曹瑩,朱巖,張亞輝,*,李霽,王飛飛
1. 中國環(huán)境科學(xué)研究院 環(huán)境基準(zhǔn)與風(fēng)險評估國家重點實驗室 國家環(huán)境保護(hù)化學(xué)品生態(tài)效應(yīng)與風(fēng)險評估重點實驗室,北京 100012 2. 桂林理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,桂林 541004
?
基于我國物種毒性數(shù)據(jù)的多溴聯(lián)苯醚預(yù)測無效應(yīng)濃度分析
曹瑩1,朱巖2,張亞輝1,*,李霽1,王飛飛2
1. 中國環(huán)境科學(xué)研究院 環(huán)境基準(zhǔn)與風(fēng)險評估國家重點實驗室 國家環(huán)境保護(hù)化學(xué)品生態(tài)效應(yīng)與風(fēng)險評估重點實驗室,北京 100012 2. 桂林理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,桂林 541004
采用多溴聯(lián)苯醚(PBDEs)對我國廣泛分布生物物種的生態(tài)毒性數(shù)據(jù),根據(jù)歐盟現(xiàn)有化學(xué)物質(zhì)風(fēng)險評價技術(shù)指導(dǎo)文件,對不同環(huán)境介質(zhì)中PBDEs預(yù)測無效應(yīng)濃度(PNEC)進(jìn)行了推導(dǎo)。結(jié)果表明:我國淡水環(huán)境PBDEs(四溴、五溴、八溴)的PNEC水分別為50 μg·L-1、0.53 μg·L-1、0.017 μg·L-1。沉積物環(huán)境PBDEs(四溴、五溴、八溴和十溴)的PNEC沉積物分別為823.35 mg·kg-1wt、1.55 mg·kg-1dw、12.72 mg·kg-1dw、>38.41 mg·kg-1dw。土壤環(huán)境PBDEs(四溴、五溴、八溴和十溴)的PNEC土壤分別為668.3 mg·kg-1wt、0.38 mg·kg-1dw、147 mg·kg-1dw、>98 mg·kg-1dw。次生毒性PBDEs(五溴、八溴和十溴)的PNEC經(jīng)口分別為0.3~0.7 mg·kg-1、0.56 mg·kg-1、2 500 mg·kg-1。該數(shù)值期為我國PBDEs的環(huán)境風(fēng)險評價提供科學(xué)基礎(chǔ)。
多溴聯(lián)苯醚;預(yù)測無效應(yīng)濃度;淡水;沉積物;土壤;本土物種
Received 27 November 2015 accepted 31 May 2016
多溴聯(lián)苯醚(PBDEs)是在20世紀(jì)70—80年代開始大量生產(chǎn)和使用的溴化阻燃劑,它們在家用電器、計算機(jī)、泡沫塑料和布料等產(chǎn)品的成分比例可達(dá)5%~30%[1]。由于它在環(huán)境中具有持久性,同時也能在環(huán)境中遠(yuǎn)距離遷移,容易在生物體內(nèi)發(fā)生生物累積,因此PBDEs被認(rèn)定為持久性有機(jī)污染物(POPs)。2009年12月30日,美國環(huán)保署(EPA)發(fā)布了針對鄰苯二甲酸酯、短鏈氯化石蠟、多溴聯(lián)苯醚(PBDEs)和全氟化學(xué)品(包括全氟辛酸銨)這4類化學(xué)品在內(nèi)的首個“化學(xué)品行動計劃”,并將對這4類化學(xué)物質(zhì)引起的健康和環(huán)境問題予以處理。
世界各國和組織如歐盟[2]和加拿大[3]對五溴聯(lián)苯醚、八溴聯(lián)苯醚及十溴聯(lián)苯醚進(jìn)行了毒害評估或環(huán)境風(fēng)險評估,英國[4]也對十溴聯(lián)苯醚進(jìn)行了生態(tài)風(fēng)險評價。目前,我國對PBDEs的研究主要集中在典型區(qū)域如珠三角區(qū)域以及電子垃圾拆解地,主要PBDEs的環(huán)境分布[5-6]、污染特征[7-8]、環(huán)境行為[9]及人體暴露[10-13]等。僅有少量研究[14-16]采用國外預(yù)測無效應(yīng)濃度(PNEC)值對環(huán)境中PBDEs進(jìn)行風(fēng)險評估,可能對我國本土生物產(chǎn)生“欠保護(hù)”或“過保護(hù)”作用。目前,采用我國廣泛分布生物物種的生態(tài)毒性數(shù)據(jù)推導(dǎo)多溴聯(lián)苯醚在環(huán)境介質(zhì)中PNEC值尚未見報道。本研究采用歐盟現(xiàn)有的化學(xué)物質(zhì)風(fēng)險評價技術(shù)指導(dǎo)文件(TGD)[17]中計算PNEC方法,廣泛搜集篩選PBDE對我國生物的毒性數(shù)據(jù),對我國淡水環(huán)境、沉積物環(huán)境、土壤環(huán)境以及二次毒性的PNEC值進(jìn)行推導(dǎo),旨在為開展我國多溴聯(lián)苯醚的生態(tài)風(fēng)險評估提供基礎(chǔ)。
1.1 毒性數(shù)據(jù)篩選
PBDEs的毒性數(shù)據(jù)從已發(fā)表的文獻(xiàn)和美國環(huán)境保護(hù)署的EPA ECOTOX數(shù)據(jù)庫(http://cfpub.epa.gov/ecotox/)獲取相關(guān)物質(zhì)對我國廣泛分布物種的急性/慢性毒性數(shù)據(jù)。依據(jù)歐盟適用于現(xiàn)有化學(xué)物質(zhì)的風(fēng)險評價技術(shù)指南(TGD)中篩選數(shù)據(jù)原則,水生環(huán)境部分受試生物物種應(yīng)至少涵蓋生態(tài)系統(tǒng)的3個營養(yǎng)級(如藻類、甲殼類、魚類)。陸生環(huán)境部分篩選出以蚯蚓為代表的慢性數(shù)據(jù)。原則上選擇我國已有的生物種,包括外來引進(jìn)物種如虹鱒魚等,舍棄國外物種如黑頭呆魚等。
1.2 PNEC推導(dǎo)方法
1.2.1 淡水
根據(jù)獲得的試驗數(shù)據(jù),淡水水生生態(tài)系統(tǒng)PNEC的推導(dǎo)方法主要有評估系數(shù)法和統(tǒng)計外推法。就物種實驗室數(shù)據(jù)而言,如果可獲得至少含有至少8個不同生物類別的10個無觀測效應(yīng)濃度(NOEC)(最好超過15個),則可以采用統(tǒng)計外推法(物種敏感度分步法,SSD)計算PNEC。而評估系數(shù)是依據(jù)得到生物類別短期和長期試驗數(shù)據(jù)的多少來選擇。評估系數(shù)見表1。
表1 淡水環(huán)境PNEC水評估系數(shù)[17]
表2 淡水沉積物PNEC沉積物的評估系數(shù)[17]
表3 陸生環(huán)境PNEC土壤的評估系數(shù)[17]
表4 次生毒性PNEC經(jīng)口評估系數(shù)[17]
1.2.2 沉積物
沉積物主要是由于化學(xué)物質(zhì)吸附于顆粒物后沉降作用造成的污染源。由于缺少生活于沉積物中生物的資料,因此PNEC沉積物一般采用平衡分配法進(jìn)行計算。公式(1)如下:
(1)
PNEC水,水中的預(yù)測無效應(yīng)濃度(mg·L-1);RHO懸浮物,懸浮物的濕體積密度(kg·m-3);K懸浮物—水,懸浮物水分配系數(shù)(m3·m-3);PNEC沉積物,沉積物中的預(yù)測無效應(yīng)濃度(mg·kg-1)。
如果可以獲得底棲生物—沉積物長期試驗,可以通過最低NOEC或者EC10除以評估系數(shù)得到PNEC沉積物。評估系數(shù)見下表2。
1.2.3 土壤
陸生環(huán)境部分考慮直接通過滲透水或土壤暴露對土壤中生物的效應(yīng)。由于進(jìn)行生態(tài)毒理學(xué)試驗的土壤特征(有機(jī)質(zhì)、粘土成分、土壤pH值以及土壤濕度)各有所不同,來自不同實驗數(shù)據(jù)不可比,因此要將結(jié)果轉(zhuǎn)化為標(biāo)準(zhǔn)土壤數(shù)據(jù)。大部分土壤中生物毒性效應(yīng)數(shù)據(jù)(蚯蚓、植物、微生物和跳蟲)有限,一般采用平衡分配法計算PNEC土壤。公式(2)如下:
(2)
其中,RHO土壤,土壤的濕體積密度(kg·m-3);K土壤-水,土壤水分配系數(shù)(m3·m-3);PNEC土壤,土壤的預(yù)測無效應(yīng)濃度(mg·kg-1)。
如果能夠得到土壤中生物毒性數(shù)據(jù),則可以通過最低NOEC或者L(E)C50除以評估系數(shù)得到PNEC土壤。評估系數(shù)見下表3。
1.2.4 次生毒性
次生毒性是具有生物富集和生物蓄積作用的親脂性化學(xué)物質(zhì),通過長期暴露對食物鏈中較高營養(yǎng)級別的生物產(chǎn)生的直接或間接毒性效應(yīng)。次生毒性的濃度-效應(yīng)的評估結(jié)果一般以預(yù)測無效應(yīng)濃度(PNEC經(jīng)口)表示。公式(3)和表4如下:
PNEC經(jīng)口=TOX經(jīng)口/AF經(jīng)口
(3)
其中,PNEC經(jīng)口為鳥類或哺乳動物次生毒性PNEC(kg·kg-1);AF經(jīng)口為外推PNEC經(jīng)口的評估系數(shù);TOX經(jīng)口為LC50,鳥或NOEC鳥或NOEC哺乳動物,食物,慢性(kg·kg-1)。
表5 多溴聯(lián)苯醚急性和慢性數(shù)據(jù)
根據(jù)毒性數(shù)據(jù)篩選原則,對四溴聯(lián)苯醚(CAS NO.: 5436-43-1)、五溴聯(lián)苯醚、八溴聯(lián)苯醚和十溴聯(lián)苯醚(CAS NO.: 1163-19-5)的急、慢性數(shù)據(jù)收集整理(見表5)。
2.1 淡水水體PNEC水
四溴聯(lián)苯醚對水生生物的急性數(shù)據(jù)包括藻、溞、魚和蝦共13個。慢性毒性數(shù)據(jù)包括藻和溞共2個毒性數(shù)據(jù)(NOEC),其中大菱鲆48 h和96 h NOEC值非長期試驗的NOEC數(shù)據(jù),選擇評估因子50計算PNEC水。藻和溞的NOEC數(shù)值最低為等鞭金藻3 d生長抑制率2.53 mg·L-1,得到PNEC水為50 μg·L-1。
五溴聯(lián)苯醚對水生生物的急性數(shù)據(jù)包括藻(等鞭金藻和羊角月牙藻)、溞(大型溞)、魚(青鱂、虹鱒和大菱鲆)共9個。同時藻、溞、魚3個基礎(chǔ)營養(yǎng)級別的長期慢性數(shù)據(jù)(NOEC)共9個,并且最低NOEC值是大型溞21 d繁殖率5.3 μg·L-1,選擇評估因子10得到PNEC水為0.53 μg·L-1。
八溴聯(lián)苯醚對水生生物毒性數(shù)據(jù)只有大型溞21 d慢性試驗,在暴露濃度大于1.7 μg·L-1下,以大型溞的存活率、繁殖率和生長率為毒性終點時均沒有產(chǎn)生影響效果,大型溞的21 d NOEC >1.7 μg·L-1,選擇評估系數(shù)為100,得到八溴聯(lián)苯醚的淡水環(huán)境中的PNEC水>0.017 μg·L-1。
十溴聯(lián)苯醚對水生生物急性毒性數(shù)據(jù)包括魚類和溞類。但在其最大溶解度下水生生物均無影響,因此基于目前可獲得的的十溴聯(lián)苯醚的淡水水生生物毒性數(shù)據(jù)不能夠推導(dǎo)出其淡水環(huán)境中PNEC水。
2.2 淡水沉積物PNEC沉積物
四溴聯(lián)苯醚對沉積物毒性數(shù)據(jù)無法獲得,采用平衡分配法計算沉積物環(huán)境中的PNEC沉積物。采用文獻(xiàn)[2]報道的有機(jī)碳-水分配系數(shù)Koc為757 450 L·kg-1,按照TGD中標(biāo)準(zhǔn)環(huán)境特征參數(shù),忽略四溴聯(lián)苯醚在水體懸浮物與氣體的分配,計算得到K懸浮物-水=18 937.15 m3·m-3,RHO懸浮物采用TGD默認(rèn)值1 150 kg·m-3,PNEC沉積物為823.35 mg·kg-1wt。
表6 PBDEs淡水水體的PNEC值
表7 PBDEs淡水沉積物PNEC值
五溴聯(lián)苯醚對淡水沉積物慢性毒性數(shù)據(jù)包括綠勾蝦、搖蚊昆蟲和夾雜帶絲蚓共3個。3種代表不同食性以及生活方式最低的NOEC值是3.1 mg·kg-1dw(28 d夾帶蚓NOEC),選擇評估系數(shù)10,得到PNEC沉積物=0.31 mg·kg-1dw。換成標(biāo)準(zhǔn)沉積物環(huán)境NOEC值(15.5 mg·kg-1dw),得到PNEC沉積物(標(biāo)準(zhǔn))=1.55 mg·kg-1dw。
八溴聯(lián)苯醚對淡水沉積物的長期慢性數(shù)據(jù)只有夾雜帶絲蚓,在大于1 272 mg·kg-1dw的沉積物濃度下沒有對它產(chǎn)生影響。評估系數(shù)選用100,得到十溴聯(lián)苯醚的PNEC沉積物>12.72 mg·kg-1dw。
十溴聯(lián)苯醚對沉積物長期慢性數(shù)據(jù)包括夾雜帶絲蚓,在大于3 841 mg·kg-1dw的沉積物濃度下沒有對夾雜帶絲蚓產(chǎn)生影響。評估系數(shù)選用100,得到十溴聯(lián)苯醚的PNEC沉積物>38.41 mg·kg-1dw。
2.3 土壤PNEC土壤
四溴聯(lián)苯醚對土壤環(huán)境毒性數(shù)據(jù)無法獲得,采用平衡分配法計算土壤環(huán)境中的PNEC值。BDE-47的有機(jī)碳-水分配系數(shù)KOC為757 450 L·kg-1,BDE-47固-水分配系數(shù)KP土壤為15 149 L·kg-1,RHO土壤采用TGD默認(rèn)值1 700 kg·m-3,土壤-水分配系數(shù)K土壤-水為22 723.7 m3·m-3,四溴聯(lián)苯醚PNEC土壤為668.3 mg·kg-1wt。
五溴聯(lián)苯醚對土壤生物慢性數(shù)據(jù)包括6個植物3個毒性終點的NOEC值,其中玉米的21 d苗重NOEC值16 mg·kg-1dw為最低值。采用評估因子50,得到PNEC土壤=0.32 mg·kg-1dw。由于土壤生物利用率以及毒性效應(yīng)與土壤性質(zhì)有關(guān),不同類型土壤數(shù)據(jù)不能相比較,一次將實驗結(jié)果轉(zhuǎn)化為標(biāo)準(zhǔn)土壤數(shù)據(jù)。采用OECD試驗標(biāo)準(zhǔn),默認(rèn)有機(jī)質(zhì)含量2.9%(Fom土壤(試驗)),將NOEC值(16 mg·kg-1)轉(zhuǎn)化為標(biāo)準(zhǔn)土壤數(shù)據(jù)NOEC(標(biāo)準(zhǔn))為18.8 mg·kg-1,得到PNEC土壤(標(biāo)準(zhǔn))為0.38 mg·kg-1dw。
八溴聯(lián)苯醚的陸生毒性數(shù)據(jù)赤子愛勝蚓分別在28 d和56 d的死亡率和繁殖率長期慢性毒性試驗中發(fā)現(xiàn)其在大于1 470 mg·kg-1dw濃度下都沒有產(chǎn)生影響。評估系數(shù)選用100,得到八溴聯(lián)苯醚的PNEC沉積物為>147 mg·kg-1dw。
十溴聯(lián)苯醚的陸生毒性數(shù)據(jù)包括植物和蚯蚓。6種植物在大于5 349 mg·kg-1dw濃度下沒有產(chǎn)生影響,赤子愛勝蚓在大于4 910 mg·kg-1dw濃度下也沒有產(chǎn)生影響。評估系數(shù)選用50,得到十溴聯(lián)苯醚的PNEC沉積物為>98 mg·kg-1dw。
2.4 PNEC經(jīng)口
對于化學(xué)物質(zhì)暴露于水環(huán)境中,其生物濃縮因子BCF≥100或生物放大因子BMF>1,通過水(水生生物)-魚-食魚鳥類或哺乳動物的傳遞途徑對食物鏈產(chǎn)生富集或蓄積效應(yīng),則需要對物質(zhì)通過食物鏈的暴露進(jìn)行次生毒性評估。
文獻(xiàn)中查到五溴聯(lián)苯醚的魚類生物富集因子BCF=14 350 L·kg-1,需要進(jìn)行五溴聯(lián)苯醚的次生毒性評估[2]。基于哺乳動物(老鼠)的毒性數(shù)據(jù),五溴聯(lián)苯醚反復(fù)的劑量暴露最主要的影響表現(xiàn)在老鼠肝臟中,并且在30 d的老鼠慢性研究中測定NOAEL值為1 mg·kg-1是最敏感的毒性終點,將其乘以轉(zhuǎn)換系數(shù)10~20,得到老鼠的NOEC值為10~20 mg·kg-1。選擇哺乳動物毒性數(shù)據(jù)的外推評估系數(shù)30,因此得到五溴聯(lián)苯醚的PNEC經(jīng)口為0.3~0.7 mg·kg-1。
雖然從可獲得的信息可以推斷出十溴聯(lián)苯醚潛在的生物濃縮和生物蓄積效應(yīng)較低。然而在食肉鳥的蛋、魚類和哺乳動物體內(nèi)發(fā)現(xiàn)了十溴聯(lián)苯醚,這說明它們還是可以從環(huán)境中吸收。從可獲得的哺乳動物毒性數(shù)據(jù)可以推導(dǎo)出十溴聯(lián)苯醚的次生毒性的PNEC經(jīng)口為2 500 mg·kg-1。但是,據(jù)報道十溴聯(lián)苯醚對新生小鼠的行為抑制濃度(18.3~167 mg·kg-1)要遠(yuǎn)低于PNEC經(jīng)口(2 500 mg·kg-1)[33]。
表8 PBDEs土壤PNEC值
依據(jù)文獻(xiàn)八溴聯(lián)苯醚的BCF值為16 390 L·kg-1,需要進(jìn)行次生毒性評估[2]。哺乳動物(兔子)28 d經(jīng)口毒性試驗[42],每天的灌胃計量分別為0、2.0、5.0和15 mg·kg-1得到母體和胎兒的NOAEL值均為5.0 mg·kg-1。用其推導(dǎo)八溴聯(lián)苯醚次生毒性的預(yù)測無效應(yīng)濃度PNEC經(jīng)口。將其乘以轉(zhuǎn)換系數(shù)33.3,得到兔子的NOEC值為166.5 mg·kg-1。選擇哺乳動物毒性數(shù)據(jù)的外推評估系數(shù)300,因此得到八溴聯(lián)苯醚的PNEC經(jīng)口值為0.56 mg·kg-1。
4種PBDEs對不同介質(zhì)中的PNEC值見表9。在推導(dǎo)五溴聯(lián)苯醚的PNEC水時,歐盟[2]采用大型溞的慢性毒性數(shù)據(jù),獲得水體的PNEC水為0.53 μg·L-1,與本研究推導(dǎo)一致。加拿大[3]采用也是21 d大型溞NOEC值5.3 μg·L-1,但評估因子選擇100,得到ENEV水體為0.053 μg·L-1。在推導(dǎo)PNEC沉積物時,本研究與歐盟推導(dǎo)一致,而加拿大[3]是選擇成年夾雜帶絲蚓[28]28 d慢性數(shù)據(jù)除以評估因子100,得到ENEV沉積物為0.037 mg·kg-1dw。
針對八溴聯(lián)苯醚,加拿大[3]采用淡水環(huán)境中21 d以生存率、繁殖率和生長率為終點的大型溞[38]慢性毒性數(shù)據(jù)NOEC 1.7 μg·L-1除以評估因子100,得到ENEV水體為0.017 μg·L-1,與本研究推導(dǎo)值一致。沉積物環(huán)境中基于成年夾雜帶絲蚓28 d的慢性毒性數(shù)據(jù)除以應(yīng)用因子100,得到ENEV沉積物為9.1 mg·kg-1dw。土壤環(huán)境中赤子愛勝蚓56 d基于死亡率和繁殖率的慢性毒性終點的NOEC值除以應(yīng)用因子100,得到ENEV土壤值為6.3 mg·kg-1dw。
在推導(dǎo)十溴聯(lián)苯醚的PNEC值時,均無法獲得淡水環(huán)境中毒性數(shù)據(jù),不能得到PNEC水。加拿大沉積物采用成年夾雜帶絲蚓28 d的慢性毒性數(shù)據(jù)除以應(yīng)用因子100,得到ENEV沉積物為76 mg·kg-1dw[3]。對于土壤赤子愛勝蚓28 d和56 d死亡率和繁殖率NOEC值除以評估因子100,得到ENEV陸生值為21 mg·kg-1dw。歐盟2003年的十溴聯(lián)苯醚風(fēng)險評估報告中采用夾雜帶絲蚓大于3 841 mg·kg-1dw的慢性毒性數(shù)據(jù),得到PNEC沉積物≥384 mg·kg-1dw[48]。對于陸生環(huán)境,6種植物和蚯蚓分別在大于5 349 mg·kg-1dw和大于4 910 mg·kg-1dw的暴露濃度下均沒有毒性效應(yīng),除以評估因子50,可以得到PNEC土壤≥98 mg·kg-1dw。
對于十溴聯(lián)苯醚的二次毒性,通過可獲得的哺乳動物毒性數(shù)據(jù)可以推算出PNEC經(jīng)口為2 500 mg·kg-1,與本研究一致。英國[33]在2009年的十溴聯(lián)苯醚的環(huán)境風(fēng)險評估報告中指出,十溴聯(lián)苯醚對Nitocra spinipes(美麗猛水蚤屬)的毒性已經(jīng)通過Breitholtz等[35]證實。據(jù)瑞典標(biāo)準(zhǔn)程序[43]開展試驗,這些濃度對Nitocra spinipes的生存無影響(96 h LC50>100 mg·L-1)。報告還指出了十溴二苯醚的二次毒性,基于一項長期毒性試驗得到的NOAEL值(1 120 mg·kg-1)和評估因子30得到十溴二苯醚的PNEC經(jīng)口值為833 mg·kg-1[44-45]。雖然可以獲得新的哺乳動物的毒性試驗數(shù)據(jù)但是其NOAEL值還無法給出,因此需要等到整個毒性數(shù)據(jù)完善后對十溴二苯醚的二次毒性PNEC經(jīng)口值進(jìn)行修訂。
表9 環(huán)境中PBDEs的預(yù)測無效應(yīng)濃度(PNEC)
目前我國對PBDEs物質(zhì)的大多數(shù)研究報道的數(shù)據(jù)為環(huán)境介質(zhì)、生物體及人體的暴露數(shù)據(jù),而對PBDEs的風(fēng)險評估的報道很少,且尚未有該類物質(zhì)的我國環(huán)境閾值的研究。本研究廣泛搜集篩選PBDEs對我國廣泛分布生物物種的生態(tài)毒性數(shù)據(jù),推導(dǎo)了4種PBDEs物質(zhì)在不同環(huán)境介質(zhì)中PNEC值,為我國PBDEs物質(zhì)的風(fēng)險評估提供支持。另外,由于PBEDs物質(zhì)的生態(tài)毒性數(shù)據(jù)較少,在目前的數(shù)據(jù)量上采用評估因子法計算PNEC值是合適的。由于評估因子法是基于專家經(jīng)驗判斷的方法,雖然該方法要求數(shù)據(jù)量少,計算過程簡單,有學(xué)者指出該方法計算環(huán)境閾值的不確定性很高[46]。因此,需要進(jìn)一步積累更多的PBDEs對我國生物的生態(tài)毒性數(shù)據(jù)尤其是慢性毒性數(shù)據(jù),為PBDEs類物質(zhì)推導(dǎo)環(huán)境閾值及風(fēng)險評價提供數(shù)據(jù)基礎(chǔ)。
[1] Martin M, Lam P K, Richardson B J. An asian quandary: Where have all of the PBDEs gone? [J] Marine Pollution Bulletin, 2004, 49(5): 375-382
[2] European Union. European union risk assessment report: Diphenyl ether, pentabromo derivative (pentabromodiphenyl ether) [R]. European Commission, 2001
[3] Environment Canada. Canadian Environmental Protection Act. Ecological screening assessment report on polybrominated diphenyl ethers (PBDEs) [R]. Environment Canada, 2006
[4] European Commission. Bis(pentabromophenyl) ether: Summary risk assessment report [R]. Ispra, Italy: Institute for Health and Consumer Protection, European Chemicals Bureau, 2003
[5] Ueno D, Kajiwara N, Tanaka H, et al. Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator [J]. Environmental Science & Technology, 2004, 38(8): 2312-2316
[6] 劉漢霞, 張慶華, 江桂斌, 等. 多溴聯(lián)苯醚及其環(huán)境問題[J]. 化學(xué)進(jìn)展, 2005, 17(3): 554-562
Liu H X, Zhang Q H, Jiang G B, et al. Polybrominated diphenyl ethers and its related environmental problems [J]. Progrss in Chemistry, 2005, 17(3): 554-562 (in Chinese)
[7] 陳社軍, 麥碧嫻, 曾永平, 等. 珠江三角洲及南海北部海域表層沉積物中多溴聯(lián)苯醚的分布特征[J]. 環(huán)境科學(xué)學(xué)報, 2005, 25(9): 1265-1271
Chen S J, Mai B X, Zeng Y P, et al. Polybrominated diphenyl ethers (PBDEs) in surficial sediments of the Pearl River Delta and adjacent South China Sea [J]. Acta Scientiae Circumstantiae, 2005, 25(9): 1265 -1271 (in Chinese)
[8] 向彩紅, 羅孝俊, 余梅, 等. 珠江河口水生生物中多溴聯(lián)苯醚的分布[J]. 環(huán)境科學(xué), 2006, 27(9): 1732-1737
Xiang C H, Luo X J, Yu M, et al. Distribution of polybrominated diphenyl ethers in aquatic species from the Pearl River Estuary [J]. Environmental Science, 2006, 27(9): 1732-1737 (in Chinese)
[9] 鄒夢遙, 龔劍, 冉勇. 珠江三角洲流域土壤多溴聯(lián)苯醚(PBDEs)的分布及環(huán)境行為[J]. 生態(tài)環(huán)境學(xué)報, 2009, 18(1): 122-127
Zou M Y, Gong J, Ran Y. The distribution and the environmental fate of polybrominated diphenyl ethers in watershed soils of Pearl River Delta [J]. Ecology and Environment Sciences, 2009, 18(1): 122-127 (in Chinese)
[10] Guruge K S, Taniyasu S, Yamashita N, et al. Perfluorinated organic compounds in human blood serum and seminal plasma: A study of urban and rural tea worker populations inSri Lanka [J]. Journal of Environmental Monitoring, 2005, 7(4): 371-377
[11] Qu W, Bi X, Sheng G, et al. Exposure to polybrominated diphenyl ethers among workers at an electronic waste dismantling region in Guangdong, China [J]. Environment International, 2007, 33(8): 1029-1034
[12] Yeung L W, So M, Jiang G, et al. Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China [J]. Environmental Science & Technology, 2006, 40(3): 715-720
[13] 王亞韡, 江桂斌. 人體中多溴聯(lián)苯醚(PBDEs)和全氟辛烷磺酰基化合物(PFOS)研究進(jìn)展[J]. 科學(xué)通報, 2008, 53(2): 129-140
[14] 陳宣宇, 薛南冬, 張石磊, 等. 廢舊電器拆解區(qū)河流沉積物中多溴聯(lián)苯醚(PBDEs)的污染特征與生態(tài)風(fēng)險[J].環(huán)境科學(xué), 2014, 35(10): 3731-3739
Chen X Y, Xue N D, Zhang S L, et al. Pollution characteristics and ecological risk of polybrominated diphenyl ethers (PBDEs) in river sediments from an electrical equipment dismantling area [J]. Enivironmental Science, 2014, 35(10): 3731-3739 (in Chinese)
[15] 趙恒, 孟祥周, 向楠, 等. 上海市受納污水河流中多溴聯(lián)苯醚的生態(tài)風(fēng)險評價[J]. 環(huán)境化學(xué), 2012, 31(5): 573-578
Zhao H, Meng X Z, Xiang N, et al. Ecological risk assessment of polybrominated diphenyl ethers in river receiving wastewater in Shanghai [J]. Enivironmental Chemistry, 2012, 31(5): 573-578 (in Chinese)
[16] 張璐璐, 劉靜玲, 張少偉, 等. 基于aquatox模型的白洋淀湖區(qū)多溴聯(lián)苯醚(PBDEs)的生態(tài)效應(yīng)閾值與生態(tài)風(fēng)險評價研究[J]. 生態(tài)毒理學(xué)報, 2014, 9(6): 1156-1172
Zhang L L, Liu J L, Zhang S W, et al. AQUATOX model for ecological threshold and ecosystem risk assessment of polybrominated diphenyl ethers (PBDEs) in Baiyangdian Lake ecosystems [J]. Asian Journal of Ecotoxicology, 2014, 9(6): 1156-1172 (in Chinese)
[17] European Chemical Bureau. Technical guidance document on risk assessment in support of commission directive 93/67/EEC on risk assessment for new notified substances, commission regulation (EC) No 1488/94 on risk assessment for existing substances, and directive 98/8/EC of the European parliament and of the council concerning the placing of biocidal products on the market [R]. Office for Official Publications of the European Communities, 2003
[18] 范燦鵬. BDE-47及電子垃圾拆卸區(qū)土壤底泥浸出液對水生生物的毒性效應(yīng)[D]. 廣州: 暨南大學(xué), 2011
Fan C P. Toxic effects of BDE-47 and the lixivium of soil and sediment from electronic waste recycling site to aquatic organsims [D]. Guangzhou: Jinan University, 2011 ( in Chinese)
[19] 李卓娜, 孟范平, 趙順順, 等. 2,2',4,4'-四溴聯(lián)苯醚(BDE-47)對4種海洋微藻的急性毒性[J]. 生態(tài)毒理學(xué)報, 2009, 4(3): 435-439
Li Z N, Meng F P, Zhao S S, et al. Acute toxic effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on four marine microalgae [J]. Asian Journal of Ecotoxicology, 2009, 4(3): 435-439 (in Chinese)
[20] EMEP. New substances: Model assessment of potential for long-range transboundary atmospheric transport and persistence of pentabde [R]. EMEP contribution to the preparatory work for the review of the CLRTAP protocol on POPs, 2004
[21] Davies R, Zou E. Polybrominated diphenyl ethers disrupt molting in neonatal Daphnia magna [J]. Ecotoxicology, 2012, 21(5): 1371-1380
[22] Mhadhbi L, Fumega J, Boumaiza M,et al. Acute toxicity of polybrominated diphenyl ethers (PBDEs) for turbot (Psetta maxima) early life stages (ELS) [J]. Environmental Science and Pollution Research, 2012, 19(3): 708-717
[23] Key P B, Chung K W, Hoguet J, et al. Toxicity and physiological effects of brominated flame retardant BDE-47 on two life stages of grass shrimp, Palaemonetes pugio [J]. Science of the Total Environment, 2008, 399(1): 28-32
[24] Mhadhbi L, Fumega J, Beiras R. Toxicological effects of three polybromodiphenyl ethers (BDE-47, BDE-99 and BDE-154) on growth of marine algae Isochrysis galbana [J]. Water, Air, & Soil Pollution, 2012, 223(7): 4007-4016
[25] CMABFRIP (Chemical Manufacturers Association Brominated Flame Retardant Industry Panel). Pentabromodiphenyl oxide (PeBDPO): A 96-hour toxicity test with the freshwater alga (Selenastrum capricornutum) [R]. Wildlife International Ltd. Project Number 439a-105, 1997
[26] CMABFRIP (Chemical Manufacturers Association Brominated Flame Retardant Industry Panel). Pentabromodiphenyl oxide (PeBDPO): A 48-hour flow-through acute toxicity test with Daphnia magna [R]. Wildlife International Ltd. Project Number: 439a-106, 1997
[27] CMABFRIP (Chemical Manufacturers Association Brominated Flame Retardant Industry Panel). Pentabromodiphenyl oxide (PeBDPO): A flow-through life-cycle toxicity test with the cladoceran (Daphnia magna) [R]. Wildlife International Ltd. Project Number: 439a-109, 1998
[28] GreatLakes Chemical Corporation. Pentabromodiphenyl oxide (PeBDPO): A prolonged sediment toxicity test with lumbriculus variegatus using spiked sediment [R]. Wildlife International Ltd. Project No. 298a-109, 2000
[29] GreatLakes Chemical Corporation. Pentabromodiphenyl oxide (PeBDPO): A prolonged sediment toxicity test with Hyalella azteca using spiked sediment [R]. Wildlife International Ltd. Project Number: 298a-111, 2000
[30] GreatLakes Chemical Corporation. Pentabromodiphenyl oxide (PeBDPO): A prolonged sediment toxicity test with Chironomus riparius [R]. Wildlife International Ltd., 2000
[31] Great Lakes Chemical Corporation. Pentabromodiphenyl oxide (PeBDPO): A prolonged sediment toxicity test with Lumbriculus variegatus using spiked sediment [R]. Wildlife International Ltd. Project Number: 298a-109, 2000
[32] Great Lakes Chemical Corporation. Pentabromodiphenyl oxide (PeBDPO): A toxicity test to determine the effects of the test substance on seedling emergence of six species of plants [R]. Wildlife International Ltd. Project Number: 298-102, 2000
[33] Brooke D N, Burns J, Crookes M J, et al. Environmental risk evaluation report: Decabromodiphenyl ether [R]. Environment Agency, 2009
[34] 張澤光. 水環(huán)境中十溴聯(lián)苯醚的生物富集特性及生物毒性研究[D]. 上海: 東華大學(xué), 2013
Zhang Z G. Studies on the bioconcentration characteristics and biological toxicity of decabromodiphenyl ether in the water environment [D]. Shanghai: Donghua University, 2013 (in Chinese)
[35] Breitholtz M, Nyholm J R, Karlsson J, et al. Are individual NOEC levels safe for mixtures? A study on mixture toxicity of brominated flame-retardants in the copepod Nitocra spinipes [J]. Chemosphere, 2008, 72(9): 1242-1249
[36] Ciparis S, Hale R C. Bioavailability of polybrominated diphenyl ether flame retardants in biosolids and spiked sediment to the aquatic oligochaete,Lumbriculus variegatus [J]. Environmental Toxicology and Chemistry, 2005, 24(4): 916-925
[37] Xie X, Qian Y, Wu Y, et al. Effects of decabromodiphenyl ether (BDE-209) on the avoidance response, survival, growth and reproduction of earthworms (Eisenia fetida) [J]. Ecotoxicology and Environmental Safety, 2013, 90: 21-27
[38] CMABFRIP (Chemical Manufacturers Association Brominated Flame Retardant Industry Panel). Octabromodiphenyl oxide (OBDPO): A flow-through life-cycle toxicity test with the cladoceran (Daphnia magna) [R]. Wildlife International Ltd., 1997
[39] GreatLakes Chemical Corporation. Effect of octabromodiphenyl oxide on the survival and reproduction of the earthworm, Eisenia fetida [R]. Wildlife International Ltd., 2001
[40] GreatLakes Chemical Corporation. Octabromodiphenyl ether: A prolonged sediment toxicity test with Lumbriculus variegatus using spiked sediment with 2% total organic carbon [R]. Wildlife International Ltd., 2001
[41] GreatLakes Chemical Corporation. Octabromodiphenyl ether: A prolonged sediment toxicity test with Lumbriculus variegatus using spiked sediment with 5% total organic carbon [R]. Wildlife International Ltd., 2001
[42] Breslin W, Kirk H, Zimmer M. Teratogenic evaluation of a polybromodiphenyl oxide mixture in New Zealand white rabbits following oral exposure [J]. Fundamental and Applied Toxicology, 1989, 12(1): 151-157
[43] SIS. Determination of acute lethal toxicity of chemical substances and effluents to Nitocra spinipes boeck-static procedure [S]. Swedish Standard, 1991
[44] ECB. European union risk assessment report: Bis(pentabromophenyl ether) [R]. European Chemicals Bureau, Institute of Health and Consumer Protection, European Commission, 2002
[45] ECB. Update of the risk assessment of bis(pentabromophenyl) ether [R]. European Chemicals Bureau, Institute of Health and Consumer Protection, European Commission, 2007
[46] 馮承蓮, 汪浩, 王穎, 等. 基于不同毒性終點的雙酚A(BPA)預(yù)測無效應(yīng)濃度(PNEC)研究[J]. 生態(tài)毒理學(xué)報, 2015, 10(1): 119-129
Feng C L, Wang H, Wang Y, et al. Predicted no effect concentration of Bisphenol A (BPA) based on different toxicological endpoints[J]. Asian Journal of Ecotoxicology, 2015, 10(1): 119-129 (in Chinese)
◆
Analysis of Predicted No-effect Concentrations for Polybrominated Diphenyl Ethers (PBDEs) Based on the Toxicity Data of Species in China
Cao Ying1, Zhu Yan2, Zhang Yahui1,*, Li Ji1, Wang Feifei2
1. State Key Laboratory for Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effects and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Science, Beijing 100012, China 2. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
According to the EU technical guidance document on risk assesssment, the predicted no-effect concentration (PNEC) values of four kinds of polybrominated diphenyl ethers (PBDEs) in the environmental mediums were derived with the ecotoxicity data of our widely distributed species in China. The results showed that the PNECwaterof PBDEs (tetrabromobiphenyl ether, pentabromodiphenyl ether, octabromobiphenyl ether) in the freshwater were 50 μg·L-1, 0.53 μg·L-1, 0.017 μg·L-1, respetively. The PNECsedimentof PBDEs (tetrabromobiphenyl ether, pentabromodiphenyl ether, octabromobiphenyl ether, decabromobiphenyl ether) in the sediment were 823.35 mg·kg-1wt, 1.55 mg·kg-1dw, 12.72 mg·kg-1dw, >38.41 mg·kg-1dw, respetively. The PNECsoilof PBDEs (tetrabromobiphenyl ether, pentabromodiphenyl ether, octabromobiphenyl ether, decabromobiphenyl ether) in soil were 668.3 mg·kg-1wt, 0.38 mg·kg-1dw, 147 mg·kg-1dw, >98 mg·kg-1dw, respetively. The PNECoralof PBDEs (pentabromodiphenyl ether, octabromobiphenyl ether, decabromobiphenyl ether) of secondary poison were 0.3~0.7 mg·kg-1, 0.56 mg·kg-1, 2 500 mg·kg-1, respetively. These values could provide the scientific basis for the environmental risk assessment of PBDEs in China.
PBDEs; the predicted no-effect concentration (PNEC); freshwater; sediment; soil; native species
10.7524/AJE.1673-5897.20151127005
國家水體污染控制與治理科技重大專項(2012ZX07501003);科技基礎(chǔ)性專項(2014FY120606)
曹瑩(1983-),女,工程師,研究方向為環(huán)境生態(tài)風(fēng)險評估,E-mail: caoyingyeah@sina.com
*通訊作者(Corresponding author), E-mail: zhangyahui@craes.org.cn
2015-11-27 錄用日期:2016-05-31
1673-5897(2016)2-609-11
X171.5
A
簡介:張亞輝(1979—),女,環(huán)境科學(xué)博士,副研究員,主要研究方向環(huán)境毒理學(xué),發(fā)表學(xué)術(shù)論文20余篇。
曹瑩, 朱巖, 張亞輝, 等. 基于我國物種毒性數(shù)據(jù)的多溴聯(lián)苯醚預(yù)測無效應(yīng)濃度分析[J]. 生態(tài)毒理學(xué)報,2016, 11(2): 609-619
Cao Y, Zhu Y, Zhang Y H, et al. Analysis of predicted no-effect concentrations for polybrominated diphenyl ethers (PBDEs) based on the toxicity data of species in China [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 609-619 (in Chinese)