孟超普,程 林,王秀錦
(中國(guó)船舶重工集團(tuán)公司第723研究所,揚(yáng)州 225001)
?
對(duì)線性調(diào)頻脈壓雷達(dá)的改進(jìn)移頻干擾研究
孟超普,程 林,王秀錦
(中國(guó)船舶重工集團(tuán)公司第723研究所,揚(yáng)州 225001)
針對(duì)線性調(diào)頻脈沖壓縮雷達(dá)回波信號(hào)距離和多普勒頻率存在耦合這一特點(diǎn),在固定移頻干擾的基礎(chǔ)上,提出了2種改進(jìn)的移頻干擾方法——正弦波移頻干擾和隨機(jī)移頻干擾。對(duì)于2種改進(jìn)的移頻干擾,分別仿真分析了不同參數(shù)取值情況時(shí)的干擾效果。
線性調(diào)頻脈壓雷達(dá);假目標(biāo)干擾;正弦波移頻干擾;隨機(jī)移頻干擾
線性調(diào)頻脈沖壓縮雷達(dá)通過采用大時(shí)寬-帶寬積信號(hào),使雷達(dá)可以同時(shí)具有較好的作用距離和距離分辨力;通過利用其信號(hào)脈內(nèi)相干性,極大提高了雷達(dá)的抗干擾能力,在單脈沖體制雷達(dá)、相控陣體制雷達(dá)、脈沖多普勒體制雷達(dá)等多種先進(jìn)雷達(dá)中得到普遍應(yīng)用[1]。針對(duì)線性調(diào)頻脈沖壓縮雷達(dá)的干擾理論方法以及工程實(shí)踐應(yīng)用研究成為雷達(dá)電子戰(zhàn)科研機(jī)構(gòu)的關(guān)注熱點(diǎn)。
由于線性調(diào)頻信號(hào)具有高達(dá)幾十到幾千的壓縮比,對(duì)其實(shí)施有源噪聲干擾時(shí),到達(dá)雷達(dá)接收機(jī)輸入端的干擾功率需比目標(biāo)回波功率大壓縮比的倍數(shù)。這要求干擾機(jī)具有很高的功率。移頻干擾利用線性調(diào)頻脈沖壓縮雷達(dá)回波信號(hào)距離-多普勒頻率存在強(qiáng)耦合的特點(diǎn),不需要很高的干信比即可實(shí)現(xiàn)有效的假目標(biāo)干擾。文獻(xiàn)[2]給出了移頻干擾的技術(shù)方法,文獻(xiàn)[3]在固定移頻的基礎(chǔ)上加以改進(jìn),提出了階梯波線性函數(shù)移頻和線性分段移頻的方法。本文在以上文獻(xiàn)的基礎(chǔ)上,給出2種改進(jìn)的移頻干擾方法——正弦波移頻干擾和隨機(jī)移頻干擾。
線性調(diào)頻脈沖壓縮體制雷達(dá)的發(fā)射信號(hào),在脈沖寬度內(nèi)按照線性變化規(guī)律對(duì)其載頻進(jìn)行調(diào)制,以實(shí)現(xiàn)大時(shí)寬信號(hào)的帶寬擴(kuò)展。接收回波信號(hào)時(shí),通過匹配濾波器對(duì)每個(gè)回波脈沖進(jìn)行壓縮處理。該方法可實(shí)現(xiàn)雷達(dá)作用距離、峰值功率和距離分辨力之間的合理折衷。
矩形脈沖線性調(diào)頻信號(hào)的表達(dá)式為:
(1)
式中:f0為信號(hào)載頻;K為調(diào)頻斜率;T為矩形脈沖寬度。
信號(hào)解調(diào)后為:
(2)
對(duì)u(t)做傅里葉變換,可得:
(3)
(4)
(5)
(6)
(7)
當(dāng)BT?1時(shí),
(8)
線性調(diào)頻信號(hào)的頻域圖如圖1所示,圖中:T=30 μs,B=20 MHz??梢?,線性調(diào)頻信號(hào)具有近似矩形的幅頻特性,BT值越大,幅頻特性越接近于矩形,頻譜寬度近似等于信號(hào)的調(diào)制頻偏B。
圖1 線性調(diào)頻信號(hào)頻譜圖
雷達(dá)接收機(jī)接收回波信號(hào)后通過匹配濾波器進(jìn)行脈沖壓縮處理,對(duì)于輸入信號(hào)s(t),匹配濾波器的響應(yīng)函數(shù)為:
h(t)=cs(t0-t)
(9)
式中:t0為由匹配濾波器物理可實(shí)現(xiàn)條件決定的附加時(shí)延;c為常數(shù)。
線性調(diào)頻信號(hào)經(jīng)過匹配濾波后的響應(yīng)為:
0 (10) 由式(8)可知,脈沖壓縮后的波形是一個(gè)sinx/x形式的窄脈沖(如圖2 所示)。其主瓣兩零點(diǎn)間寬度為2/B(在此圖中,為0.1 μs)。其-3 dB處的寬度約等于1/B,壓縮后回波信號(hào)脈寬相比壓縮前減小BT(壓縮比)倍,回波信號(hào)的峰值功率相對(duì)于壓縮前增大BT倍,這就是線性調(diào)頻脈沖壓縮雷達(dá)的處理增益。 圖2 線性調(diào)頻信號(hào)脈沖壓縮后波形 線性調(diào)頻脈沖信號(hào)的模糊函數(shù)為: (11) 在二維聯(lián)合估計(jì)時(shí),信號(hào)時(shí)延τ和頻移量ζ之間存在強(qiáng)耦合關(guān)系,即頻率改變?chǔ)う茣r(shí),時(shí)域上對(duì)應(yīng)也有一變化量Δτ,干擾平臺(tái)若對(duì)截獲到的雷達(dá)信號(hào)移頻后轉(zhuǎn)發(fā),就能對(duì)雷達(dá)接收機(jī)產(chǎn)生距離欺騙。設(shè)附加的移頻量為ζ,則移頻干擾信號(hào)為: (12) 經(jīng)過匹配濾波后的輸出信號(hào)包絡(luò)為: 0 (13) 輸出包絡(luò)的波形如圖3所示。由圖9和式(11)可知,移頻量為ζ時(shí),干擾信號(hào)脈壓輸出后主峰將偏移到t=T-ζ/K處,輸出主峰寬度展寬,幅度按三角包絡(luò)下降,相應(yīng)的干擾功率會(huì)出現(xiàn)失配損失。 圖3 移頻干擾信號(hào)匹配濾波后的包絡(luò) 當(dāng)BT?1時(shí),匹配濾波器的幅度譜在[0,B]內(nèi)近似為矩形,如圖4(a)所示。當(dāng)移頻量ζ> 0時(shí),干擾信號(hào)的幅度譜在[ζ,B+ζ]內(nèi)也近似為矩形,如圖4(b)所示。依據(jù)信號(hào)與系統(tǒng)理論,只有干擾信號(hào)頻譜與匹配濾波器頻譜重合時(shí)才有假目標(biāo)干擾輸出。隨著ζ增大,重合的部分減少,假目標(biāo)的幅度也變小,當(dāng)ζ≥B時(shí),沒有假目標(biāo)產(chǎn)生[3]。 圖4 匹配濾波器頻譜與干擾信號(hào)頻譜關(guān)系 當(dāng)雷達(dá)接收機(jī)收到的干擾信號(hào)功率和目標(biāo)回波功率相同時(shí),失配干擾峰值yζmax為: (14) 峰值位置為: t=t0-ζ/K (15) 式中:ymax為匹配回波信號(hào)的峰值;t0為匹配回波信號(hào)峰值位置。 在移頻干擾的工程應(yīng)用中,為了避免移頻量被雷達(dá)測(cè)量出,移頻量ζ的取值不宜太大。但對(duì)于自衛(wèi)式干擾機(jī),當(dāng)移頻量ζ不夠大時(shí),假目標(biāo)有可能成為信標(biāo)。因此,可以對(duì)移頻量ζ的取值做出一些變化,避免雷達(dá)通過此特征計(jì)算出假目標(biāo)與真實(shí)目標(biāo)之間的距離差[3]。 3.1 正弦波移頻干擾 對(duì)于固定移頻干擾,雷達(dá)接收機(jī)可以通過移頻量的測(cè)量,在假目標(biāo)信號(hào)的基礎(chǔ)上進(jìn)行距離補(bǔ)償,測(cè)算出真實(shí)目標(biāo)的位置。因此,在進(jìn)行移頻干擾時(shí),通常讓移頻量產(chǎn)生一些變化,并將移頻量限定在一定的范圍,防止雷達(dá)測(cè)量出移頻量。 正弦波移頻干擾就是干擾信號(hào)相對(duì)雷達(dá)信號(hào)的頻移量按正弦函數(shù)規(guī)律變化。設(shè)在整個(gè)雷達(dá)脈沖寬度內(nèi),正弦波移頻信號(hào)的振幅為ζ0,頻率為fsin,則干擾信號(hào)的表達(dá)式為: (16) 當(dāng)正弦波移頻信號(hào)選取不同的振幅和頻率取值時(shí),干擾信號(hào)經(jīng)過匹配濾波后會(huì)形成不同干擾效果,以下通過仿真試驗(yàn)進(jìn)行分析。 仿真試驗(yàn)1:設(shè)線性調(diào)頻信號(hào)的載頻f0=0,脈寬T=30 μs,帶寬B=20 MHz,正弦波移頻信號(hào)的振幅為ζ0=1 MHz,干信比J/S=0 dB。分別進(jìn)行移頻量為1 MHz的固定移頻干擾和振幅為1 MHz的正弦移頻干擾仿真。正弦信號(hào)的周期Tsin=1/fsin=1 μs,仿真結(jié)果如圖5和圖6所示。 圖5 固定移頻(ζ0=1 MHz,J/S=0 dB) 圖6 正弦波移頻(ζ0=1 MHz,Tsin=1 μs,J/S=0 dB) 從圖6可以看出,正弦波移頻干擾信號(hào)經(jīng)過匹配濾波后,在真實(shí)目標(biāo)前后均形成了多個(gè)間隔規(guī)律變化的假目標(biāo),假目標(biāo)的幅度較真實(shí)回波有所降低。增加干信比J/S分別為6 dB、12 dB,干擾信號(hào)經(jīng)過匹配濾波后的雷達(dá)回波如圖7和圖8所示。從圖中可以看出,增大干信比后,多個(gè)假目標(biāo)相對(duì)真實(shí)目標(biāo)的歸一化幅度值超過-10 dB。此時(shí)幅度較大的假目標(biāo)可以對(duì)雷達(dá)接收機(jī)產(chǎn)生很好的假目標(biāo)欺騙效果,幅度偏小的假目標(biāo)同時(shí)可以增大雷達(dá)接收機(jī)的虛警概率。 圖7 正弦波移頻(ζ0=1 MHz,Tsin=1 μs,J/S=6 dB) 圖8 正弦波移頻(ζ0=1 MHz,Tsin=1 μs,J/S=12 dB) 仿真試驗(yàn)2:設(shè)線性調(diào)頻信號(hào)的載頻f0=0,脈寬T=30 μs,帶寬B=20 MHz,正弦波移頻信號(hào)的振幅為ζ0=1 MHz,周期Tsin=1/fsin分別設(shè)置為10 μs、30 μs,設(shè)置干信比J/S=12 dB,此時(shí)干擾信號(hào)經(jīng)過匹配濾波后的雷達(dá)回波如圖9和圖10所示。 圖9 正弦波移頻(ζ0=1 MHz,Tsin=10 μs,J/S=12 dB) 圖10 正弦波移頻(ζ0=1 MHz,Tsin=30 μs,J/S=12 dB) 對(duì)比圖8、圖9和圖10可看出,隨著正弦波周期的增大,移頻干擾信號(hào)經(jīng)匹配濾波后,假目標(biāo)分布范圍向真實(shí)回波位置靠攏,形成的假目標(biāo)數(shù)目分布更為密集且幅度變大,形成壓制式干擾的效果。 仿真試驗(yàn)3:設(shè)線性調(diào)頻信號(hào)的載頻f0=0,T=30 μs,帶寬B=20 MHz,正弦波移頻信號(hào)的振幅為ζ0=100 kHz,周期Tsin=1/fsin=1 μs,干信比J/S=0 dB。分別進(jìn)行移頻量為100 kHz的固定移頻干擾和振幅為100 kHz的正弦波移頻干擾仿真。仿真結(jié)果如圖11和圖12所示。 圖11 固定移頻(ζ0=100 kHz,J/S=0 dB) 圖12 正弦波移頻(ζ0=100 kHz,Tsin=1 μs,J/S=0 dB) 當(dāng)移頻量較小時(shí),對(duì)于固定移頻干擾,由式(13)可知,干擾信號(hào)經(jīng)過匹配濾波后,在超前真實(shí)目標(biāo)回波0.15 μs處形成一個(gè)單一假目標(biāo)。此時(shí)由于假目標(biāo)距離真實(shí)目標(biāo)很近,假目標(biāo)會(huì)成為跟蹤雷達(dá)的信標(biāo)。對(duì)于正弦波移頻干擾,由圖12可以看出,干擾信號(hào)經(jīng)過匹配濾波后,能在真實(shí)目標(biāo)回波前后形成多個(gè)等間隔的假目標(biāo)。增加干信比后,可以實(shí)現(xiàn)對(duì)跟蹤雷達(dá)的假目標(biāo)欺騙干擾,有效破壞跟蹤雷達(dá)對(duì)大型水面艦艇目標(biāo)的跟蹤。 3.2 分段隨機(jī)移頻干擾 根據(jù)3.1節(jié)的仿真分析,正弦波移頻干擾可以產(chǎn)生多個(gè)密集假目標(biāo)。但由于移頻量的變化具有規(guī)律性,生成的假目標(biāo)等距離分布在真目標(biāo)兩側(cè)。此時(shí)可通過移頻量的補(bǔ)償來(lái)消除假目標(biāo),即使未將假目標(biāo)去除,在人工判斷時(shí)也容易從假目標(biāo)中區(qū)分出真實(shí)目標(biāo)。 針對(duì)正弦波移頻干擾假目標(biāo)容易被識(shí)別的缺點(diǎn),可考慮在脈沖內(nèi)使移頻量分段隨機(jī)變化,即采用分段隨機(jī)移頻的方法。設(shè)分段數(shù)為N,則移頻量可表示為: (17) 式中:t0=-T/2;tN=T/2;T為線性調(diào)頻信號(hào)的脈寬;ti-1和ti分別為第i個(gè)分段的起始和結(jié)束時(shí)間;ζi為第i個(gè)分段的移頻量(由于移頻量過大時(shí)信號(hào)嚴(yán)重失配,通常將隨機(jī)移頻量的范圍設(shè)定為-B/2≤ζi≤B/2)。 隨機(jī)移頻干擾信號(hào)為: (18) 由式(17)和(18)可得,隨機(jī)移頻干擾可等效為線性調(diào)頻脈沖內(nèi)各子脈沖段固定移頻后形成的干擾信號(hào)的疊加。 由第二小節(jié)的分析可知,固定移頻干擾信號(hào)脈壓輸出的峰值取決于干擾信號(hào)進(jìn)入匹配濾波器的帶寬Bi。對(duì)第i個(gè)脈沖,在時(shí)刻t的頻率為ζi+Kt,t∈[ti-1,ti)。若ζi+Kt∈[-B/2,B/2],t∈[ti-1,ti),則子脈沖干擾信號(hào)的頻率分量全部進(jìn)入匹配濾波器,即進(jìn)入匹配濾波器的帶寬為Bi=K(ti-ti-1)=B(ti-ti-1)/T;若ζi+Kti<-B/2或ζi+Kti-1>B/2,則子脈沖干擾信號(hào)沒有頻率分量進(jìn)入匹配濾波器,此時(shí)Bi=0;若ζi+Kti-1<-B/2<ζi+Kti 第i個(gè)子脈沖干擾信號(hào)脈壓后輸出信號(hào)的峰值: yζimax=ymaxBi/B,i=1,2,…,N (19) 式中:ymax為匹配回波信號(hào)的峰值。 峰值出現(xiàn)的位置: (20) 式中:t0為匹配回波信號(hào)峰值位置。 特別地,對(duì)于脈沖為等間隔分段的情況,當(dāng)各分段子脈沖干擾信號(hào)的頻率分量全部進(jìn)入匹配濾波器時(shí),Bi=B(ti-ti-1)/T=B/N,每個(gè)子脈沖干擾信號(hào)經(jīng)過脈壓輸出后產(chǎn)生假目標(biāo)的峰值均為匹配信號(hào)峰值的1/N倍,假目標(biāo)峰值的位置由附加的頻移量ζi決定。以下分別對(duì)不同脈沖分段數(shù)和隨機(jī)移頻量滿足不同分布時(shí)的干擾效果進(jìn)行仿真分析。 仿真試驗(yàn)1:設(shè)線性調(diào)頻信號(hào)載頻f0=0,脈寬T=30 μs,帶寬B=20 MHz,隨機(jī)移頻量范圍設(shè)定為[-10 MHz,10 MHz],脈沖的分段為等間隔,分段脈沖數(shù)N=10,各子脈沖段的移頻量按照均勻分布隨機(jī)產(chǎn)生,分別為:10 MHz、2 MHz、 0 MHz、8 MHz、-2 MHz、-8 MHz、-4 MHz、6 MHz、-8 MHz、0 MHz,干信比J/S設(shè)置為0 dB。 仿真中隨機(jī)產(chǎn)生了7個(gè)非零隨機(jī)移頻量,由式(20)可得,干擾信號(hào)經(jīng)過匹配濾波后應(yīng)分別在15 μs、8 μs、21 μs、27 μs、33 μs、36 μs、42 μs處形成假目標(biāo),維持時(shí)間為1個(gè)子脈沖段的移頻量產(chǎn)生的假目標(biāo)峰值為匹配信號(hào)峰值的1/N=1/10(歸一化幅值為-10 dB),維持時(shí)間為2個(gè)子脈沖段的移頻量(-8 MHz)的假目標(biāo)峰值為匹配信號(hào)峰值的2/N=1/5(歸一化幅值為-7 dB)。 仿真結(jié)果如圖13所示,各假目標(biāo)的幅度和位置分布與理論分析一致。當(dāng)N的取值偏小時(shí),產(chǎn)生的隨機(jī)移頻量數(shù)目較少,此時(shí)假目標(biāo)的分布和幅度呈現(xiàn)一定的規(guī)律性,容易被雷達(dá)接收機(jī)識(shí)別。 圖13 等間隔均勻分布隨機(jī)移頻(N=10) 仿真試驗(yàn)2:設(shè)線性調(diào)頻信號(hào)的載頻f0=0,脈寬T=30 μs,帶寬B=20 MHz,隨機(jī)移頻量的范圍設(shè)定為[-10 MHz,10 MHz],脈沖的分段為等間隔,增加脈沖數(shù)N=30,各子脈沖的隨機(jī)移頻量服從均勻分布,干信比J/S設(shè)置為12 dB。仿真結(jié)果如圖14所示。 圖14 等間隔均勻分布隨機(jī)移頻(N=30) 由圖14可看出,增加分段脈沖數(shù)目后,形成大量幅度和分布位置均無(wú)規(guī)律變化的密集隨機(jī)假目標(biāo)。由于分段數(shù)增加,假目標(biāo)的幅度變小,此時(shí)需增加干信比才能對(duì)雷達(dá)接收機(jī)產(chǎn)生良好的欺騙效果。 仿真試驗(yàn)3:設(shè)線性調(diào)頻信號(hào)的載頻f0=0,脈寬T=30 μs,帶寬B=20 MHz,隨機(jī)移頻量的范圍設(shè)定為[-10 MHz,10 MHz],脈沖的分段為等間隔,脈沖數(shù)N=30,各子脈沖的隨機(jī)移頻量服從均值為0、方差為2 MHz的正態(tài)分布,干信比J/S設(shè)置為12 dB。仿真結(jié)果如圖15所示。 圖15 等間隔正態(tài)分布隨機(jī)移頻(N=30) 由圖15可以看出,更改隨機(jī)移頻量的分布為正態(tài)分布后,隨機(jī)假目標(biāo)分布在正態(tài)分布中心附近,干擾能量相比均勻分布更為集中,可以達(dá)到更好的干擾效果。 基于線性調(diào)頻脈壓雷達(dá)回波信號(hào)距離和多普勒頻率存在耦合的特點(diǎn),在固定移頻干擾的基礎(chǔ)上,本文給出了2種改進(jìn)的移頻干擾——正弦波移頻干擾和隨機(jī)移頻干擾,分別對(duì)2種干擾在不同參數(shù)下進(jìn)行了仿真分析。通過改變移頻參數(shù)可靈活地產(chǎn)生假目標(biāo)欺騙干擾和噪聲壓制干擾。在戰(zhàn)術(shù)應(yīng)用過程中,對(duì)于不同的場(chǎng)景可以通過設(shè)置不同的干擾參數(shù)達(dá)到需要的干擾效果。 [1] 張明友,汪學(xué)剛.雷達(dá)系統(tǒng)[M].北京:電子工業(yè)出版社,2008. [2] 楊紹全,張正明.對(duì)線性調(diào)頻脈壓雷達(dá)的干擾[J].西安電子科技大學(xué)學(xué)報(bào),1991,18(3):24-30. [3] 劉忠.基于DRFM的線性調(diào)頻脈沖壓縮雷達(dá)干擾新技術(shù)[D].長(zhǎng)沙:國(guó)防科學(xué)技術(shù)大學(xué),2006. Research into Improved Frequency-shift Jamming to Linear Frequency Modulation Pulse Compression Radar MENG Chao-pu,CHENG Lin,WANG Xiu-jin (The 723 Institute of CSIC,Yangzhou 225001,China) Aiming at the characteristic that there is coupling between the echo signal range and Doppler frequency of linear frequency modulation pulse compression radar,this paper puts forward two kinds of improved frequency-shift jamming methods——sinusoid frequency-shift jamming and random frequency-shift jamming based on fixed frequency-shift jamming,and respectively analyzes the jamming effects under different parameter values through simulations for two improved frequency-shift jamming. linear frequency modulation pulse compression radar;false target jamming;sinusoid frequency-shift jamming;random frequency-shift jamming 2016-03-09 TN974 A CN32-1413(2016)03-0001-06 10.16426/j.cnki.jcdzdk.2016.03.0012 移頻干擾數(shù)學(xué)模型
3 2種改進(jìn)移頻干擾仿真分析
4 結(jié)束語(yǔ)