL·min-1,進樣方式為不分流進樣。色譜柱為直徑250 μm、長50 m的CP-Sil 8 CB柱。進樣口和傳輸線溫度分別為250 ℃和280 ℃。色譜的升溫程序為:100 ℃保持2 min,以20 ℃·min-1的速率升到140 ℃,以4 ℃·min-1升溫到200 ℃并保持10 min,之后以4 ℃·min-1升溫到300 ℃,保持17 min。目標化合物為6種指示性PCB (indicator PCBs),包括PCB-28,52,101,153,138和180。
1.3 質量控制
實驗室前處理過程遵循嚴格的質量控制標準。樣品處理過程中設置了實驗室流程空白(即只用無水硫酸鈉進行提取),每5個樣品設置一個實驗室空白??瞻椎那疤幚砹鞒膛c樣品完全一致。在實驗室空白中未檢出目標化合物,表明樣品在分析過程中未受到污染。鑒于此,儀器檢出限使用工作曲線最低濃度點的信噪比進行折算,設檢出限的信噪比為10?;?6 g農田土壤和13 g農作物干重(dw)樣品,PCBs的檢出限分別為0.002~0.004 pg·g-1dw和0.001~0.002 pg·g-1dw。農田土樣品的回收率為60%~121%(PCB-30)和71%~133%(Mirex);農作物樣品的回收率為49%~94%(PCB-30),54%~79%(Mirex)。
1.4 土壤模型簡介
土壤模型(Soil model,version 3.0)來自加拿大特倫特大學環(huán)境模型中心[32],該模型基于逸度的原理,以空氣、水、有機質、礦物質和植物根系為模擬介質,假設根系作為土壤的一部分與其他相之間處于交換平衡狀態(tài),進而模擬表層土壤中化學物質揮發(fā)、降解、淋溶等環(huán)境過程。本研究將借助該模型模擬PCBs在表層土壤中的揮發(fā)、降解和淋溶的速率及進入土壤的PCB向植物根系的傳輸量。
2.1 西藏農田土壤和農作物PCBs的殘留狀況及濃度水平
西藏農田土壤和農作物樣品中均有PCBs檢出,檢出率最高的化合物為五氯PCB(PCB-101),檢出率分別為98%和100%;檢出率最低的化合物均為七氯PCB(PCB-180),檢出率分別為40%和20%。從樣品中PCBs質量的相對組成看,農田土壤中三氯、四氯PCB(PCB-28和PCB-52)分別占PCBs總質量的30%和16%;農作物中這些化合物所占的比重分別為29%和33%。西藏農田土壤和農作物PCBs的組成以小分子的多氯聯(lián)苯為主,這與西藏表土、牧草及全國背景土壤PCBs的組成是相似的[29, 33, 34]。
青藏高原農田土壤和農作物(包括青稞和油菜)PCBs濃度的統(tǒng)計數(shù)據見表1。農田土壤6種PCBs的濃度范圍為1.9~13.2 pg·g-1dw,平均濃度為(5.1±2.9) pg·g-1dw(表1)。與長江三角洲(3.6×104pg·g-1dw)、太湖區(qū)域(1.1×103pg·g-1dw)及山東濰坊(5.9×103pg·g-1dw)等中國東部地區(qū)農田相比[35-37],西藏農田土壤PCBs濃度低3~4個數(shù)量級。在國外農田中,巴基斯坦、瑞典的農田土壤PCBs濃度分別為9.4×103pg·g-1dw和1.6×103pg·g-1dw[38-39],亦比西藏農田土壤PCBs高近3個數(shù)量級。從全球來看,西藏農田PCBs的濃度較低,與全球背景土壤的濃度(9~51.2×103pg·g-1dw)[5]的低值相接近。
青稞是西藏的主要農作物,是當?shù)夭孛竦闹魇持?。除青稞外,西藏還有少量的蔬菜種植。為了比較青稞和蔬菜PCBs的濃度水平,本研究隨機選擇4個采樣點采集了青稞和油菜(蔬菜主要品種)樣品。這些采樣點青稞和油菜PCBs的濃度分別為4.5~15 pg·g-1dw和5.8~16 pg·g-1dw (表1)。經配對雙樣本t檢驗,結果顯示兩組數(shù)據的平均值不存在顯著的差異(P>0.05)。這說明西藏青稞和油菜PCBs的濃度水平相當。因而,青稞PCBs的濃度能夠反映西藏農作物PCBs的濃度水平。西藏32個青稞樣品PCBs的濃度范圍為2.4~28.6 pg·g-1dw,平均值為(13.5±7.6) pg·g-1dw (表1)。這與納木錯野生牧草PCBs (16.8 pg·g-1dw)的濃度水平相當[29]。青稞是青藏高原的特有物種,與其他地區(qū)的主食農作物相比,青稞PCBs的濃度比巴基斯坦的大米(1.1×103pg·g-1dw)和小麥(0.8×103pg·g-1dw)[38]及廣州的大米(0.8×103pg·g-1dw)[8]低約2個數(shù)量級。
綜上所述,青藏高原農田土壤和農作物PCBs的濃度均顯著低于全球其他農田地區(qū)。
2.2 西藏農田土壤和農作物PCBs的空間分布特征
西藏農田分布區(qū)土壤和農作物PCBs的空間分布如圖2所示。在幾個行政區(qū)中,昌都地區(qū)的農田土壤PCBs濃度最高(平均為6.0 pg·g-1dw,圖2a)。研究發(fā)現(xiàn)土壤有機碳(SOC)對PCBs有較強的吸附能力,是影響土壤PCBs空間分布的重要因素[12]。昌都地區(qū)農田土壤有機碳的含量高達3.5%,是其他區(qū)域的2~3倍,高含量的SOC促使更多的PCBs富集在土壤中。此外,Wang等[33]認為昌都地區(qū)相對較高的降雨量(特別是降雪)加速了大氣PCBs的沉降。高含量的SOC和濕沉降的共同作用使昌都農田土壤PCBs的濃度高于其他地區(qū)。林芝地區(qū)的農田土壤PCBs濃度為幾個行政區(qū)中的最低值(平均3.0 pg·g-1dw,圖2a)。拉薩、日喀則和山南地區(qū)PCBs濃度則介于以上兩者之間,且濃度水平相差并不大(圖2a)。西藏農田土壤PCBs高低值僅有2倍之差。這說明西藏地區(qū)農田土壤PCBs的空間差異較小。
鑒于油菜的樣品數(shù)量較少,本文只討論了青稞PCBs的空間分布(圖2b)。西藏青稞PCBs的濃度水平依次為日喀則>山南>林芝>拉薩>昌都。總體上,青藏高原南部與南亞接壤行政區(qū)中的青稞PCBs含量稍高,這與農田土壤PCBs的空間分布特征(圖2a)差異較大。植物和土壤都能夠從大氣中吸收污染物,在根系從土壤中吸收污染物的同時,植物也在葉片接收大氣沉降的PCBs[40]。大氣對農作物PCBs的貢獻可能是引起土壤和農作物PCBs空間分布差異的原因。此外,農作物對PCBs的吸收過程只發(fā)生在當年生長季,而土壤中的PCBs是多年累積的結果。這也可能是引起兩者空間分布特征不同的原因。
2.3 農作物的生物富集
植物從其生長環(huán)境中富集污染物的程度,可以用生物富集因子(biological concentration factor, BCF)來表示,即植物與其生長環(huán)境中污染物濃度的比值。若BCF>1,則說明污染物在植物體內發(fā)生了生物富集。
表1 青藏高原農田土壤和農作物PCBs濃度(pg·g-1 dw)統(tǒng)計數(shù)據
注:*樣品量為32個;**樣品量為4個;Min:最小值;Max:最大值;Mean:平均值;Std:標準偏差;BDL:低于檢測限。
Note: *Thirty two samples; **Four samples; Min: Minimum; Max: Maximum; Mean: Mean values; Std: Standard deviation; BDL: Below detection limit.
圖2 西藏(a)農田土壤和(b)青稞PCBs的空間分布特征Fig. 2 The spatial distribution of PCBs in (a) agricultural soil and (b) hulless barley of the Tibet
圖3 西藏青稞和油菜PCBs的生物富集系數(shù) 注:圖中長方形的上下兩條邊分別表示上和下四分位數(shù),星號表示最大最小值,橫線表示中位數(shù),小方框表示平均值,紅色虛線表示生物富集系等于1。Fig. 3 The bioaccumulation factor of PCBs for highland barley and rape in the Tibet Note:The box is defined by the 25th and 75th percentiles, whiskers mark the maximum and minimum, the median is represented by a horizontal line, the mean by a square, the values of BCF=1 is represented by a red broken line.
西藏青稞和油菜中PCBs的BCF值75%以上都大于1(圖3),說明大部分PCBs在農作物中都發(fā)生了生物富集。青稞中PCB-52及PCB-153的生物富集系數(shù)較高。就平均值而言,青稞BCF的順序是PCB-153 ≈ PCB-52 > PCB-101≈ PCB-28。雖然土壤和青稞中PCB-153和 -101的濃度和所占的百分含量都不高,但這些大分子PCBs較穩(wěn)定,因而其生物富集系數(shù)也較高。由于PCB-28、-52和-180未在土壤和油菜樣品中同時被檢出,故油菜中這些化合物的生物富集系數(shù)無法進行表示。與青稞相比,油菜PCB-101,-153和-138的生物富集系數(shù)略高于青稞(圖3)。
圖4 西藏農田表層土壤PCB-52和PCB-153的環(huán)境行為Fig. 4 The environmental behaviour of PCB-52 and PCB-153 in the surface agricultural soil from the Tibet
2.4 農田土壤PCBs的環(huán)境行為模擬
進入農田土壤的PCBs不斷與土壤各介質進行交換。青藏高原農田表層土壤PCBs具有怎樣的環(huán)境行為?本研究選擇土壤中含量較高的小分子PCB-52及生物富集系數(shù)較大的PCB-153作為被試化合物,借助土壤模型模擬了西藏農田表層土壤(面積1 ha,厚度0.1 m)PCBs的環(huán)境行為,結果如圖4所示。
表層土壤PCBs的損失包括揮發(fā)、降解和淋溶3個過程。模擬結果顯示,西藏農田表層土壤PCB-52和153的淋溶和揮發(fā)速率較小,比降解速率低3~4個數(shù)量級。這說明表層土壤中的PCBs輸出主要以降解為主,而淋溶和揮發(fā)的貢獻很小。就相分配而言,所有介質中,西藏農田土壤有機質富集的PCBs最多,占土壤PCBs總量的99.6%(圖4)。植物根系吸收的PCBs(2.26×10-3g·m-2)比土壤有機質中PCBs含量(2.6×10-2g·m-2)低一個數(shù)量級(圖4)。這表示植物根系從土壤中吸收的PCBs極少。此外,土壤空氣、空隙水及礦物質對PCBs的儲存能力也非常有限(圖4)。因此,西藏農田土壤中的PCBs可能主要存儲在有機質中,這與先前的很多研究結果是一致的[10, 12]。2種PCBs化合物相比,大分子PCB-153的揮發(fā)、降解、淋溶速率都低于小分子PCB-52(圖4)。大分子PCBs相對穩(wěn)定的理化性質可能是其在土壤中長期停留的主要原因。
將PCBs環(huán)境行為、生物富集和空間分布結合在一起,我們發(fā)現(xiàn)由根系向青稞傳輸PCB-153不是青稞中積累PCB-153的主要途徑,然而青稞中PCB-153的生物富集因子卻較大。植物具有有機蠟質表面能夠直接吸收大氣中的有機污染物,因此,青稞直接從大氣中吸收PCBs可能是其對PCBs積累和富集的主要途徑。在前文空間分布的研究中,青藏高原南部與南亞臨近地區(qū)的青稞中有較高含量的PCBs。這種離南亞越近PCBs含量越高的現(xiàn)象也表明青稞能直接吸收大氣中的PCBs污染物。
2.5 PCBs的食物攝入風險
PCBs進入農作物是其進入人類食物鏈的一種方式。此外其被牧草吸收,牦牛通過食用牧草而將PCBs攝入體內,而人類又通過食用牦牛奶和肉等制品而攝入PCBs為其進入人類食物鏈的另外一種方式。研究發(fā)現(xiàn),由于生物富集作用,牦牛肉、奶等制品中的PCBS含量往往比牧草中高于牧草中相應污染物的含量[31],因而,即便在污染狀況很低的青藏高原地區(qū),依然有必要評估人類的PCBs食物攝入風險。
本文使用聯(lián)合國糧農組織(FAO)和世界衛(wèi)生組織(WHO)提出的個體食物暴露評估方法[41]計算了西藏人群的指示性PCBs攝入風險:
式中,Cij為個體i攝入的食物量(g·d-1),Tj為食品j中PCBs濃度(mg·kg-1鮮重),Wi為個體i的體重(本文假設為60 kg)。考慮到藏民族的食品結構,本文選擇青稞、牛肉、牛奶和酥油計算PCBs攝入量。食品人均消費量來自于西藏自治區(qū)700戶居民抽樣調查數(shù)據[42]。青稞和蔬菜PCBs數(shù)據來自于本研究,牛奶數(shù)據來自于文獻[31],酥油數(shù)據則取文獻[29]和[30]的平均值。牛肉中PCBs濃度低于檢出限[31],故計算過程中未考慮牛肉對PCBs攝入量的貢獻。
目前尚無指示性PCBs攝入量的安全標準,Arnich等[43]綜合考慮了PCBs的毒性閾值、環(huán)境分布等因素,認為10 ng·kg-1bw·d-1可作為PCBs攝入量的安全閾值。經計算,西藏居民的平均PCBs攝入量為0.75 ng·kg-1bw·d-1,較安全閾值低至少一個數(shù)量級,即PCBs食物攝入對西藏居民健康的影響較小。青稞、蔬菜、牛奶、酥油的貢獻分別為0.07、0.02、0.01和0.66 ng·kg-1bw·d-1。可見,酥油可能是西藏居民攝入PCBs的主要食品。而青稞和蔬菜的貢獻僅占總攝入量的9.3%和1.3%,這表明農田污染并非西藏人群攝入PCBs的主要途徑。
綜上可知,青藏高原雖自身污染排放有限但其卻毗鄰于印度等主要的南亞污染國家。南亞污染物在印度季風驅動下傳輸至青藏高原已經是不爭的事實[22, 24, 44-45]。在此基礎上,本研究確認了農作物吸收南亞排放PCBs的方式為直接從大氣吸收而不是由根系從土壤中吸收。本研究估算了藏族同胞通過食用農作物和牦牛肉、奶而可能的食用風險,發(fā)現(xiàn)藏族同胞對PCBs的攝入風險較小?;谳^低的大氣、土壤及農作物濃度與較低的攝入風險可以初步判斷南亞排放PCBs對西藏生態(tài)系統(tǒng)的影響較小,但是,鑒于南亞電子垃圾焚燒與拆卸有持續(xù)的趨勢,PCBs對西藏生態(tài)系統(tǒng)的影響,尤其是對藏南與南亞接壤地區(qū)的生態(tài)系統(tǒng)的影響也將是持續(xù)的。藏南生態(tài)類型多樣,包括森林、草甸、湖泊與農田等,未來的工作應當著重關注南亞污染物在藏南森林、草甸和湖泊生態(tài)系統(tǒng)中的積累和生態(tài)風險。
[1] United Nations Environment Programme. Regionally based assessment of persistent toxic substances: Central and North East Asia region [R]. Nairobi, Kenya: UNEP, 2001
[2] Sobek A, McLachlan M S, Borga K, et al. A comparison of PCB bioaccumulation factors between an arctic and a temperate marine food web [J]. Science of the Total Environment, 2010, 408(13): 2753-2760
[3] Safe S H. Polychlorinated biphenyls (PCBs): Environmental impact, biochemical and toxic responses, and implications for risk assessment [J]. Critical Reviews in Toxicology, 1994, 24(2): 87-149
[4] Lohmann R, Breivik K, Dachs J, et al. Global fate of POPs: Current and future research directions [J]. Environmental Pollution, 2007, 150(1): 150-165
[5] Meijer S N, Ockenden W A, Sweetman A, et al. Global distribution and budget of PCBs and HCB in background surface soils: Implications or sources and environmental processes [J]. Environmental Science & Technology, 2003, 37(4): 667-672
[6] Breivik K, Sweetman A, Pacyna J M, et al. Towards a global historical emission inventory for selected PCB congeners - A mass balance approach 1. Global production and consumption [J]. Science of the Total Environment, 2002, 290(1-3): 181-198
[7] Solorzano-Ochoa G, de la Rosa D A, Maiz-Larralde P, et al. Open burning of household waste: Effect of experimental condition on combustion quality and emission of PCDD, PCDF and PCB [J]. Chemosphere, 2012, 87(9): 1003-1008
[8] Zhang Y, Luo X J, Mo L, et al. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China [J]. Chemosphere, 2015, 137: 25-32
[9] Martinez A, Erdman N R, Rodenburg Z L, et al. Spatial distribution of chlordanes and PCB congeners in soil in Cedar Rapids, Iowa, USA [J]. Environmental Pollution, 2012, 161: 222-228
[10] Dalla Valle M, Jurado E, Dachs J, et al. The maximum reservoir capacity of soils for persistent organic pollutants:Implications for global cycling [J]. Environmental Pollution, 2005, 134(1): 153-164
[11] Nam J J, Gustafsson O, Kurt-Karakus P, et al. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate [J]. Environmental Pollution, 2008, 156(3): 809-817
[12] Sweetman A J, Dalla Valle M, Prevedouros K, et al. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): Interpreting and modelling field data [J]. Chemosphere, 2005, 60(7): 959-972
[13] Ockenden W A, Breivik K, Meijer S N, et al. The global re-cycling of persistent organic pollutants is strongly retarded by soils [J]. Environmental Pollution, 2003, 121(1): 75-80
[14] Moeckel C, Nizzetto L, Strandberg B, et al. Air-boreal forest transfer and processing of polychlorinated biphenyls [J]. Environmental Science & Technology, 2009, 43(14): 5282-5289
[15] Li Y F, Harner T, Liu L, et al. Polychlorinated biphenyls in global air and surface soil: Distributions, air-soil exchange, and fractionation effect [J]. Environmental Science & Technology, 2010, 44(8): 2784-2790
[16] Ilyina T, Lammel G, Pohlmann T. Mass budgets and contribution of individual sources and sinks to the abundance of γ-HCH, α-HCH and PCB 153 in the North Sea [J]. Chemosphere, 2008, 72(8): 1132-1137
[17] Komprda J, Komprdova K, Sanka M, et al. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils [J]. Environmental Science & Technology, 2013, 47(13): 7052-7059
[18] Bozlaker A, Odabasi M, Muezzinoglu A. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area [J]. Environmental Pollution, 2008, 156(3): 784-793
[19] 中國科學院青藏高原綜合考察隊. 西藏農業(yè)地理[M]. 北京: 科學出版社, 1984: 1-980
[20] Garlapati V K. E-waste in India and developed countries: Management, recycling, business and biotechnological initiatives [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 874-881
[21] Iqbal M, Breivik K, Syed J H, et al. Emerging issue of e-waste in Pakistan: A review of status, research needs and data gaps [J]. Environmental Pollution, 2015, 207: 308-318
[22] Sheng J J, Wang X P, Gong P, et al. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: Three year atmospheric monitoring study [J]. Environmental Science & Technology, 2013, 47(7): 3199-3208
[23] Gong P, Wang X P, Sheng J J, et al. Variations of organochlorine pesticides and polychlorinated biphenyls in atmosphere of the Tibetan Plateau: Role of the monsoon system [J]. Atmospheric Environment, 2010, 44(21-22): 2518-2523
[24] Ren J, Wang X P, Xue Y G, et al. Persistent organic pollutants in mountain air of the southeastern Tibetan Plateau: Seasonal variations and implications for regional cycling [J]. Environmental Pollution, 2014, 194: 210-216
[25] Wang P, Zhang Q, Wang Y, et al. Altitude dependence of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in surface soil from Tibetan Plateau, China [J]. Chemosphere, 2009, 76(11): 1498-1504
[26] Gai N, Pan J, Tang H, et al. Selected organochlorine pesticides and polychlorinated biphenyls in atmosphere at Ruoergai high altitude prairie in eastern edge of Qinghai-Tibet Plateau and their source identifications [J]. Atmospheric Environment, 2014, 95: 89-95
[27] Xiao H, Kang S, Zhang Q, et al. Transport of semivolatile organic compounds to the Tibetan Plateau: Monthly resolved air concentrations at Namco [J]. Journal of Geophysical Research, 2010, 115: D16310
[28] Wang X P, Gong P, Yao T D, et al. Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau [J]. Environmental Science & Technology, 2010, 44(8): 2988-2993
[29] Wang C F, Wang X P, Yuan X H, et al. Organochlorine pesticides and polychlorinated biphenyls in air, grass and yak butter from Namco in the central Tibetan Plateau [J]. Environmental Pollution, 2015, 201: 50-57
[30] Wang Y, Yang R, Wang T, et al. Assessment of polychlorinated biphenyls and polybrominated diphenyl ethers in Tibetan butter [J]. Chemosphere, 2010, 78(6): 772-777
[31] Pan J, Gai N, Tang H, et al. Organochlorine pesticides and polychlorinated biphenyls in grass, yak muscle, liver, and milk in Ruoergai high altitude prairie, the eastern edge of Qinghai-Tibet Plateau [J]. Science of The Total Environment, 2014, 491-492: 131-137
[32] The Canadian Centre for Environmental Modelling and Chemistry. Development and application of models of chemical fate in Canada:Modelling guidance document [EB/OL]. (May 2005). http://www.trentu.ca/academic/aminss/envmodel/CEMNReport200501.pdf
[33] Wang X P, Sheng J J, Gong P, et al. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air-soil exchange and implications for global cycling [J]. Environmental Pollution, 2012, 170: 145-151
[34] Ren N Q, Que M, Li Y F, et al. Polychlorinated biphenyls in Chinese surface soils [J]. Environmental Science & Technology, 2007, 41(11): 3871-3876
[35] 滕應, 鄭茂坤, 駱永明, 等. 長江三角洲典型地區(qū)農田土壤多氯聯(lián)苯空間分布特征 [J]. 環(huán)境科學, 2008, 29(12): 3477-3482
Teng Y, Zheng M K, Luo Y M, et al. Spatial distribution of soil PCBs congeners in typical area of Yangtze River Delta region [J]. Environmental Science, 2008, 29(12): 3477-3482 (in Chinese)
[36] Wang H, An Q, Dong Y H, et al. Contamination and congener profiles of polychlorinated biphenyls from different agricultural top soils in a county of the Tai Lake region, China [J]. Journal of Hazardous Materials, 2010, 176(1-3): 1027-1031
[37] Zhu Z C, Chen S J, Zheng J, et al. Occurrence of brominated flame retardants (BFRs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) in agricultural soils in a BFR-manufacturing region of North China [J]. Science of the Total Environment, 2014, 481: 47-54
[38] Mahmood A, Syed J H, Malik R N, et al. Polychlorinated biphenyls (PCBs) in air, soil, and cereal crops along the two tributaries of River Chenab, Pakistan: Concentrations, distribution, and screening level risk assessment [J]. Science of the Total Environment, 2014, 481: 596-604
[39] Armitage J M, Hanson M, Axelman J, et al. Levels and vertical distribution of PCBs in agricultural and natural soils from Sweden [J]. Science of the Total Environment, 2006, 371(1-3): 344-352
[40] Mikes O, Cupr P, Trapp S, et al. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus) [J]. Environmental Pollution, 2009, 157(2): 488-496
[41] FAO/WHO. Food comsumption and exposure assessment of chemicals. Report of a FAO/WHO consultation, 10-14 February [R]. Geneva, Switzerland: FAO/WHO, 1997
[42] 劉鍵, 李祥妹, 鐘祥浩. 西藏自治區(qū)居民食品消費結構與糧食對策[J]. 山地學報, 2004, 22(3): 286-291
Liu J, Li X, Zhong X. Consumption structure of food and the countermeasure of grain in Tibet [J]. Journal of Mountain Science, 2004, 22(3): 286-291 (in Chinese)
[43] Arnich N, Tard A, Leblanc J C, et al. Dietary intake of non-dioxin-like PCBs (NDL-PCBs) in France, impact of maximum levels in some foodstuffs [J]. Regulatory Toxicology and Pharmacology, 2009, 54(3): 287-293
[44] Xu B Q, Cao J J, Hansen J, et al. Black soot and the survival of Tibetan glaciers [J]. Proceedings of the National Academy of Sciences, 2009, 106: 22114-22118
[45] Cong Z Y, Kang S C, Kawamura K, et al. Carbonaceous aerosols on the south edge of the Tibetan Plateau: Concentrations, seasonality and sources [J]. Atmospheric Chemistry and Physics, 2015, 15: 1573-1584
◆
Distribution,Environmental Behavior, and Health Risks of Polychlorinated Biphenyls in the Tibetan Agricultural Soil and Crops
Wang Chuanfei1,2, Gong Ping1,2, Wang Xiaoping1,2,*, Yao Tandong1,2
1. Key Laboratory of Tibetan Environmental Changes and Land Surface Process, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
Polychlorinated biphenyls (PCBs) emitted in South Asia can undergo long-range atmospheric transport to reach the southern Tibetan Plateau. Once PCBs are deposited into the agricultural soil of this region they have the potential to accumulate in the human body via food chains, and ultimately increase the health risk for those consuming the produce from these lands. However, despite this important issue, few studies have examined the environmental processes involved, or assessed the health risk, of PCBs in agricultural soil and crops. In the present study, agricultural soil and crops were collected from the southern Tibetan Plateau. The average concentrations of PCBs in the soil, in hulless barley (Hordeum vulgare L. var nudum Hook. f), and in rape (Brassica campestris L.) were found to be 5.1, 13.5 and 10.9 pg·g-1dw, respectively, which are at the low end of global levels. The bio-concentration factors of all the vegetation were greater than 1, suggesting PCB accumulation. Results from a fugacity model showed that 99.6% of soil PCBs accumulated in the soil organic matter, while only 0.38% of PCBs were taken up by the roots of crops, implying that the main source of PCBs in the crops was atmospheric deposition. The dietary intake of non-dioxin-like PCBs in the southern Tibetan Plateau was found to be 0.75 ng·kg-1bw·d-1, which is more than one order of magnitude lower than the “guidance value”. In conclusion, the health risks of PCBs via dietary exposure in the southern Tibetan Plateau are low.
polychlorinated biphenyls (PCBs); Tibet; spatial distribution; fugacity model; health risk
10.7524/AJE.1673-5897.20151202003
國家自然科學基金(41222010, 41571463)
王傳飛(1987- ),女,博士,研究方向為青藏高原環(huán)境污染,E-mail: wangchuanfei@itpcas.ac.cn
*通訊作者(Corresponding author), E-mail: wangxp@itpcas.ac.cn
2015-12-02 錄用日期:2016-01-02
1673-5897(2016)2-339-08
X171.5
A
簡介:王小萍(1976-),女,博士,研究員,主要研究方向為青藏高原環(huán)境污染與變化。
王傳飛, 龔平, 王小萍, 等. 西藏農田土和農作物中多氯聯(lián)苯的分布、環(huán)境行為和健康風險評估[J]. 生態(tài)毒理學報,2016, 11(2): 339-346
Wang C F, Gong P, Wang X P, et al. Distribution, environmental behavior, and health risks of polychlorinated biphenyls in the tibetan agricultural soil and crops [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 339-346 (in Chinese)