• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      R3 雙臨界Kirchhoff型方程正解的存在性

      2016-12-23 09:18:37宋雅倩張福偉劉進(jìn)生
      關(guān)鍵詞:有界山路太原

      宋雅倩, 張福偉, 劉進(jìn)生

      (太原理工大學(xué) 數(shù)學(xué)學(xué)院, 山西 太原 030024)

      ?

      R3雙臨界Kirchhoff型方程正解的存在性

      宋雅倩, 張福偉, 劉進(jìn)生

      (太原理工大學(xué) 數(shù)學(xué)學(xué)院, 山西 太原 030024)

      利用變分方法研究了R3上具有雙臨界非線性項(xiàng)的Kirchhoff型方程正解的存在性. 首先證明了該問題的能量泛函滿足山路引理的幾何條件,從而證明了能量泛函存在(PS)c序列,進(jìn)而通過(PS)c序列的有界性與弱極限的非平凡性及徑向?qū)ΨQ空間的性質(zhì)證明了此(PS)c序列具有強(qiáng)收斂子列,因此證明了能量泛函存在非平凡臨界點(diǎn),于是此問題存在非平凡解,最后證明了此非平凡解是正解.

      Kirchhoff型方程; 雙臨界非線性項(xiàng); 山路引理; 正解

      0 引 言

      本文主要考慮以下雙臨界Kirchhoff型方程

      解的存在性. 其中常數(shù)a,b>0,2*= 6, 2*(s)=6-2s,s∈(0,1). 而

      D1,2(R3)={u∈L2*(R3)|u∈L2(R3)},

      其內(nèi)積與范數(shù)分別為

      〈u,v〉=∫R3u·v,

      由于Kirchhoff型方程的重要性,近年來,很多學(xué)者研究了如下的Kirchhoff型問題[1-8]

      非平凡解的存在性. 同時(shí),也有學(xué)者研究帶有Sobolev臨界指數(shù)的Kirchhoff 型方程[9-13]

      文獻(xiàn)[14]運(yùn)用山路引理證明了RN中雙臨界p-Laplace方程

      定理 1 對任意a,b>0,s∈(0,1), 方程(1)在D1,2(R3)中至少存在一個(gè)正解.

      1 主要結(jié)果的證明

      在徑向空間

      R3)={u∈D1,2(R3)|u(x)=u(|x|)}

      中考慮問題(1). 由文獻(xiàn)[14]知

      引理 1 能量泛函φ滿足山路引理的幾何條件. 即

      1)φ(0)=0, 并且存在α,ρ>0, 當(dāng)‖u‖=ρ時(shí), 有φ(u)≥α>0.

      注意到2*(s)=6-2s,s∈(0,1), 從而存在α,ρ>0, 當(dāng)‖u‖=ρ時(shí), 有φ(u)≥α>0.

      從而存在充分大的t0>0, 使得‖t0u‖>ρ且φ(t0u)<0. 令e=t0u, 則‖e‖>ρ且φ(e)<0.

      φ(γ(1))<0},

      即{un}是泛函φ的一個(gè)(PS)c序列.

      為了證明φ滿足(PS)c條件, 本文在引理2~引理8中研究了(PS)c序列的結(jié)構(gòu).

      引理 2 若{un}為φ的(PS)c序列, 則{un}有界.

      證明 由于φ(un)→c,φ′(un)→0且4<2*(s)<6, 則

      故{un}有界.

      對任意的0

      A={x∈R3|r≤|x|

      C2∫A|vn-v|2→0,

      ∫R3|un||(η2)||un|≤

      式中:C(η)為正常數(shù)[14].

      ∫R3|(η un)|2=∫R3|ηun|2+o(1).

      由引理2, {un}有界. 故

      〈φ′(un,η2un〉=o(‖η2un‖)=o(‖un‖)=

      o(1), n→∞.

      由式(5)~式(8)得

      o(1)=〈φ′(un),η2un〉=a∫R3|(η un)|2+

      b∫R3|un|2∫R3|(η un)|2+o(1),

      從而

      ‖η un‖2=o(1),

      對任意的δ>0, 令

      由引理4可知, α,β,γ的取值與δ無關(guān).

      o(1)=

      a∫Bδ(0)|un|2+b∫R3|un|2∫Bδ(0)|un|2-

      從而

      a∫Bδ(0)|

      由α,β,γ定義可知αγ≤α+β. 于是結(jié)論成立.

      所以

      這與引理7矛盾.

      ,φ〉=∫R3aφ+

      bB2∫R3φφ.

      所以

      bB2∫R3|

      矛盾. 故∫R3|||2, 即又由于

      b∫R3||2∫R3

      [1]Sun J J, Tang C L. Resonance problems for Kirchhoff type equations[J]. Discrete and Continous Dynamical Sys., 2013(5): 2139-2154.

      [2]Cheng B T. New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems[J]. J. Math. Anal. Appl., 2012, 394: 488-495.

      [3]Cheng B T, Wu X. Existence results of positive solutions of Krichhoff problems[J]. NonlinearAnal., 2009(71): 4883-4892.

      [4]Yang Y, Zhang J H. Nontrivial solutions of a class of nonlocal problems via local linking theory[J]. J. Appl. Math. Lett., 2010(23): 377-380.

      [5]Sun J, Liu S B. Nontrivial solutions of Kirchhoff type problems[J]. J. Applied Mathematics Letters, 2012, 25: 500-504.

      [6]Li Y H, Li F Y, Shi J P. Existence of a positive solution to Kirchhoff type problems without compactness conditions[J]. J. Differential Equations, 2012, 253: 2285-2294.

      [7]Liang Z P, Li F Y, Shi J P. Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior[J]. Ann. I. H. Poincaré-AN, 2014, 31(1): 155-167.

      [8]He X M, Zou W M. Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3[J]. J. Differential Equations, 2012, 252: 1813-1834.

      [9]Li G B, Ye H Y. Existence of positive solutions for nonlinear Kirchhoff type problems in R3with critical Sobolev exponent[J]. Mathematical Methods in the Applied Sciences, 2014, 37(16): 2570-2584.

      [10]Figueiredo G M. Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument[J]. J. Math. Anal. Appl., 2013, 401: 706-713.

      [11]Xu J X, Zhang F B. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth[J]. J. Differential Equ., 2012(253): 2314-2351.

      [12]Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent[J]. Comm. Pure Appl. Math., 1983, 36: 437-477.

      [13]Alves C O, Correa F J S A, Figueiredo G M. On a class of nonlocal elliptic problems with critical growth[J]. Differ Equ. Appl., 2012(2): 409-417.

      [14]Roberta F, Patrizia P, Ferdric R. On a p-Laplace equation with multiple critical nonlinearities[J]. Journal De Mathematiques Purest Appliquees, 2009, 91: 156-177.

      [15]Badiale M, Serra E. Semilinear elliptic equations for beginners[J]. Springer London, 2011: 226.

      Existence of Positive Solutions for Kirchhoff Type Problems in R3with Multiple Critical Nonlinearities

      SONG Ya-qian, ZHANG Fu-wei, LIU Jin-sheng

      (College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China)

      The existence of positive solutions for Kirchhoff type problem with multiple critical nonlinearities was investigated by using variational method. Firstly, it was proved that the energy functional possessed mountain pass geometry and got a (PS)csequence.Then, it was demonstrated that the (PS)csequence contained strong convergent subsequence through the boundedness of the (PS)csequence, the non triviality of weak limit, and the property of radial symmetry space. Therefore, the energy functional has at least one nontrivial critical point and the problem has at least one nontrivial solution. Consequently, it is achieved that the nontrivial solution is positive.

      Kirchhoff type problem; multiple critical nonlinearities; mountain pass theorem; positive solution

      1673-3193(2016)06-0576-05

      2016-05-28

      宋雅倩(1990-), 女, 碩士生, 主要從事非線性泛函分析研究.

      張福偉(1957-), 女, 副教授, 主要從事非線性泛函分析研究.

      O175.2

      A

      10.3969/j.issn.1673-3193.2016.06.005

      猜你喜歡
      有界山路太原
      復(fù)Banach空間的單位球上Bloch-型空間之間的有界的加權(quán)復(fù)合算子
      危險(xiǎn)的山路
      山路彎彎
      太原清廉地圖
      除夜太原寒甚
      一類具低階項(xiàng)和退化強(qiáng)制的橢圓方程的有界弱解
      山路彎彎
      淺談?wù)?xiàng)有界周期數(shù)列的一些性質(zhì)
      山路乾坤
      讀者(2015年18期)2015-05-14 11:41:08
      基于sub-tile的對稱有界DNA結(jié)構(gòu)自組裝及應(yīng)用
      乐安县| 陆川县| 五峰| 静海县| 敦煌市| 浮梁县| 伊宁市| 上杭县| 通海县| 临湘市| 札达县| 南汇区| 渝北区| 陇川县| 陵川县| 岱山县| 张家港市| 津市市| 巫溪县| 台北县| 南涧| 高阳县| 托克托县| 克什克腾旗| 五河县| 卢氏县| 林西县| 滁州市| 玉屏| 瓦房店市| 安庆市| 新源县| 酉阳| 高邑县| 白城市| 巍山| 五常市| 观塘区| 石阡县| 舒兰市| 三台县|