• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      Chemical constituents from underground part ofAstragaluscamptodontoides

      2016-12-22 09:43:05HANBingYangZHANGYuTIANXinYanXIAOChaoJiangDONGXiangJIANGBei
      廣西植物 2016年11期
      關(guān)鍵詞:丁酯鄰苯二甲酸甘草

      HAN Bing-Yang, ZHANG Yu, TIAN Xin-Yan, XIAO Chao-Jiang,DONG Xiang, JIANG Bei

      ( Institute of Materia Medica, Dali University, Dali 671000, Yunnan, China )

      Abstract: For understanding the chemical constituents of Astragalus camptodontoides, nineteen compounds were isolated from the ethyl acetate fraction of the methanol extract of underground part. By physical-chemical properties and spectroscopic date, their structures were identified as isobavachin (1), 4′-hydroxyisolonchocarpin (2), 5-deoxyeuchrenone (3), shinflavanone (4), khonklonginols H (5), 4′-O-methylpreglabridin (6), 3′-hydroxy-4′-O-methylglabridin (7), 4′-O-methylglabridin (8), 8-prenyl-phaseollinisoflavan (9), xambioona (10), glabrol (11), glyasperin H (12), methylnissolin (13), phthalic acid isodibutyl ester (14), butul isobutyl phthalate (15), β-sitosterol (16), daucosterol (17), oleanic acid (18), and (2S,3S,4R,9E)-1,3,4-trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene (19). All compounds were isolated from this plant for the first time, including compounds 1-7 obtained from Astragalus genus for the first time.

      ?

      Chemical constituents from underground part ofAstragaluscamptodontoides

      HAN Bing-Yang, ZHANG Yu, TIAN Xin-Yan, XIAO Chao-Jiang,DONG Xiang, JIANG Bei*

      (InstituteofMateriaMedica,DaliUniversity, Dali 671000, Yunnan, China )

      Abstract: For understanding the chemical constituents ofAstragaluscamptodontoides, nineteen compounds were isolated from the ethyl acetate fraction of the methanol extract of underground part. By physical-chemical properties and spectroscopic date, their structures were identified as isobavachin (1), 4′-hydroxyisolonchocarpin (2), 5-deoxyeuchrenone (3), shinflavanone (4), khonklonginols H (5), 4′-O-methylpreglabridin (6), 3′-hydroxy-4′-O-methylglabridin (7), 4′-O-methylglabridin (8), 8-prenyl-phaseollinisoflavan (9), xambioona (10), glabrol (11), glyasperin H (12), methylnissolin (13), phthalic acid isodibutyl ester (14), butul isobutyl phthalate (15),β-sitosterol (16), daucosterol (17), oleanic acid (18), and (2S,3S,4R,9E)-1,3,4-trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene (19). All compounds were isolated from this plant for the first time, including compounds 1-7 obtained fromAstragalusgenus for the first time.

      Astragaluscamptodontoides, underground part, chemical constituents, isolation and identification

      Astragaluscamptodontoides, a species ofAstragalusgenus, grows on grassland with altitude over 3 100 m and is mainly distributed in South Tibet, Southwest Sichuan, and Northwest Yunnan in China (China Flora Editorial Board, 1993; Kunming Institute for Botany, 2006). This plant is often used as substitute of Chinese medicine “Huang Qi” by local folks, and therefore, it is supposed to have the major constituents similar to Huangqi. However, research concerning its chemical composition has not been reported yet. In order to investigate the chemical patterns of its major constituents, a detailed chemical study on the underground part ofA.camptodontoideswas carried out recently. As a result, nineteen compounds were isolated from the EtOAc fraction of its MeOH extract. Their structures were identified as isobavachin (1), 4′-hydroxyisolonchocarpin (2), 5-deoxyeuchrenone (3), shinflavanone (4), khonklonginols H (5), 4′-O-methylpreglabridin (6), 3′-hydroxy-4′-O-methylglabridin (7), 4′-O-methylglabridin (8), 8-prenyl-phaseollinisoflavan (9), xambioona (10), glabrol (11), glyasperin H (12), methylnissolin (13), phthalic acid isodibutyl ester (14), butul isobutyl phthalate (15),β-sitosterol (16), daucosterol (17), oleanic acid (18), and (2S,3S,4R,9E)-1,3,4-trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene (19) (Fig. 1). All of these compounds were isolated from this plant for the first time, and compounds 1-7 were isolated fromAstragalusgenus for the first time.

      1 Materials and Methods

      1.1 Plant Materials

      Astragaluscamptodontoideswas collected from Diqing (Yunnan, China) in September 2012 and identified by Dr. ZHANG De-Quan, Laboratory of Pharmacognosy of Dali University. A voucher specimen (20120918-2-A) was deposited in Institute of Materia Medica at Dali University.

      1.2 Experimental Instruments

      EI-MS spectra were obtained on VG Auto Spec-3000 and API QSTAR Pulsari Spectrometer.1H-NMR and13C-NMR spectra were recorded on a Bruker-400 MHz Spectrometer using TMS as an internal standard. TLC was performed on silica gel G and GF254plates (Qingdao Marine Chemical Factory). Column chromatography was carried out on silica gel (200-300 mesh; Qingdao Marine Chemical Factory), Sephadex LH-20 (Amersham Biosciences), and RP-18 gel (40-75 μm; J. T. Baker). TLC spots were visualized by 10% H2SO4with heating or by UV light.

      2 Extraction and Isolation

      The dried and powdered roots ofA.camptodontoides(1.05 kg) were extracted with MeOH for six times, 6 h each time. The extracts were combined and concentratedinvacuumto give a crude extract. The crude extract was suspended in water and partitioned with EtOAc and butanol, successively. Removal of the solvent from each phase gave the EtOAc fraction, butanol fraction, and water-soluble extract, respectively. The EtOAc fraction (123.5 g) was subjected to a silica gel column and eluted with CHCl3-Me2CO (1∶0-0∶1) to provide Fr. 1-7. Fr. 1 (4 g) was subjected repeatedly to column chromatography on silica gel and eluted with petroleum ether-Me2CO to yield compounds 2 (5.4 mg), 3 (12.0 mg), 5 (15.3 mg), 6 (3.2 mg), 9 (5.5 mg), 14 (5.7 mg), 17 (5.6 mg) and 18 (8.7 mg). Fr. 2 (7.5 g) was subjected repeatedly to column chromatography padded with silica gel and eluted with petroleum ether-Me2CO to yield compounds 1 (5.2 mg), 4 (5.4 mg), 7 (8.3 mg), 8 (5.6 mg), 10 (15.3 mg), 12 (5.4 mg), 15 (3.8 mg), and 16 (20.2 mg). Fr. 3 (3 g) was purified repeatedly on silica gel column and eluted with petroleum ether-Me2CO to yield Compound 11 (8.2 mg). Fr. 6 (8 g) was subjected to a RP-18 chromatographic column and eluted with MeOH-H2O and followed by Sephadex LH-20 (MeOH) purification to yield compounds 13 (8.1 mg) and 19 (5.7 mg).

      3 Results and Analysis

      Isobavachin (1) Yellow powder; C25H26O4;1H-NMR (CDCl3, 400 MHz)δ: 7.76 (1H, d,J= 8.7 Hz, H-5), 6.96 (2H, d,J= 2.2 Hz, H-2′, 6′), 6.69(2H, d,J= 8.3 Hz, H-3′, 5′), 6.36 (1H, d,J= 9.8 Hz, H-6 ), 5.59 (1H, t,J= 9.8 Hz, H-2″), 5.36 (1H, dd,J= 13.3, 2.8 Hz, H-2), 3.15 (2H, overlap, H-1″), 3.01 (1H, dd,J= 16.8, 13.3 Hz, H-3b), 2.81 (1H, dd,J= 16.8, 2.9 Hz, H-3a), 1.49 (3H, s, H-4″), 1.46 (3H, s, H-5″);13C-NMR (CDCl3, 100 MHz)δ: 185.5 (s, C-4), 159.6 (s, C-7), 157.7 (s, C-9), 156.8 (s, C-4′), 131.7 (s, C-3″), 131.1 (s, C-1′), 128.8 (d, C-5), 127.9 (d, C-2′, 6′), 121.9 (d, C-2″), 116.0 (d, C-3′, 5′), 115.6 (s, C-10), 113.1 (s, C-8), 111.1 (d, C-6), 79.5 (d, C-2), 44.2 (t, C-3), 22.7 (q, C-4″), 22.7 (t, C-1″), 14.1 (q, C-5″). These data are consistent with the literature values (Ali et al, 2011), and hence was identified as isobavachin.

      Fig. 1 Chemical structures of compounds 1-19

      4′-Hydroxyisolonchocarpin (2) Yellow oil; C20H18O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (1H, d,J= 8.7 Hz, H-5), 7.20 (2H, d,J= 8.6 Hz, H-2′, 6′), 6.81 (2H, d,J= 2.0 Hz, H-3′, 5′), 6.64 (1H, d,J= 10.5 Hz, H-1″), 6.49 (1H, d,J= 8.7 Hz, H-6), 5.55 (1H, d,J= 10.0 Hz, H-2″), 5.35 (1H, dd,J= 13.2, 2.8 Hz, H-2), 3.00 (1H, dd,J= 13.3, 3.6 Hz, H-3b), 2.79 (1H, dd,J= 16.8, 2.9 Hz, H-3a), 1.46 (6H, s, H-4″, 5″);13C-NMR (CDCl3, 100 MHz)δ: 190.5 (s, C-4), 159.6 (s, C-9), 157.8 (s, C-7), 155.4 (s, C-4′), 131.3 (s, C-1′), 128.8 (d, C-5), 127.9 (d, C-2″), 127.1 (d, C-2′, 6′), 124.3 (d, C-3′, 5′), 122.0 (d, C-1″), 116.5 (s, C-8), 116.0 (s, C-10), 111.1 (d, C-6), 79.6 (d, C-2), 77.3 (s, C-3″), 44.1 (t, C-3), 28.4 (q, C-4″), 28.1 (q, C-5″). Its1H-NMR and13C-NMR data were in accordance with those reported in the literature (Ryu et al, 2012). Therefore, Compound 2 was identified as 4′-hydroxyisolonchocarpin.

      5-Deoxyeuchrenone (3) Yellow oil; C30H32O4;1H-NMR (CDCl3, 400 MHz)δ: 7.66 (1H, s, H-5), 7.13 (1H, dd,J= 2.2, 8.2 Hz, H-6′), 7.01 (1H, d,J= 2.2 Hz, H-2′), 6.74 (1H, m, H-5′), 6.57 (1H, d,J= 10.0 Hz, H-α), 6.27 (1H, d,J= 9.8 Hz, H-α′), 5.59 (1H, d,J= 9.8 Hz, H-β), 5.50 (1H, d,J= 10.0 Hz, H-β′), 5.30 (1H, dd,J= 2.8, 13.3 Hz, H-2), 5.27 (1H, bt, H-2″), 3.60 (1H, d,J= 4.5 Hz, H-1″), 2.94 (1H, m, H-3b), 2.72 (1H, dd,J= 2.9, 16.8 Hz, H-3a), 1.50 (6H, s, 2×CH3), 1.18 (12H, s, 4×CH3);13C-NMR (CDCl3, 100 MHz)δ: 192.7 (s, C-4), 166.5 (s, C-7), 156.7 (s, C-9), 152.3 (s, C-4′), 131.4 (s, C-1′), 130.3 (s, C-3″), 130.1 (d, C-2′), 129.9 (d, C-β′), 127.8 (d, C-β), 127.8 (d, C-6′), 126.9 (t, C-2″), 126.1 (d, C-α), 123.3 (s, C-5′), 120.9 (d, C-5), 115.4 (s, C-6), 115.0 (d, C-3′), 113.7 (d, C-α′), 110.1 (s, C-8), 108.3 (s, C-10), 78.6 (s, 2×-Me2C), 76.3 (d, C-2), 43.1 (t, C-3), 30.9 (t, C-1″), 29.9 (q, C-CH3), 28.7 (q, C-CH3), 28.3 (q, C-CH3), 27.4 (q, C-CH3), 26.7 (q, C-4″), 18.1 (q, C-5″). Its1H NMR and13C NMR data were identical with those reported in the literature (Mali et al, 1998). Thus, Compound 3 was identified as 5-deoxyeuchrenone.

      Shinflavanone (4) Yellow powder; C25H26O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (1H, d,J= 8.7 Hz, H-5), 7.22 (1H, d,J= 5.7 Hz, H-2′), 7.20 (1H, s, H-6′), 6.86 (1H, d,J= 8.2 Hz, H-1?), 6.50 (1H, d,J=8.6 Hz, H-6), 6.63 (1H, d,J= 8.3 Hz, H-5′), 5.56 (1H, d,J= 9.8 Hz, H-2?), 5.38 (1H, t,J= 2.4 Hz, H-2″ ) , 5.35 (1H, dd,J= 3.2, 12.8 Hz, H-2), 3.39 (2H, d,J= 6.7 Hz, H-1″), 3.02 (1H, dd,J= 16.8, 13.3 Hz, H-3b), 2.80 (1H, dd,J= 2.9, 16.8 Hz, H-3a), 1.78 (6H, s, H-4″, 5″), 1.47 (3H, s, H-4?), 1.44 (3H, s, H-5?);13C-NMR (CDCl3, 100 MHz)δ: 191.3 (s, C-4), 159.7 (s, C-9), 157.9 (s, C-7), 154.8 (s, C-4′), 134.9 (s,C-3″), 130.8 (s, C-1′), 128.8 (d, C-5), 128.0 (d, C-2′), 127.9 (s, C-3′), 127.4 (d, C-2?), 125.4 (d, C-6′), 121.4 (d, C-2″), 116.0 (d, C-1?), 115.8 (d, C-5′), 114.7 (s, C-8), 111.1 (s, C-10), 109.4 (d, C-6), 79.7 (s, C-3?), 77.2 (d, C-2), 44.1 (t, C-3), 29.6 (t, C-1″), 28.4 (q, C-4?), 28.1 (q, C-5?), 25.8 (q, C-4″), 17.9 (q, C-5″). Compound 4 was identified as shinflavanone since its1H-NMR and13C-NMR data agreed with those reported literatures (Suh et al, 1999).

      Khonklonginols H (5) Yellow oil; C26H28O6;1H-NMR (CDCl3, 400 MHz)δ: 7.18 (1H, d,J= 8.4 Hz, H-6′), 6.87 (2H, d,J= 6.6 Hz, H-1?), 6.64 (1H, dd,J= 8.5, 2.2 Hz, H-5′), 6.32 (1H, d,J= 2.2 Hz, H-3′), 5.82 (1H, dd,J= 12.6, 2.0 Hz, H-2), 5.65 (1H, d,J= 7.0 Hz, H-2?), 5.56 (1H, t,J= 9.7 Hz, H-2″), 3.89 (3H, s, -OCH3), 3.20 (2H, t,J= 7.0 Hz, H-1″), 3.01 (1H, dd,J= 17.6, 14.6 Hz, H-3a), 2.91 (1H, dd,J= 17.6, 3.1 Hz, H-3b), 1.76 (6H, s, H-4″, 5″), 1.46 (3H, s, H-4?), 1.44 (3H, s, H-5?);13C-NMR (CDCl3, 100 MHz)δ: 191.8 (s, C-4), 161.8 (s, C-4′), 159.8 (s, C-7), 158.0 (s, C-9), 157.9 (s, C-5), 154.9 (s, C-2′), 131.2 (s, C-3″), 130.5 (d, C-6′), 128.8 (d, C-2?), 121.6 (d, C-2″), 116.0 (s, C-1′), 115.7 (t, C-1″), 114.6 (s, C-8), 113.1 (d, C-5′), 111.2 (s, C-6), 109.4 (d, C-3′), 108.1 (s, C-10), 79.8 (s, C-3?), 77.6 (d, C-2), 56.2 (q, -OCH3), 44.0 (t, C-3), 28.4 (q, C-4?), 28.1(q, C-5?), 25.9 (q, C-4″), 22.4 (t, C-1″), 17.9 (q, C-5″). Its1H-NMR and13C-NMR data were in accordance with those reported in the literature (Sutthivaiyakit et al, 2009). Therefore, Compound 5 was identified as khonklonginols H.

      4′-O-Methylpreglabridin (6) Yellow oil;C21H24O4;1H-NMR (CDCl3, 400 MHz)δ: 6.83 (1H, d,J= 8.2 Hz, H-5), 6.67 (1H, d,J= 8.3 Hz, H-6′), 6.60 (1H, d,J= 8.2 Hz, H-5′), 6.56 (1H, s, H-3′), 6.40 (1H, dd,J= 8.2, 8.3 Hz, H-6), 5.25 (1H, m, H-2″), 4.34 (1H, d,J= 9.1 Hz, H-2b), 3.90 (3H, s, -OCH3), 3.90 (1H, dd,J= 11.9, 6.0 Hz, H-2a), 3.41 (1H, m, H-3), 3.40 (2H, d,J= 4.8 Hz, H-1″), 2.93 (1H, ddd,J= 15.8, 10.2, 2.0 Hz, H-4), 1.81 (3H, s, H-5″), 1.74 (3H, s, H-4″);13C-NMR (CDCl3, 100 MHz)δ: 161.9 (s, C-7), 153.8 (s, C-9), 152.6 (s, C-4′), 151.7 (s, C-2′), 134.2 (s, C-3″), 129.1 (d, C-5), 127.6 (d, C-6′), 122.1 (d, C-2″), 120.8 (s, C-1′), 114.4 (s, C-8, 10), 108.1 (d, C-5′), 106.4 (d, C-3′), 97.7 (d, C-6), 69.3 (t, C-2), 56.2 (q, -OCH3), 31.6 (d, C-3), 31.0 (t, C-4), 25.8 (q, C-5″), 22.3 (t, C-1″), 17.9 (q, C-4″). Its1H-NMR and13C-NMR data were identical with those reported in the literature (Castro et al, 1986). Compound 6 was identified as 4′-O-methylpreglabridin.

      3′-Hydroxy-4′-O-methylglabridin (7) White oil; C21H22O5;1H-NMR (Acetone-d6, 400 MHz)δ: 6.85 (1H, d,J= 8.2 Hz, H-5), 6.65 (1H, d,J= 2.3 Hz, H-1″), 6.63 (1H, d,J= 2.3 Hz, H-6′), 6.5 (1H, d,J= 8.6 Hz, H-5′), 6.31 (1H, d,J= 8.2 Hz, H-6), 5.64 (1H, d,J= 9.9 Hz, H-2″), 4.36 (ddd, 1H,J= 2.1, 3.4, 10.3 Hz, H-2a), 4.04 (t, 1H,J= 10.2 Hz, H-2b), 3.81 (3H, s, -OCH3), 3.51 (m, 1H, H-3), 3.04 (dd, 1H,J= 11.1, 15.6 Hz, H-4b), 2.83 (ddd, 1H,J= 1.8, 5.1, 15.7 Hz, H-4a), 1.38 (6H, s, H-4″, 5″);13C-NMR (Acetone-d6, 100 MHz)δ151.9 (s, C-7), 149.8 (s, C-9), 146.9 (s, C-4′), 143.5 (s, C-2′), 133.4 (s, C-3′), 129.3 (d, C-5), 128.7 (d, C-2″), 120.6 (s, C-1′), 116.9 (d, C-6′), 116.8 (d, C-1″), 114.6 (s, C-10), 109.6 (s, C-8), 108.4 (d, C-6), 102.9 (d, C-5′), 75.2 (s, C-3″), 69.9 (t, C-2), 55.4 (q, -OCH3), 32.0 (d, C-3), 30.2 (t, C-4), 27.1 (q, C-4″), 26.9 (q, C-5″). Compound 7 was identified as 3′-hydroxy-4′-O-methylglabridin by comparison of the1H-NMR and13C-NMR data with those reported in the literature (Kinoshita et al, 1996).

      4′-O-Methylglabridin (8) White oil; C21H22O4;1H-NMR (CDCl3, 400 MHz)δ: 7.20 (1H, d,J= 8.7 Hz, H-5), 7.01 (1H, d,J= 8.7 Hz, H-6′), 6.85 (1H, d,J= 8.3 Hz, H-1″), 6.63 (1H, d,J= 12.5 Hz, H-5′), 6.39 (1H, d,J= 8.2 Hz, H-6), 6.34 (1H, d,J= 2.4 Hz, H-3′), 5.56 (1H, d,J= 9.8 Hz, H-2″), 4.37 (1H, ddd,J= 10.4, 3.3, 2.0 Hz, H-2a), 4.02 (1H, t,J= 10.4 Hz, H-2b), 3.89 (6H, s, -OCH3), 3.47 (1H, overlap, H-3), 3.00 (1H, dd,J= 10.9, 15.7 Hz, H-4b), 2.89 (1H, dd,J= 15.7, 5.3 Hz, H-4a), 1.45 (3H, s, H-4″), 1.44 (3H, s, H-5″);13C-NMR (CDCl3, 100 MHz)δ: 151.8 (s, C-4′), 149.8 (s, C-2′), 145.7 (s, C-7), 142.2 (s, C-9), 132.2 (d, C-6′), 129.2 (d, C-5), 128.9 (d, C-2″), 120.9 (s, C-1′), 117.7 (d, C-1″), 117.0 (s, C-10), 114.4 (s, C-8), 109.9 (d, C-6), 108.6 (d, C-5′), 102.6 (d, C-3′), 75.6 (s, C-3″), 69.9 (t, C-2), 56.1 (q, -OCH3), 32.0 (t, C-4), 30.4 (t, C-3), 27.8 (q, C-4″), 27.5 (q, C-5″). Its1H-NMR and13C-NMR data were in accordance with those reported in the literature (Kinoshita et al, 1996). Therefore, Compound 8 was identified as 4′-O-methylglabridin.

      8-Prenyl-phaseollinisoflavan (9) Yellow oil; C25H28O4;1H-NMR (CDCl3, 400 MHz)δ: 6.90 (1H, d,J= 8.2 Hz, H-5), 6.81 (1H, d,J= 8.2 Hz, H-6′), 6.64 (1H, d,J= 10.0 Hz, H-1″), 6.49 (1H, d,J= 8.7 Hz, H-6), 6.34 (1H, d,J= 8.2 Hz, H-5′), 5.54 (1H, d,J= 9.8 Hz, H-2″), 5.28 (1H, m, H-2?), 4.35 (1H, ddd,J= 9.8, 3.2, 2.1 Hz, H-2a), 4.08 (1H, dd,J= 9.8, 9.8 Hz, H-2b), 3.66 (1H, m, H-3), 3.34 (2H, d,J= 6.8 Hz, H-1?), 2.94 (1H, ddd,J= 15.4, 5.5, 2.0 Hz, H-4a), 2.72 (1H, m, H-4b),1.81 (3H, s, H-5?), 1.74 (3H, s, H-4?), 1.46 (6H, s, H-4″, 5″);13C-NMR (CDCl3, 100 MHz)δ: 159.4 (s, C-7), 157.8 (s, C-9), 154.0 (s, C-2′), 153.2 (s, C-4′), 131.1 (s, C-3?), 131.0 (d, C-2″), 128.9 (d, C-5), 127.9 (d, C-6′), 127.1 (d, C-2?), 124.3 (s, C-1′), 122.0 (d, C-1″), 121.3 (s, C-10), 116.5 (s, C-8), 116.0 (s, C-3′), 111.1 (d, C-6), 109.4 (d, C-5′), 79.6 (d, C-3″), 71.8 (t, C-2), 44.2 (d, C-3), 32.0 (t, C-4), 29.7 (q, C-4″), 29.7 (q, C-5″), 27.7 (q, C-4?), 22.7 (t, C-1?), 19.2 (q, C-5?). Compound 9 was identified as 8-prenyl-phaseollinisoflavan by comparison of the1H-NMR and13C-NMR data with those reported in the literature (Kinoshita et al, 1996).

      Xambioona (10) Yellow powder; C25H24O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (1H, d,J= 8.7 Hz, H-5), 7.20 (1H, dd,J= 2.1, 8.3 Hz, H-6′), 7.08 (1H, d,J= 2.1 Hz, H-2′), 6.81 (1H, m, H-5′), 6.64 (1H, d,J= 14.0 Hz, H-α), 6.49 (1H, d,J= 8.7 Hz, H-6), 6.34 (1H, d,J= 9.8 Hz, H-α′), 5.66 (1H, d,J= 9.8 Hz, H-β), 5.56 (1H, d,J= 10.0 Hz, H-β′), 5.36 (1H, dd,J= 2.7, 13.2 Hz, H-2), 3.01 (1H, m, H-3b), 2.79 (1H, dd,J= 2.9, 16.8 Hz, H-3a), 1.46 (12H, s, 4×CH3);13C-NMR (CDCl3, 100 MHz)δ: 191.0 (s, C-4), 159.6 (s, C-9), 157.8 (s, C-7), 153.3 (s, C-4′), 131.3 (d, C-5), 131.1 (s, C-1′), 128.8 (d, C-6′), 127.9 (d, C-β′), 127.1 (d, C-β′), 124.3 (d, C-2′), 122.0 (d, C-α), 121.3 (s, C-3′), 116.5 (d, C-5′), 116.0 (d, C-α′), 114.7 (s, C-8), 111.1 (d, C-6), 109.4 (s, C-10), 79.6 (d, C-2), 77.5 (s, 2×-Me2C), 44.1 (t, C-3), 28.4 (q, C-CH3), 28.2 (q, C-CH3), 28.1 (q, 2×C-CH3). These data are consistent with the literature values (Mizuno et al, 1989). Therefore, Compound 10 was identified as xambioona.

      Glabrol (11) Yellow oil;C25H28O4;1H-NMR (CDCl3, 400 MHz)δ: 7.76 (1H, d,J= 8.7 Hz, H-5), 7.38 (1H, s, H-2′), 7.17 (1H, d,J= 2.5 Hz, H-6′), 6.67 (1H, d,J= 8.1 Hz, H-5′), 6.56 (1H, d,J= 8.6 Hz, H-6), 5.33 (2H, dd,J= 2.4, 13.2 Hz, H-2), 5.27 (2H, m, H-2″, 2?), 3.75 (2H, m, H-1″, 1?), 3.34 (1H, dd,J= 8.5, 10.6 Hz, H-3b), 2.82 (1H, dd,J= 16.8, 2.9 Hz, H-3a), 1.62 (6H, s, H-4″, 5″), 1.61 (6H, s, H-4?, 5?);13C-NMR (CDCl3, 100 MHz)δ: 191.5 (s, C-4), 161.4 (s, C-7), 160.7 (s, C-9), 144.5 (s, C-4′), 131.8 (s, C-1′), 131.1 (s, C-3″, 3?), 126.5 (d, C-6′), 121.9 (d, C-5), 121.1 (d, C-2′), 121.1 (d, C-2″, 2?), 115.5 (s, C-10), 114.9 (d, C-6), 114.5 (s, C-3′), 112.9 (d, C-5′), 110.5 (s, C-8), 79.4 (d, C-2), 44.0 (t, C-3), 29.2 (t, C-1?), 25.8 (q, C-5″, 5?), 22.3 (t, C-1″), 17.9 (q, C-4″, 4?). The1H-NMR and13C-NMR data above were identical with those reported in the literature (Cho et al, 2012). Thus, Compound 11 was identified as glabrol.

      Glyasperin H (12) Yellow oil; C22H24O5;1H-NMR (CDCl3, 400 MHz)δ: 6.83 (1H, d,J= 4.5 Hz, H-1″), 6.65 (1H, d,J= 8.6 Hz, H-6′), 6.63 (1H, d,J= 9.2 Hz, H-5′), 6.38 (1H, d,J= 7.0 Hz, H-6), 5.58 (1H, d,J= 11.8 Hz, H-2″), 4.35 (1H, d,J= 8.0 Hz, H-2a), 3.99 (1H, d,J= 9.2 Hz, H-2b), 3.89 (6H, s, 2×OCH3), 3.54 (1H, m, H-3), 2.92 (1H, d,J= 11.1 Hz, H-4b), 2.84 (1H, d,J= 15.8 Hz, H-4a), 1.43 (3H, s, H-5″), 1.42 (3H, s, H-4″), 7.74 (1H, d,J= 8.7 Hz, H-5);13C-NMR (CDCl3, 100 MHz)δ: 151.9 (d, C-7), 149.7 (s, C-9), 146.6 (s, C-4′), 145.3 (s, C-2′), 138.7 (s, C-3′), 129.2 (s, C-5), 129.0 (d, C-2″), 127.5 (s, C-1′), 117.0 (d, C-6′), 116.9 (d, C-1″), 114.4 (s, C-10), 109.9 (s, C-8), 108.7 (d, C-6), 106.5 (d, C-5′), 75.6 (s, C-3″), 70.6 (t, C-2), 61.1 (q, 2′-OCH3), 56.2 (q, 4′-OCH3), 31.6 (d, C-3), 31.6 (t, C-4), 27.8 (q, C-5″), 27.5 (q, C-4″). Compound 12 was identified as glyasperin H by comparison of the1H-NMR and13C-NMR data with those reported in the literature (Sairafianpour et al, 2002).

      Methylnissolin (13) White oil; C17H16O5;1H-NMR (CD3OD, 400 MHz)δ: 7.47 (1H, d,J= 8.5 Hz, H-1), 7.01 (1H, d,J= 4.2 Hz, H-7), 6.66 (1H, d,J= 2.2 Hz, H-8), 6.55 (1H, dd,J= 8.2, 2.2 Hz, H-2), 6.48 (1H, d,J= 8.7 Hz, H-4), 5.57 (1H, d,J= 6.2 Hz, H-11a), 4.28 (1H, dd,J= 9.6, 3.4 Hz, H-6e), 3.84 (3H, s, 9-OCH3), 3.82 (3H, s, 10-OCH3), 3.81 (1H, m, H-6a), 3.33 (1H, m, H-6);13C-NMR (CD3OD, 100 MHz)δ: 158.6 (s, C-3), 156.5 (s, C-4a), 154.8 (s, C-9), 152.8 (s, C-11b), 131.8 (s, C-10), 129.8 (d, C-1), 122.0 (s, C-6b), 118.5 (d, C-7), 110.3 (s, C-1a), 104.8 (d, C-2), 104.2 (d, C-8), 102.8 (d, C-4), 78.9 (d, C-11a), 66.0 (t, C-6), 61.0 (q, -OCH3), 55.5 (q, -OCH3), 39.8 (d, C-6a). Compound 13 was identified as methylnissolin by comparison of the1H-NMR and13C-NMR data with the data reported in the literature (Lee et al, 2008).

      Phthalic acid isodibutyl ester (14) Yellow powder; C16H22O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (2H, m, H-3, 6), 7.53 (2H, m, H-4, 5), 4.10 (2H, d,J= 7.2 Hz, H-1′), 2.04 (1H, m, H-2′), 0.99 (6H, d,J= 7.2 Hz, H-1″, 3′);13C-NMR (CDCl3, 100 MHz)δ: 167.6 (s, C-α), 132.3 (s, C-2), 132.3 (s, C-1), 130.8 (d, C-6), 130.8 (d, C-3), 128.7 (d, C-5), 128.7 (d, C-4), 71.8 (t, C-1′), 29.7 (q, C-2′), 19.2 (q, C-3′), 19.2 (q, C-4′). Its1H-NMR and13C-NMR data were identical with those reported in the literature (Zhang et al, 2003). So, Compound 14 was identified as hthalic acid isodibutyl ester.

      Butul isobutyl phthalate (15) Yellow oil; C16H22O4;1H-NMR (CDCl3, 400 MHz)δ: 7.74 (2H, m, H-3, 6), 7.53 (2H, m, H-4, 5), 4.10 (2H, d,J= 7.2 Hz, H-1′), 2.04 (1H, m, H-2′), 0.99 (6H, d,J= 7.2 Hz, H-1″, 3′);13C-NMR (CDCl3, 100 MHz)δ: 167.8 (s, C-α), 132.9 (s, C-1, 2), 130.9 (d, C-4, 5), 128.8 (d, C-3, 6), 71.8 (t, C-1′), 67.7 (t, C-1″), 29.7 (t, C-2′), 27.7 (d, C-2″), 19.2 (q, C-3″), 18.5 (t, C-3′), 14.1 (q, C-4′). These data are consistent with the literature values (Liu et al, 2011), and Compound 15 was therefore identified as butul isobutyl phthalate.

      β-Sitosterol (16) White powder. The compound was developed withβ-sitosterol standard on co-TLC experiments eluted with different solvent systems, and they had same Rfvalues. Therefore, it was identified asβ-sitosterol.

      Daucosterol (17) White powder. This compound was identified by co-TLC experiments and it showed the same Rfvalues with daucosterol standard in different develop systems. Therefore, it was determined as daucosterol.

      Oleanic acid (18) White powder. By co-TLC experiments, it was identified as oleanic acid due to the same Rfvalues with oleanic acid standard in different elution systems.

      (2S,3S,4R,9E)-1,3,4-Trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene (19) White powder; C42H83O5N; EI-MS: 681 [M]+;1H-NMR (CD3OD, 400 MHz)δ: 8.56 (1H, d,J= 8.7 Hz, NH), 5.52 (2H, m, H-9 and H-10), 5.08 (1H, m, H-2), 4.60 (1H, dd,J= 7.5, 3.6 Hz, H-2′), 4.47 (1H, dd,J= 10.8, 4.8 Hz, H-1a), 4.41 (1H, dd,J= 10.8, 4.6 Hz, H-1b), 4.32 (1H, dd,J= 6.2, 5.1 Hz, H-3), 4.26 (1H, m, H-4), 2.15-2.18 (4H, m, H-5a, H-8a, H-9a and H-3′a), 1.94-2.05 (5H, m, H-5b, H-8b, H-9b, H-3′b and H-4′a), 1.71-1.77 (3H, m, H-6a, H-6b and H-4′b), 1.26-1.32 (methylene band), 0.87 (6H, brt,J= 7.0 Hz, H-18 and H-24′);13C-NMR (CD3OD, 100 MHz)δ: 175.2 (s, C-1′), 131.0 (d, C-9 or C-10), 130.8 (d, C-9 or C-10), 77.0 (d, C-3), 73.0 (d, C-4), 72.6 (d, C-2′), 62.1 (t, C-1), 53.1 (d, C-2), 35.8 (t, C-3′), 34.0 (t, C-5), 33.5 (t, C-8), 33.1 (t, C-11), 32.3 (t, C-16′ and C-22′), 29.6-30.4 (methylens), 26.9 (t, C-4′), 26.0 (t, C-6), 23.1 (t, C-17 and C-23′), 14.4 (q, C-18 and C-24′). Compound 19 was identified as (2S, 3S, 4R, 9E)-1, 3, 4-trihydroxy-2- [(2′R)-2′-hydroxytetracosanoylamino]-9-octadecene by comparison of the1H-NMR and13C-NMR data above with those reported in the literature (Su et al, 2002).

      ALI MS, ALI MI, ONOCHA PA,et al, 2011. Bis-Sigmodiol: a new prenylflavanone dimer fromErythrinasigmoideaHua (Fabaceae) of Nigeria [J]. J Asian Nat Prod Res, 13:182-187.

      CASTRO O, LOPEZ J, VERGARA A. 1986. Isoflavans and a stilbene from wood of the decay-resistant tropical treeDiphysarobinioides[J]. J Nat Prod, 49:680-683.

      CHINA FLORA EDITORIAL BOARD, CHINESE ACADEMY OF SCIENCE, 1993. The Flora of China [M]. Beijing: Science Press:94.

      CHO S, PARK JH, PAE AN, 2012. Hypnotic effects and GABAergic mechanism of licorice (Glycyrrhizaglabra) ethanol extract and its major flavonoid constituent glabrol [J]. Bioorg Med Chem, 20:3493-3501.

      (Continueonpage1352)(Continuefrompage1388)

      KINOSHITA T, KAJIYAMA K, HIRAGA Y, et al, 1996. Isoflavan derivatives fromglycyrrhizaglabra(licorice) [J]. Heterocycles, 43:581-588.

      KUNMING INSTITUTE OF BOTANY,CHINESE ACADEMY OF SCIENCE, 2006. Flora of Yunnan [M]. Beijing: Science Press: 733.

      LEE EJ, YEAN MH, JUNG HS, et al, 2008. Phytochemical studies onAstragalusroot (2)-flavonoids and a lignan [J]. Natl Prod Sci, 14:131-137.

      LIU M, ZHANG W, QIU L, et al, 2011. Synthesis of butyl-isobutyl-phthalate and its interaction with α-glucosidaseinvitro[J]. J Biochem, 1:27-33.MALI RS, KULKARNI-JOSHI P, 1998. Synthesis of 6-prenylpyranoflavanones: Total synthesis of (+/-)-maxima flavanone A [J]. Ind J Chem, Section B: Org Chem Incl Med Chem, 38:596-599.MIZUNO M, TAMURA KI, TANAKA T, et al, 1989. Six flavanones from the roots ofEuchrestaformosana[J]. Phytochemistry, 10:2811-2812.

      RYU HW, LEE JH, KANG JE, et al, 2012. Inhibition of xanthine oxidase by phenolic phytochemicals fromBroussonetiapapyrifera[J]. J Kor Soc Appl Biol Chem, 55:587-594.

      SAIRAFIANPOUR M, KAYSER O, CHRISTENSEN J, et al, 2002. Leishmanicidal and antiplasmodial activity of constituents ofSmirnowiairanica[J]. J Nat Prod, 65:1754-1758.

      SU BN, MISICO R, PARK EJ, et al, 2002. Isolation and characterization of bioactive principles of the leaves and stems ofPhyaslisphiladelphica[J]. Tetrahedron, 58:3453-3466.SUH H, LEE S,KIM N, et al, 1999. Syntheses of (+/-)-shinflavanone and its structural analogues as potent inhibitors of bone resorption pits formation [J]. Bioorg Med Chem Lett, 9:1433-1436.SUTTHIVAIYAKIT S, THONGNAK O, LHINHATRAKOOL T, et al, 2009. Cytotoxic and antimycobacterial prenylated flavonoids from the roots ofEriosemachinense[J]. J Nat Prod, 72:1092-1096.ZHANG W, LOU HX, LI GY, et al, 2003. A new triterpenoid fromEntodonokamuraebroth [J]. J Asian Nat Prod Res, 3:189-195.

      2015-07-29

      2015-12-20

      國家自然科學(xué)基金(31170313) [Supported by the National Natural Science Foundation of China (31170313)]。

      韓冰洋(1987-),男,湖北襄陽人,碩士,主要從事藥用植物研究,(E-mail) hby31510@163.com。

      類芒齒黃芪地下部分化學(xué)成分研究

      韓冰洋, 張 宇, 田新雁, 肖朝江, 董 相, 姜 北*

      ( 大理大學(xué) 藥物研究所, 云南 大理 671000 )

      為了解類芒齒黃芪(Astragaluscamptodontoides)主要化學(xué)成分,從其地下部分甲醇提取物的乙酸乙酯部位分離出19個(gè)單體化合物,通過現(xiàn)代波譜分析及理化性質(zhì)等手段分別鑒定為異補(bǔ)骨脂黃酮 (1),4′-hydroxyisolonchocarpin (2),5-去氧山豆根黃酮(3),shinflavanone (4),khonklonginols H (5),4′-O-methylpreglabridin (6),3′-hydroxy-4′-O-methylglabridin (7),4′-O-methylglabridin (8),8-prenyl-phaseollinisoflavan (9),xambioona (10),光甘草酚 (11),粗毛甘草素H (12),methylnissolin (13),鄰苯二甲酸異丁酯 (14),鄰苯二甲酸丁酯異丁酯 (15),β-谷甾醇(16),胡蘿卜苷(17),齊墩果酸(18),(2S,3S,4R,9E)-1,3,4-trihydroxy-2- [(2′R)-2′- hydr-oxytetracosanoylamino]-9-octadecene (19)?;衔?~19均為首次從該植物中獲得,化合物1~7為首次從黃芪屬(Astragalus)植物中分離得到。

      類芒齒黃芪, 地下部分, 化學(xué)成分, 分離與鑒定

      10.11931/guihaia.gxzw201505031

      *通訊作者: 姜北,博士,教授,主要從事天然藥物、民族醫(yī)藥研究,(E-mail) dalinorthjiang@163.com。

      Q946.8 Document code: A Article ID: 1000-3142(2016)11-1382-08

      韓冰洋, 張宇, 田新雁, 等. 類芒齒黃芪地下部分化學(xué)成分研究 [J]. 廣西植物,2016,36(11):1382-1388HAN BY, ZHANG Y, TIAN XY, et al. Chemical constituents from underground part ofAstragaluscamptodontoides[J]. Guihaia, 2016, 36(11):1382-1388

      猜你喜歡
      丁酯鄰苯二甲酸甘草
      竟然是甘草惹的禍
      QuEChERS-氣相色譜-質(zhì)譜法測(cè)定植物油中16種鄰苯二甲酸酯
      炙甘草湯,適用于哪些病癥
      中老年保健(2021年9期)2021-08-24 03:51:00
      青菜對(duì)鄰苯二甲酸酯類物質(zhì)的積累和代謝初探
      3,5-二氨基對(duì)氯苯甲酸異丁酯的合成研究
      乙酸仲丁酯的催化合成及分析
      鄰苯二甲酸二丁酯的收縮血管作用及其機(jī)制
      鄰苯二甲酸二甲酯-D6的合成
      同位素(2014年2期)2014-04-16 04:57:13
      芍藥甘草湯加味治療坐骨神經(jīng)痛42例
      2,4-D丁酯對(duì)棉花造成的藥害及補(bǔ)救措施
      上犹县| 五指山市| 广河县| 东山县| 和龙市| 天气| 都昌县| 万源市| 拉孜县| 滕州市| 江川县| 曲靖市| 白朗县| 太仓市| 石狮市| 密云县| 洪江市| 会东县| 阿拉善右旗| 揭西县| 吉木萨尔县| 改则县| 崇阳县| 都兰县| 壤塘县| 新余市| 监利县| 屯门区| 凌海市| 海淀区| 陆川县| 义乌市| 比如县| 云阳县| 涡阳县| 泾源县| 宿州市| 开封县| 根河市| 利津县| 铜山县|