賀前鋒,桂娟,劉代歡,李學(xué)釗,李鵬祥,權(quán)勝祥
(湖南永清環(huán)保研究院有限責(zé)任公司,長沙 410330)
淹水稻田中土壤性質(zhì)的變化及其對土壤鎘活性影響的研究進展
賀前鋒,桂娟,劉代歡*,李學(xué)釗,李鵬祥,權(quán)勝祥
(湖南永清環(huán)保研究院有限責(zé)任公司,長沙 410330)
近年來,面對稻田土壤鎘(Cd)污染日益嚴(yán)重和“鎘米”事件頻發(fā)的現(xiàn)狀,許多專家對稻田土壤鎘的活性變化及其污染治理進行了大量研究,大多數(shù)研究表明淹水能降低稻田土壤Cd的活性和稻米Cd的含量。但是,由于稻田土壤自身的復(fù)雜性以及影響因素的多樣性、綜合性和不確定性,尤其是在淹水條件下,稻田土壤性質(zhì)[土壤膠體和團聚體、pH和Eh(pe+pH)、陰離子和陽離子、鐵錳氧化物和含硫化合物、有機質(zhì)和可溶性有機物、碳酸鹽和磷酸鹽、根系分泌物和微生物等]發(fā)生了復(fù)雜變化,使得Cd活性變化更加復(fù)雜,Cd污染的防控和修復(fù)更加困難。通過綜述淹水條件下稻田土壤性質(zhì)的變化,闡述了這些變化對土壤中Cd活性的影響,同時對該領(lǐng)域的研究方向進行了展望,旨在為實現(xiàn)Cd污染稻田的農(nóng)業(yè)安全生產(chǎn)提供理論依據(jù),并為Cd污染土壤的修復(fù)治理提供參考。
淹水;稻田;土壤性質(zhì);鎘活性;鎘污染
近年來,由于污水灌溉、農(nóng)藥化肥施用、礦山開采和汽車尾氣排放等,我國耕地土壤重金屬污染形勢日趨嚴(yán)峻[1]。2014年,全國土壤污染公報顯示,全國中重度污染耕地約333萬hm2,耕地土壤點位超標(biāo)率高達(dá)19.4%,其中以鎘(Cd)污染最為突出,樣點超標(biāo)率達(dá)7.0%,每年生產(chǎn)的農(nóng)產(chǎn)品中Cd含量超標(biāo)的已超過14.6×108kg[2],因Cd污染引起的糧食安全問題屢見不鮮[3]。水稻是我國第一大糧食作物,約有60%以上的人口以稻米為主食[4-5]。稻米質(zhì)量安全關(guān)系到國計民生,加快Cd污染稻田修復(fù)、保障糧食安全已迫在眉睫。
Cd主要通過土壤-作物系統(tǒng)進入人體,而稻田土壤Cd的生物有效性即活性是影響重金屬Cd進入人體的主要因素[6]。大量研究表明,稻米Cd含量與土壤中有效態(tài)Cd含量密切相關(guān)[1,7]。土壤有效態(tài)Cd是作物吸收的主要形式,主要包括水溶性Cd和交換態(tài)Cd。因此,降低土壤Cd活性是避免Cd通過食物鏈進入人體,進而危害人類健康的關(guān)鍵。
水分管理為Cd污染控制的主要農(nóng)藝調(diào)控措施之一。有研究表明,在Cd污染的稻田采用傳統(tǒng)的全生育期深水淹灌比濕潤灌溉或間歇灌溉等節(jié)水措施更有利于降低土壤Cd生物有效性和稻米Cd含量[8-9]。土壤膠體和團聚體、土壤pH和Eh、陰陽離子、鐵錳氧化物和硫化合物、有機質(zhì)和可溶性有機物、碳酸鹽和磷酸鹽、根系分泌物和微生物等性質(zhì)是影響Cd生物有效性的重要因素[1,10]。在淹水條件下,這些因素會發(fā)生復(fù)雜的化學(xué)變化,進而影響土壤Cd的形態(tài)分配[11]。目前,很多學(xué)者對淹水還原條件下土壤Cd生物有效性及其制約機理進行了研究[11-12]。大量研究表明,隨土壤還原作用的增強,土壤Cd活性形態(tài)的含量降低[13-14]。但是,葛瀅等[15]采用黃棕壤進行淹水培養(yǎng)實驗,結(jié)果表明還原作用越強,土壤有效Cd含量越高。可見,由于稻田土壤性質(zhì)的不同以及各因素的多樣性和復(fù)雜性,淹水對土壤Cd活性轉(zhuǎn)化具有上升和下降的雙向影響。因此,探明淹水條件土壤Cd活性變化需要綜合考慮以上各因素的影響。
本文綜述了淹水條件下稻田土壤性質(zhì)[土壤團聚體和膠體、pH和Eh(pe+pH)、陰離子和陽離子、鐵錳氧化物和含硫化合物、有機質(zhì)和可溶性有機物、碳酸鹽和磷酸鹽、根系分泌物和微生物等]的變化,并闡述了土壤性質(zhì)的變化對土壤中Cd活性的影響,旨在為淹水稻田土壤中Cd活性的變化規(guī)律及其制約機理的研究和Cd污染稻田的治理與糧食的安全生產(chǎn)提供理論依據(jù)和技術(shù)支撐。
1.1 膠體和團聚體的變化及其對鎘活性的影響
1.1.1 膠體變化及其對Cd活性的影響
土壤膠體是指粒徑范圍在1 nm~1 μm之間的一類細(xì)微粒物質(zhì),可分為無機膠體、有機膠體和無機-有機復(fù)合膠體。膠體具有大量的比表面積和豐富的表面電荷,對Cd有強的吸附能力,對Cd的生物有效性有重要影響[16]。當(dāng)土壤淹水后,土壤膠體會從土壤基質(zhì)釋放到土壤溶液中或溶液中的土壤膠體沉積到土壤基質(zhì)上。有研究表明,土壤淹水后,土壤陽離子濃度降低,與Cd對膠體吸附的競爭減小,促進土壤膠體對Cd的吸附[11,17]。
1.1.2 團聚體變化及其對Cd活性的影響
土壤團聚體是土壤結(jié)構(gòu)最基本的物質(zhì)和功能單元。不同粒徑的團聚體顆粒組成、有機質(zhì)、氧化鐵及礦物質(zhì)結(jié)合方式各異,對重金屬的束縛能力及生物有效性不同[18]。龔倉等[19]研究表明,隨團聚體粒徑的增加Cd在團聚體中的富集呈減弱的趨勢,且主要分布在粉-黏團聚體。郁紅艷等[20]研究了農(nóng)田土壤水穩(wěn)定性團聚體中Cd的分布規(guī)律,表明總Cd和各化學(xué)形態(tài)Cd主要存在庫是大團聚體和微小團聚體。
有機質(zhì)是土壤團聚體的膠結(jié)物質(zhì),與團聚體的形成和功能緊密相關(guān)[21]。有研究表明,土壤中的有機碳含量隨團聚體粒徑減小而升高,Cd分布與顆粒有機碳含量正相關(guān)[22]。淹水后,土壤有機質(zhì)累積,水穩(wěn)定性團聚體更加穩(wěn)定,對Cd的吸附增強[23]。
1.2 pH、Eh和pe+pH的變化及其對Cd活性的影響
1.2.1 pH和Eh變化及其對Cd活性的影響
淹水使稻田土壤與空氣隔絕,隨土壤中微生物的代謝,土壤中氧氣迅速減少;微生物分解土壤有機質(zhì)釋放大量的電子和質(zhì)子,使硝態(tài)氮、鐵錳氧化物等氧化性物質(zhì)接受電子發(fā)生還原,同時也消耗大量的質(zhì)子,導(dǎo)致pH值向中性靠攏,即酸性土壤pH值升高及堿性土壤pH值降低,而氧化還原電位(Eh)在兩種土壤中均下降,尤其在淹水初期,變化顯著[24-25]。根據(jù)黃丹丹等[26]研究結(jié)果作出淹水過程中酸性紅壤土和堿性潮黃土pH和Eh的變化圖形,如圖1所示。
pH變化跟土壤本底性質(zhì)相關(guān)。淹水條件下,酸性土壤pH之所以升高,主要是因為土壤鐵氧化物的還原溶解作用,而堿性土壤pH降低則主要由土壤中大量碳酸鹽溶解作用以及土壤中CO2的累積所導(dǎo)致[27]。土壤pH值能夠影響土壤對Cd的吸附,吸附曲線可分為3個區(qū)間:低pH值低吸附區(qū),中pH值穩(wěn)定增長區(qū)及高pH值強吸附區(qū)[28]。pH值小于3.2時,Cd的吸附率很低;pH在4.5~7.2時,Cd的吸附率與pH呈顯著正相關(guān);pH大于7.5時,Cd的吸附率接近100%,主要以氧化物結(jié)合態(tài)及殘渣態(tài)形式存在[28]。大量研究也表明,土壤pH與稻谷Cd含量成反比[26,29]。
Eh值反映土壤氧化還原程度。一般認(rèn)為在pH為7的土壤中,Eh值高于125 mV時,土壤以氧化狀態(tài)為主;Eh值低于125 mV時,土壤以還原狀態(tài)為主[30]。稻田淹水時,土壤耕作層水分飽和,土壤處于還原狀態(tài)。在低Eh值下,土壤Cd更易于由有效態(tài)轉(zhuǎn)化為穩(wěn)定態(tài),從而降低Cd的活性[31]。
圖1 土壤淹水后pH和Eh變化Figure 1 The change of pH and Eh of the soil after flooding
1.2.2 pe+pH的變化及其對鎘活性的影響
pe表示參加反應(yīng)的電子活度的負(fù)對數(shù),pH表示參加反應(yīng)的質(zhì)子活度的負(fù)對數(shù)。氧化還原反應(yīng)有電子的轉(zhuǎn)移和質(zhì)子的參與,因而pe+pH能更好地表示參加化學(xué)和電化學(xué)反應(yīng)的反應(yīng)物與生成物的濃度變化[26]。pe+pH值越小,表示還原勢越強,pe+pH值越大則氧化勢越強。土壤淹水后,土壤還原程度加強,pe+ pH值下降,且土壤類型不同,下降的程度也不同[32]。李義純等[32]研究表明(圖2),在淹水過程中黃潮土比紅壤土pe+pH下降程度更大。
pe+pH值可用來表征土壤鐵礦物的形態(tài)轉(zhuǎn)化,其變化影響土壤Cd的形態(tài)[33]。淹水使酸性土壤pe+pH下降,Cd活性降低,主要受土壤鐵氧化物控制;淹水使堿性土壤pe+pH下降,Cd活性降低,主要受土壤碳酸鐵控制[33]。隨著pe+pH下降,土壤Cd由可交換態(tài)轉(zhuǎn)化成其他形態(tài),且Cd固相組分逐級發(fā)生變化[33]。在pe+pH為14.16~11.34、pH<5.0時,土壤Cd組分以可交換態(tài)Cd為主;在pe+pH為14.16~6.04、pH>5.0時,土壤Cd組分以碳酸鹽態(tài)和氧化物結(jié)合態(tài)為主;在pe+pH為6.48~5.38、pH>5.78時,土壤Cd組分以有機結(jié)合態(tài)為主;pe+pH<5時,土壤Cd組分以硫化物為主[34]。
圖2 土壤淹水后pe+pH變化Figure 2 The change of pe+pH of the soil after flooding
1.3 陰離子和陽離子的變化及其對Cd活性的影響
1.3.1 陰離子的變化及其對Cd活性的影響
1.3.2 陽離子的變化及其對Cd活性的影響
土壤陽離子主要有K+、Al3+、Ca2+、Mg2+和Fe2+[10]。土壤陽離子與Cd2+之間存在土壤表面吸附點位的競爭。在淹水條件下,非變價元素Al3+、Ca2+、Mg2+和K+含量基本不變但飽和度降低,因此與Cd2+對土壤表面吸附點的競爭減少,Cd活性降低。變價元素Fe由于氧化鐵(Ⅲ)的還原溶解造成Fe(Ⅱ)濃度的增加,而土壤鐵形態(tài)的變化影響Cd的鐵錳結(jié)合態(tài)的變化,從而控制Cd活性的變化。陳莉娜等[41]研究淹水還原作用對紅壤Cd生物有效性的影響,水溶性Fe(Ⅱ)濃度在淹水前期增大而后期降低,Cd的生物有效性在淹水初期高于后期。
1.4 鐵錳氧化物和含硫化合物的變化及其對Cd活性的影響
1.4.1 鐵錳氧化物的變化及其對Cd活性的影響
水稻土壤中最為豐富的金屬氧化物是鐵氧化物,包括晶型的赤鐵礦、磁鐵礦、針鐵礦、纖鐵礦和無定形的水鐵礦,且還原溶解作用依次降低。土壤淹水后,鐵氧化物發(fā)生還原溶解,水溶性Fe2+濃度增加,同時,F(xiàn)e2+形成FeCO3、Fe(OH)2、Fe3(OH)8等沉淀[42]。尤其在有機質(zhì)和豐富的土壤,F(xiàn)e2+與S2-反應(yīng)形成黑色FeS[43]。這些沉淀又被氧化為溶解度較低的無定形氧化鐵,導(dǎo)致無定形氧化鐵濃度增加[42]。
土壤鐵氧化物的變化是影響Cd活性的重要因素。一方面,鐵氧化物具有較大的比表面積和可變表面電荷,對土壤中的Cd有很大的吸附容量[44],因此在淹水條件下,鐵氧化物還原溶解也是其自身對Cd的釋放;另一方面,不同的鐵氧化物具有不同的表面活性吸附點位,對Cd的吸附也不同[45],因此Fe形態(tài)的再分配決定了Cd形態(tài)的再分配。有研究表明,土壤淹水后可交換態(tài)Cd占總Cd的比例明顯下降,且下降的部分向活性較低的晶形鐵氧化物結(jié)合態(tài)轉(zhuǎn)化[46]。
錳的各種氧化態(tài)隨化學(xué)價的升高,堿性減弱而酸性增強。低價的MnO、Mn2O3屬堿性,4價的MnO2屬中性,高價的MnO3、Mn2O7為酸性。在酸性土壤中,因為淹水引起缺氧造成氧化還原點位較低時,氧化錳氧化成易溶于水的Mn(Ⅱ)。Fulda等[47]研究認(rèn)為,在淹水還原環(huán)境,溶解還原的Mn2+阻止水稻對Cd的吸收。Kashem等[48]研究發(fā)現(xiàn),淹水后交換態(tài)Cd的含量明顯下降而鐵錳氧化物結(jié)合態(tài)Cd的含量顯著增加,推測其主要原因是新形成的鐵錳礦物對Cd的吸附,導(dǎo)致Cd由交換態(tài)向鐵錳氧化物結(jié)合態(tài)轉(zhuǎn)化。
另外,值得強調(diào)的是,在淹水厭氧環(huán)境下,鐵錳氧化物在水稻根表形成一種紅色或紅棕色氧化物膠膜[49]。此膠膜對土壤Cd具有吸附和吸收作用,從而促進[50]、阻止[51]或者不影響[52]水稻對土壤Cd的吸收,其作用方向和程度主要取決于膜的形成量、老化程度以及水稻品種對Cd的富集和轉(zhuǎn)運能力[53]??梢?,淹水厭氧環(huán)境可促進根系鐵錳氧化物的形成,而此膜對土壤Cd活性的影響受多個因素的限制。
1.4.2 含硫化合物的變化及其對鎘活性的影響
稻田淹水條件下,土壤形成還原環(huán)境促進土壤中揮發(fā)性硫化物(AVS,如H2S)或者硫酸鹽(SO2-4)還原,生成的S2-或-HS與土壤中Cd形成穩(wěn)定、難溶的CdS沉淀。因此,CdS的生成可顯著降低土壤中Cd的活性[8,54]。有研究表明,當(dāng)水稻土壤淹水5周時,S2-和Cd2+的離子活度積接近CdS的溶度積,表明淹水土壤中有CdS沉淀生成[55]。劉邵兵等[8]研究表明,Cd污染稻田土壤中有效硫及其還原性S2-的形成是顯著影響水稻吸收累積Cd的一個間接因子。也有研究表明,在還原性強的土壤中,當(dāng)pe+pH小于5時,才有可能生成CdS[26]。但目前關(guān)于Cd與硫化物之間的作用機制并不清楚。一方面,硫化合物提供的S2-與Cd2+結(jié)合生成CdS,從而降低土壤Cd的活性;另一方面,S2-與土壤鐵形成鐵的硫化物,Cd2+再與鐵的硫化物發(fā)生共沉淀從而導(dǎo)致Cd活性的降低[56-57]。
1.5 有機質(zhì)和可溶性有機物的變化及其對Cd活性的影響
1.5.1 有機質(zhì)的變化及其對Cd活性的影響
與通氣良好的土壤相比,淹水土壤中O2的減少,可降低有機質(zhì)的分解速率,從而導(dǎo)致有機質(zhì)的累積[58]。一方面,有機質(zhì)通過改變土壤負(fù)電荷量、pH等理化性質(zhì)以提高土壤對Cd的吸附;另一方面,有機質(zhì)具有大量的功能團,對Cd2+具有螯合作用,可導(dǎo)致Cd活性降低[59]。但有機質(zhì)對土壤Cd的影響不穩(wěn)定,隨著有機質(zhì)的分解,吸附的Cd會釋放出來,并向交換態(tài)Cd轉(zhuǎn)化,提高Cd的活性[60]。
1.5.2 可溶性有機物的變化及其對Cd活性的影響
對于稻田生態(tài)系統(tǒng),淹水后土壤有機質(zhì)的分解使可溶性有機物(DOM)大量溶出[61]。DOM具有比土壤更多的吸附點位,可以作為土壤重金屬的“配位體”和“遷移載體”[62]。它可以提供一系列螯合能力不同的結(jié)合點位與Cd螯合,形成有機-重金屬離子配合物,從而提高土壤中Cd的溶解性[63]。有研究發(fā)現(xiàn),DOM與Cd2+螯合形成的水溶性絡(luò)合物,可提高Cd的活性和遷移能力,降低土壤對Cd的吸附[64]。也有報道認(rèn)為,Cd溶解度增大的原因在于DOM通過與Cd2+競爭土壤表面的吸附點位,從而減少土壤對Cd2+的吸附[65]。但也有相反的研究發(fā)現(xiàn),在較強酸性土壤中,土壤帶有很強正電荷,土壤對DOM的吸附致使自身的負(fù)電荷增加,進而促進土壤對Cd2+的吸附。同時,DOM在Cd2+與土壤之間的螯合橋梁作用也會增大Cd2+在土壤表面的吸附量[66],導(dǎo)致Cd的溶解度減小。DOM對土壤Cd的活性有增大和減小的雙重影響,可能與土壤類型和DOM種類等有關(guān)。
1.6 碳酸鹽和磷酸鹽的變化及其對Cd活性的影響
1.6.1 碳酸鹽的變化及其對Cd活性的影響
在稻田土壤中,主要的碳酸鹽有Na2CO3、CaCO3、MnCO3和FeCO3,且一般存在于中性或堿性土壤中。許多研究表明,碳酸鹽對Cd有較強的吸附能力,且CdCO3的形成本身就能降低土壤中Cd的溶解度[10,67]。
當(dāng)?shù)咎镅退畷r,碳酸鹽溶解可導(dǎo)致水體pH下降和大量鹽基離子溶出[68]。由于此過程相對緩慢,碳酸鹽一直被視為淹水土壤的“定時炸彈”。水體pH下降使土壤表面負(fù)電荷數(shù)減少,進而導(dǎo)致土壤對Cd2+的吸附量減少;同時,溶出的大量鹽基離子與Cd2+競爭土壤表面吸附點位,也導(dǎo)致土壤對Cd2+的吸附量減少,Cd活性提高[10]。因此,在堿性或中性稻田土壤中,碳酸鹽通過影響土-水體系的pH和溶液中鹽基離子的含量,間接影響土壤中Cd的活性。
1.6.2 磷酸鹽的變化及其對鎘活性的影響
土壤中的磷酸鹽可分為與Fe、Al、Ca等結(jié)合的化合態(tài)磷酸鹽和吸附在有機物或黏土礦物表面的吸附態(tài)磷酸鹽。磷酸鹽穩(wěn)定Cd的作用機理主要是表面直接吸附、誘導(dǎo)吸附或者與Cd生成沉淀或礦物等復(fù)雜反應(yīng)[69]。
土壤淹水后化合態(tài)磷酸鹽溶解。由于相比其他磷酸鹽,磷酸鎘鹽的溶解度較低,在不同的pH條件下,磷酸鹽與Cd2+結(jié)合可生成Cd(H2PO4)2、CdHPO4或Cd3(PO4)2更穩(wěn)定的化合物,土壤Cd活性降低[70]。此外,有研究表明,磷酸鹽被新形成的具有巨大表面積和更多吸附位點的無定形鐵氧化物所吸附,從而增加土壤磷酸鹽的吸附量,引起土壤表面負(fù)電荷增加,誘導(dǎo)Cd的吸附增加[71]。但有研究表明淹水影響水稻土對磷酸鹽的吸附不是連續(xù)的,淹水后期在一個特定的吸附磷酸鹽水平,還原狀態(tài)土壤溶液中磷酸鹽溶解大于吸附,導(dǎo)致Cd的溶解增加[72]。
1.7 根系化合物和微生物的變化及其對Cd活性的影響
1.7.1 根系化合物的變化及其對Cd活性的影響
根系分泌物包括低分子量化合物(氨基酸、有機酸等)和高分子量化合物(類金屬蛋白、粘膠等)。這些化合物可通過酸化、螯合、絡(luò)合以及活化等過程改變土壤Cd的形態(tài),從而影響Cd的活性[73]。
淹水土壤通透性、pH等性質(zhì)的變化都會影響根系分泌物活化Cd。在淹水條件下,根系分泌物可以通過分泌質(zhì)子或還原性有機酸,使根際pH降低,酸化土壤中不溶態(tài)Cd[74]。水稻根系的分泌物也能溶解鐵錳氧化物膜,從而影響水稻對Cd的吸收[75]。此外,根系分泌物中某些金屬結(jié)合蛋白和某些特殊的有機酸(如蘋果酸、檸檬酸)也能螯合Cd,形成穩(wěn)定的螯合物。例如根分泌的粘膠物質(zhì)與根際的Cd2+結(jié)合,形成穩(wěn)定的螯合體,將污染物Cd固定在土壤中[76]。
1.7.2 微生物的變化及其對Cd活性的影響
微生物對Cd的修復(fù)機理主要是生物吸附和生物轉(zhuǎn)化[77]。此外,微生物還可通過分泌質(zhì)子、有機酸、鐵載體等物質(zhì)或者將大分子分泌物轉(zhuǎn)化成小分子化合物,活化土壤Cd[78]。
土壤淹水后,微生物群落結(jié)構(gòu)發(fā)生變化[61]。淹水還原條件有利于厭氧型微生物的生長,如硫酸鹽還原菌和異化鐵還原菌等。硫酸鹽還原菌可將土壤中的還原成S2-,S2-與Cd2+結(jié)合生成CdS沉淀,使土壤Cd活性降低[79]。異化鐵還原菌在厭氧生長環(huán)境下能結(jié)合并氧化有機物以其作為電子供體,同時將Fe(Ⅲ)還原成Fe(Ⅱ)。黃森等[80]研究了淹水時間對水稻土中4種異化鐵還原功能菌豐度的影響,結(jié)果表明Fe(Ⅱ)濃度在整個淹水培養(yǎng)期增加。在淹水前期,同屬發(fā)酵型的梭菌和芽孢桿菌豐度上升,對鐵還原的貢獻(xiàn)較大;在培養(yǎng)后期,地桿菌和厭氧粘粉菌成為Fe(Ⅱ)濃度持續(xù)增長的重要因素。因此,異化鐵還原菌通過影響Fe的還原而影響對Cd的吸附。
綜上可知,由于淹水稻田土壤自身的復(fù)雜性、影響因素的多樣性、不確定性以及各因素之間的綜合性,有關(guān)淹水稻田土壤性質(zhì)的變化及其對土壤Cd活性影響的研究常出現(xiàn)不同的研究結(jié)果。一方面,淹水條件下,土壤膠體、團聚體、鐵錳礦物、固相有機質(zhì)、磷酸鹽對Cd的吸附、酸性土壤pH的升高和氧化還原電位(Eh)的降低、根際鐵錳氧化膜的阻礙、硫化物與Cd2+的共沉淀、還原菌的還原作用以及根系分泌物的螯合作用都可能導(dǎo)致Cd活性降低;另一方面,陰離子(如Cl-和)與Cd2+之間的配位、鐵錳礦物和碳酸鹽的溶解、根際氧化膜的吸附、DOM與Cd2+的螯合以及根系分泌物的活化作用都可能導(dǎo)致Cd活性升高。以上制約因素對土壤Cd活性變化影響的不同可能跟稻田生態(tài)系統(tǒng)的復(fù)雜環(huán)境有關(guān),也給土壤Cd污染治理的研究帶來困難。
目前,大量的研究集中在淹水對土壤理化性質(zhì)的影響方面,缺乏結(jié)合生物指標(biāo)以及不同生長期Cd在土壤-作物系統(tǒng)中遷移轉(zhuǎn)化的系統(tǒng)性研究。為進一步探索淹水稻田土壤中Cd活性變化的機理,為稻田Cd污染控制和治理提供科學(xué)依據(jù),今后的研究可從以下三個方面來開展:首先,結(jié)合作物生長季節(jié)對土壤多種指標(biāo),尤其是生物指標(biāo)(如藻類等小型微生物)進行監(jiān)測,研究不同水稻生長期淹水稻田土壤性質(zhì)的變化及其對Cd活性的影響,揭示影響稻田土壤Cd形態(tài)和活性變化的主導(dǎo)因素和內(nèi)在調(diào)控機制。其次,研究淹水條件下Cd在稻田土壤-作物中的遷移,揭示污染稻田土壤-作物系統(tǒng)Cd的遷移轉(zhuǎn)化機理。第三,將國內(nèi)外先進儀器和分析手段(原子力顯微技術(shù)、X射線熒光光譜原位監(jiān)測技術(shù)、污染源解析技術(shù)等)應(yīng)用于研究,在不破壞土壤結(jié)構(gòu)的前提下對土壤重金屬污染進行快速、精準(zhǔn)檢測,這對加快農(nóng)田生態(tài)系統(tǒng)Cd污染的防控與修復(fù)具有重要意義。
[1]宋文恩,陳世寶,唐杰偉.稻田生態(tài)系統(tǒng)中鎘污染及環(huán)境風(fēng)險管理[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2014,33(9):1669-1678.
SONG Wen-en,CHEN Shi-bao,TANG Jie-wei.Cadmium pollution and its environmental risk management in rice ecosystem[J].Journal of Agro-Environment Science,2014,33(9):1669-1678.
[2]環(huán)境保護部,國土資源部.全國土壤污染狀況調(diào)查公報2014[EB/ OL].[2014-04-17].http://www.mlr.gov.cn/xwdt/jrxw/20140417_ 1312998.htm.
Ministry of Environmental Protection and the Ministry of Land.National survey of soil pollution bulletin 2014[EB/OL].[2014-04-17].http:// www.mlr.gov.cn/xwdt/jrxw/20140417_1312998.htm.
[3]Bian R,Joseph S,Cui L,et al.A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J].Journal of Hazardous Materials,2014,272:121-128.
[4]國家統(tǒng)計局.中國統(tǒng)計年鑒2012[M/OL].[2013-07-13].http//www. stats.gov.cn/tjsj/ndsi/20130713-1337236.html
Nation Bureau of Statistics of the People′s Republic of China.China statistics year 2012[M/OL].[2013-07-13].http//www.stats.gov.cn/tjsj/ ndsi/20130713-1337236.html
[5]于紅艷,劉世義.我國水稻產(chǎn)業(yè)發(fā)展現(xiàn)狀、趨勢及對策[J].農(nóng)村經(jīng)濟與科技,2016,27(9):7-9.
YU Hong-yan,LIU Shi-yi.The situation of rice producton in China[J]. Rural Economy and Science-Technology,2016,27(9):7-9.
[6]崔巖山,陳曉晨.土壤鎘的生物可給性及其對人體的健康風(fēng)險評估[J].環(huán)境科學(xué),2010,31(2):403-408.
CUI Yan-shan,CHEN Xiao-chen.Bioaccessibility of soil cadmium and its health risk assessment[J].Environmental Science,2010,31(2):403-408.
[7]張建輝,王芳斌,汪霞麗,等.湖南稻米鎘和土壤鎘鋅的關(guān)系分析[J].食品科學(xué),2015,36(22):156-160.
ZHANG Jian-hui,WANG Fang-bin,WANG Xia-li,et al.Relationship between Cd and Zn in rice grain[J].Food Science,2015,36(22):156-160.
[8]劉昭兵,紀(jì)雄輝,彭華,等.水分管理模式對水稻吸收積累鎘的影響及其作用機理[J].應(yīng)用生態(tài)學(xué)報,2010,21(4):908-914.
LIU Zhao-bing,JI Xiong-hui,PENG Hua,et al.Effects and action mechanisms of different water management modes on rice Cd absorption and accumulation[J].Chinese Journal of Applied Ecology,2010,21(4):908-914.
[9]彭世彰,喬振芳,徐俊增.控制灌溉模式對稻田土壤-植物系統(tǒng)鎘和鉻累積的影響[J].農(nóng)業(yè)工程學(xué)報,2012,28(6):94-99.
PENG Shi-zhang,QIAO Zhen-fang,XU Jun-zeng.Effect of controlled irrigation on accumulation of heavy metal Cd,Cr in soil-plant system in rice paddy[J].Transactions of the CSAE,2012,28(6):94-99.
[10]李義純,葛瀅.淹水土壤中鎘活性變化及其制約機理[J].土壤學(xué)報,2010,48(4):840-846.
LI Yi-chun,GE Ying.Variation of cadmium activity in flooded soils anditscontrollingmechanisms[J].Acta Pedologica Sinica,2010,48(4):840-846.
[11]陳莉娜.淹水還原作用對土壤鎘生物有效性的影響[D].南京:南京農(nóng)業(yè)大學(xué),2011.
CHEN Li-na.Effect of submergence on the bioavailability of Cd in soils[D].Nanjing:Nanjing Agricultural University,2011.
[12]R?mkens P F,Brus D J,Guo H Y,et al.Impact of model uncertainty on soil quality standards for cadmium in rice paddy fields[J].Science of the Total Environment,2011,409(17):3098-3105.
[13]Hu P J,Huang J X,Ouyang Y,et al.Water management affects arsenic and cadmium accumulation in different rice cultivars[J].Environmental Geochemistry and Health,2013,35(6):767-778.
[14]鄺美娟,王翠紅,曾理,等.淹水對湖南3種典型水稻土鎘的形態(tài)分級影響[J].湖南農(nóng)業(yè)科學(xué),2016(5):28-34.
KUANG Mei-juan,WANG Cui-hong,ZENG Li,et al.Morghologicalclassification effect of cadmium of waterlogging on 3 typical paddy soils in Hunan[J].Hunan Argricultural Sciences,2016(5):28-34.
[15]葛瀅,李義純,周權(quán)鎖,等.淹水還原作用下土壤鎘的吸附與解吸特征的初步探討[J].生態(tài)環(huán)境,2006,15(4):730-734.
GE Ying,LI Yi-chun,ZHOU Quan-suo,et al.Preliminary investigation on adsorption and desorption of Cd in soil with different reduction states[J].Ecology and Environment,2006,15(4):730-734.
[16]劉冠男,劉新會.土壤膠體對重金屬遷移行為的影響[J].環(huán)境化學(xué), 2013,32(7):1308-1317.
LIU Guan-nan,LIU Xin-hui.A review on the impact of soil colloids on heavy metal transport[J].Environmental Chemistry,2013,32(7):1308-1317.
[17]Zhao L L,Zhou L X.Cadmium transport mediated by soil colloid and dissolved organic matter:A field study[J].Journal of Environmental Sciences,2010,22(1):106-115.
[18]Wang J G,Yang W,Yu B,et al.Estimating the influence of related soil properties on macro-and micro-aggregate stability in ultisols of southcentral China[J].Catena,2016,137:545-553.
[19]龔倉,許殿斗,成杭新,等.典型熱帶林地土壤團聚體顆粒中重金屬的分布特征及其環(huán)境意義[J].環(huán)境科學(xué),2013,34(4):1094-1100.
GONG Cang,XU Dian-dou,CHENG Hang-xin,et al.Distribution characteristics and environmental significance of heavy metal in soil particle size fractions from tropical forests in China[J].Environmental Science,2013,34(4):1094-1100.
[20]郁紅艷,阮文權(quán),楊廣龍.冶煉廠周邊農(nóng)田土壤水穩(wěn)定性團聚體中鎘的分布規(guī)律[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2016,35(1):80-85.
YU Hong-yan,RUAN Wen-quan,YANG Guang-long.Distribution of cadmium in soil water-stable aggregates in farmland surrounding a smelter[J].Journal of Agro-Environment Science,2016,35(1):80-85.
[21]Wang H,Guan D S,Zhang R D,et al.Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field [J].Ecological Engineering,2011,70:206-211.
[22]李璐娟,夏建國,劉郎.紫色土有機質(zhì)對團聚體吸附-解吸Pb2+的影響[J].生態(tài)學(xué)雜志,2014,33(5):1274-1383.
LI Lu-juan,XIA Jian-guo,LIU Lang.Effect of purple soil organic matter on adsorption and desorption of Pb2+by aggregates[J].Chinese Journal of Ecology,2014,33(5):1274-1283.
[23]龔倉,馬玲玲,成杭新,等.典型農(nóng)耕區(qū)黑土和沼澤土團聚體顆粒中重金屬的分布特征解析[J].生態(tài)環(huán)境學(xué)報,2012,21(9):1635-1639.
GONG Cang,MA Ling-ling,CHENG Hang-xin,et al.Characterization of the particle size fractionation associated heavy metals in typical black and bog arable soils[J].Ecology and Environmental Sciences, 2012,21(9):1635-1639.
[24]k?gel-Knabner I,Amelung W,Cao Z,et al.Biogeochemistry of paddy soils[J].Geoderma,2010,157:1-14.
[25]單世平,黃軍,劉前剛.淹水條件對稻田土壤肥力及理化性質(zhì)的影響研究進展[J].農(nóng)學(xué)學(xué)報,2014,4(10):46-49.
SHAN Shi-ping,HUANG Jun,LIU Qian-gang.Progress of effect on the physiochemical properties and fertility of paddy soil under submerged conditions[J].Journal of Agriculture,2014,4(10):46-49.
[26]黃丹丹.淹水和有機質(zhì)對土壤鎘活性消長行為的影響及其機理的研究[D].南京:南京農(nóng)業(yè)大學(xué),2008.
HUANG Dan-dan.Influence of submergence and organic matter addition on the variation of cadmium in soils[D].Nanjing:Nanjing Agricultural University,2008.
[27]金元軍.土壤與水稻[M].杭州:浙江科學(xué)技術(shù)出版社,1981:89-127.
JIN Yuan-jun.Soil and rice[M].Hangzhou:Zhejiang Science and Technology Press,1981:89-127.
[28]李程峰,劉云國,曾光明,等.pH值影響Cd在紅壤中吸附行為的實驗研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2005,24(1):84-88.
LI Cheng-feng,LIU Yun-guo,ZENG Guang-ming,et al.Effect of pH on cadmium adsorption behavior in red soils[J].Journal of Agro-Environment Science,2005,24(1):84-88.
[29]Thomas B,Ruben K,Andreas K,et al.Biogeochemical redox processes andtheirimpactoncontaminatdynamics[J].EnvironmentScienceTechnology,2010,44(1):15-23.
[30]Rafiq M T,Aziz R,Yang X E,et al.Cadmium phytoavailability to rice(Oryza sativa L.)grown in representative Chinese soils:A model to improve soil environmental quality guidelines for food safety[J].Ecotoxicology and Environmental Safety,2014,103:101-107.
[31]丁昌璞.中國自然、旱作土壤、水稻土的氧化還原狀況和特點[J].土壤學(xué)報,2008,45(1):66-75.
DING Chang-pu.Oxidation-reduction regimes and characteristics of naturalsoiluplandsoilandpaddysoil in China[J].Acta Pedologica Sinia,2008,45(1):66-75.
[32]李義純,周權(quán)鎖,葛瀅.淹水還原條件下不同類型土壤中Cd存在形態(tài)活性的變化[C]//中國土壤學(xué)會第十一屆全國會員代表大會暨第七屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會論文集(下),2008:129-135.
LI Yi-chun,ZHOU Quan-suo,GE Ying.Variations of Cd species in several types of soils under submerged conditions[C]//The Conference on Soil Science and Ecological Civilization and the 7th Cross-strait Symposium on Soil and Fertilizer,2008:129-135.
[33]黃丹丹,葛瀅,周權(quán)鎖.淹水條件下土壤還原作用對鎘活性消長行為的影響[J].環(huán)境科學(xué)學(xué)報,2009,29(2):373-380.
HUANG Dan-dan,GE Ying,ZHOU Quan-suo.Effect of redox processes on soil Cd activity under submerged conditions[J].Acta Scientiae Circumstantiae,2009,29(2):373-380.
[34]葛瀅,李義純,周權(quán)鎖,等.淹水還原作用下土壤鎘的吸附與解吸特征的初步探討[J].生態(tài)環(huán)境,2006,15(4):730-734.
GE Ying,LI Yi-chun,ZHOU Quan-suo,et al.Preliminary investigation on adsorption and desorption of Cd in soil with different reduction states[J].Ecology and Environment,2006,15(4):730-734.
[35]李法虎,黃冠華,鄧健.污水灌溉對土壤浸提液元素濃度變化影響的田間試驗研究[J].農(nóng)業(yè)工程學(xué)報,2005,21(11):124-129.
LI Fa-hu,HUANG Guan-hua,DENG Jian.Effects of effluent irrigation on the variation of chemical element concentrations of soil extractions underfieldconditions[J].TransactionsoftheCSAE,2005,21(11):124-129.
[36]陳蘇,孫麗娜,晁雷,等.無機陰離子對鎘、鉛解吸特性的影響[J].生態(tài)環(huán)境,2008,17(1):105-108.
CHEN Su,SUN Li-na,CHAO Lei,et al.Effects of inorganic anions on the desorption character of cadmium,lead[J].Ecology and Environment, 2008,17(1):105-108.
[37]Zhang G Y,Peak D.Studies of Cd(Ⅱ)-sulfate interactions at the goethite-water interface by ATR-FTIR spectroscopy[J].Geochimica et Cosmochimica Acta,2007,71(9):2158-2169.
[38]甲卡拉鐵,喻華,馮文強,等.不同磷、鉀肥對水稻產(chǎn)量和吸收鎘的影響研究[J].西南農(nóng)業(yè)學(xué)報,2009,22(4):990-995.
JIAKA La-tie,YU Hua,FENG Wen-qiang,et al.Effects of different phosphate and potassium fertilizers on yields and cadmium uptake by paddy rice[J].Southwest China Journal of Agricultural Sciences,2009, 22(4):990-995.
[39]李國臣.酸雨條件下成都市典型土壤鎘吸附行為研究[D].成都:成都理工大學(xué),2012.
LI Guo-chen.The Study on cadmium adsorption in soils of Chengdu suburban area under acid rain condition[D].Chengdu:Chengdu University of Technology,2012.
[40]Peng S Z,Yang S H,Xu J Z,et al.Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements [J].Paddy and Water Environment,2011,9:333-342.
[41]陳莉娜,葛瑩,張春華,等.淹水還原對紅壤鎘生物有效性的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2009,28(11):2333-2337.
CHEN Li-na,GE Ying,ZHANG Chun-hua,et al.Effect of submergence on the bioavailability of Cd in a red soil[J].Journal of Agro-Environment Science,2009,28(11):2333-2337.
[42]Tack F M G,Van Ranst E,Lievens C,et al.Soil solution Cd,Cu and Zn concentrations as affected by short-time drying or wetting:The role of hydrous oxides of Fe and Mn[J].Geoderma,2006,137(1/2):83-89.
[43]Li X M,Liu T X,Zhang N M,et al.Effect of Cr(Ⅵ)on Fe(Ⅲ)reduction in three paddy soils from the Hani terrace field at high altitude[J]. Applied Clay Science,2012,64:53-60.
[44]李義純,葛瀅.淹水還原條件下土壤鐵氧化物對鎘活性制約機理的研究進展[J].土壤,2009,41(2):160-165.
LI Yi-chun,GE Ying.Influence of iron oxides on activity of Cd in soils under reductive conditions:A review[J].Soil,2009,41(2):160-165.
[45]Liu R,Altschul E B,Hedin R S,et al.Sequestration enhancement of metals in soils by addition of iron oxides recovered from coal mine drainage sites[J].Soil Sediment Contamination,2014,23(4):374-388.
[46]Yu H Y,Liu C P,Zhu J S,et al.Cadmium availability in rice paddy fields from a mining area:The effects of soil properties highlighting iron fractions and pH value[J].Environmental Pollution,2016,209:38-45.
[47]Fulda B,Voegelin A,Kretzschmar R,et al.Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper[J].Environmental Science& Technology,2013,47(22):12775-12783.
[48]Kashem M A,Singh B R.Transformations in solid phase species of metals as affected by flooding and organic matter[J].Communications in Soil Science and Plant Analysis,2004,35(9/10):1435-1456.
[49]傅友強,于智衛(wèi),蔡坤爭,等.水稻根表鐵膜形成機制及其與生態(tài)環(huán)境效應(yīng)[J].植物營養(yǎng)與肥料學(xué)報,2010,16(6):1527-1534.
FU You-qiang,YU Zhi-wei,CAI Kun-zheng,et al.Mechanism of iron plaque formation on root surface of rice plants and their ecological and environmental effects:A review[J].Plant Nutrition and Fertilizer Science,2010,16(6):1527-1534.
[50]Liu J G,Cao C X,Wong M H,et al.Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake[J].Journal of Environmental Sciences,2010,22(7):1067-1072.
[51]Du J,Yan C,Li Z,et al.Formation of iron plaque on mangrove Kandalar obovata(S.L.)root surfaces and its role in cadmium uptake and translocation[J].Marine Pollution Bulletin,2013,74(1):105-109.
[52]劉厚俊,胡向白,張俊伶,等.水稻根表鐵膜吸附鎘及植株吸收鎘的動態(tài)[J].應(yīng)用生態(tài)學(xué)報,2007,18(2):425-430.
LIU Hou-jun,HU Xiang-bai,ZHANG Jun-ling,et al.Dynamics of Cd adsorption on rice seedlings root surface with iron coating and Cd uptake by plant[J].Chinese Journal of Applied Ecology,2007,18(2):425-430.
[53]胡瑩,黃益宗,黃艷超,等.不同生育期水稻根表鐵膜的形成及其對水稻吸收和轉(zhuǎn)運Cd的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2013,32(3):432-437.
HU Ying,HUANG Yi-zong,HUANG Yan-chao,et al.Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice at different growth stages[J].Journal of Agro-Environment Science,2013,32(3):432-437.
[54]李志濤,王夏暉,劉瑞平,等.耕地土壤鎘污染管理對策研究[J].環(huán)境與可持續(xù)發(fā)展,2016,2:21-23.
LI Zhi-tao,WANG Xia-hui,LIU Rui-ping,et al.Control strategy research of cadmium pollution in cultivated soils[J].Environment and Sustainable Development,2016,2:21-23.
[55]陳懷滿.土壤圈物質(zhì)循環(huán)系列專著:土壤-植物系統(tǒng)中的重金屬污染[M].北京:科學(xué)出版社,1996.
CHEN Huai-man.Pedosphere material recycling monograph series:Heavy metal pollution in soil-plant system[M].Beijing:Science Press, 1996.
[56]de Livera J,McLaughlin M J,Hettiarachchi G M,et al.Cadmium solubility in paddy soils:Effects of soil oxidation,metal sulfides and competitive ions[J].Science of the Total Environment,2011,409(8):1489-1497.
[57]Teng W,Liu Q,Li Q,et al.Hazard and risk assessment of the heavy metalpollutiontotheagriculturalproducts[M].Beijing,China:Chemical IndustryPress,2010.
[58]Hao R J,Li Z P,Che Y P.Differences in organic C mineralization between aerobic and submerged conditions in paddy soils of southern Jiangsu Province,China[J].Agricultural Sciences in China,2011,10:1410-1418.
[59]宋波,曾煒銓.土壤有機質(zhì)對鎘污染土壤修復(fù)的影響[J].土壤通報,2015,46(4):1018-1024.
SONG Bo,ZENG Wei-quan.Effects of organic matter on the remediation of cadmium-contaminated soil:A review[J].Chinese Journal of Soil Science,2015,46(4):1018-1024.
[60]陳建斌.有機物料對土壤的外源銅和鎘形態(tài)變化的不同影響[J].農(nóng)業(yè)環(huán)境保護,2002,21(5):450-452.
CHEN Jian-bin.Effects of organic matter on forms of added Cu and Cd and their dynamic transformation in soil[J].Agro-environmental Protection,2002,21(5):450-452.
[61]桂娟,陳小云,劉滿強,等.節(jié)水與減氮措施對稻田土壤微生物和微動物群落的影響[J].應(yīng)用生態(tài)學(xué)報,2016,27(1):107-116.
GUI Juan,CHEN Xiao-yun,LIU Man-qiang,et al.Influences of water-saved and nitrogen-reduced practice on soil microbial and microfauna assemblage in paddy field[J].Chinese Journal of Applied Ecology,2016,27(1):107-116.
[62]李廷強,楊肖娥.土壤中水溶性有機質(zhì)及其對重金屬化學(xué)與生物行為的影響[J].應(yīng)用生態(tài)學(xué)報,2004,15(6):1083-1087.
LI Ting-qiang,YANG Xiao-e.Soil dissolved matter and its effect on chemical and biological behaviors of soil heavy metals[J].Chinese Journal of Applied Ecology,2004,15(6):1083-1087.
[63]Li T,Liang C,Han X,et al.Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii[J]. Chemosphere,2013,91(7):970-976.
[64]Cornu J Y,Schneider A,Jezequel K,et al.Modelling the complexation of Cd in soil solution at different temperatures using the UV-absorbance of dissolved organic matter[J].Geoderma,2011,162(1):65-70.
[65]Li T,Di Z,Yang X,et al.Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils[J].Journal of Hazardous Materia,2011, 192(3):1616-1622.
[66]李妍,劉靜,朱俊,等.水溶性有機質(zhì)對Cd和Zn在土壤表面競爭吸附的影響[J].廣東農(nóng)業(yè)科學(xué),2012,21:79-81.
LI Yan,LIU Jing,ZHU Jun,et al.Effect of dissolved organic on competitive adsorption of Cd and Zn by an alkaline soil[J].Guangdong A-gricultural Sciences,2012,21:79-81.
[67]Zhao X,Jiang T,Du B.Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on from purple paddy soils[J].Chemosphere,2014,99:41-48.
[68]Hatjie V,Payne T E,Hill D M,et al.Kinetics of trace element uptake and release by particles in estuarine waters:Effects of pH,salinity and particle loading[J].Environment Internationa,2003,29(15):619-629.
[69]周世偉,徐明崗.磷酸鹽修復(fù)重金屬污染土壤的研究進展[J].生態(tài)學(xué)報,2007,27(7):3043-3050.
ZHOU Shi-wei,XU Ming-gang.The progress in phosphate remediation of heavy metal-contaminated soils[J].Acta Ecologica Sinica,2007,27(7):3043-3050.
[70]Seshadri B,Bolan N S,Wijesekara H,et al.Phosphorus-cadmium interactions in paddy soils[J].Geoderma,2016,270:43-59.
[71]Tiberg C,Gustafsson J P.Phosphate effects on cadmium(Ⅱ)sorption to ferrihydrite[J].Journal of Colloid and Interface Science,2016,471:103-111.
[72]邵興華,張建忠,王艾平.淹水對酸性紅壤磷吸附解吸特征的影響:以江西省旱地紅壤和水稻土為例[J].生態(tài)環(huán)境學(xué)報,2010,19(10):2355-2359.
SHAO Xing-hua,ZHANG Jian-zhong,WANG Ai-ping.The effect of flooding on the phosphorus sorption and phosphorus desorption properties of upland red soil and paddy soil from Jiangxi Province[J].Ecology and Environmental Sciences,2010,19(10):2355-2359.
[73]徐衛(wèi)紅,黃河,王愛華,等.根系分泌物對土壤重金屬活化及其機理研究進展[J].生態(tài)環(huán)境,2006,15(1):184-189.
XU Wei-hong,HUANG He,WANG Ai-hua,et al.Advance in studies on activation of heavy metal by root exudates and mechanism[J].Ecology and Environment,2006,15(1):184-189.
[74]陳雪.土壤根際鐵形態(tài)轉(zhuǎn)化和低分子量有機酸對水稻鎘吸收的影響[D].南京:南京農(nóng)業(yè)大學(xué),2013.
CHEN Xue.Effects of rhizospheric iron transformation and low molecular weight organic acids on the cadmium uptake by rice[D].Nanjing:Nanjing Agricultural University,2013.
[75]劉源,徐仁扣.低分子量有機化合物對MnO2和土壤氧化錳的還原溶解作用[J].環(huán)境化學(xué),2015,34(6):1037-1042.
LIU Yuan,XU Ren-kou.Reductive dissolution of MnO2and manganese oxides in soils by low-molecular-weight organic compounds[J]. Environmental Chemistry,2015,34(6):1037-1042.
[76]Cunninnghan S D.Phytoremediation of contaminated soil[J].Trend Biotechnology,1995,13(9):393-397.
[77]薛高尚,胡麗娟,田云,等.微生物修復(fù)技術(shù)在重金屬污染治理中的研究進展[J].中國農(nóng)學(xué)通報,2012,28(11):266-271.
XUE Gao-shang,HU Li-juan,TIAN Yun,et al.Research progress on microbial remediation of controlling heavy metal pollution[J].Chinese Agricultural Science Bulletin,2012,28(11):266-271.
[78]Sharma R K,Archana G.Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria[J].Applied Soil Ecology,2016,107:66-78.
[79]范文宏,姜維,王寧.硫酸鹽還原菌修復(fù)污染土壤過程中鎘的地球化學(xué)形態(tài)分布變化[J].環(huán)境科學(xué)學(xué)報,2008,28(11):2291-2298.
FAN Wen-hong,JIANG Wei,WANG Ning.Changes of cadmium geochemical speciation in the process of soil bioremediation by Sulfate-ReducingBacteria[J].ActaScientiacCircumtantiac,2008,28(11):2291-2298.
[80]黃森.淹水時間對水稻土中4種鐵還原功能微生物豐度的影響[D].楊凌:西北農(nóng)林科技大學(xué),2013.
HUANG Sen.Effects of flooding time on abundance of four iron-reducing microoganism in paddy soil[D].Yangling:Northwest Agriculture&Forest University,2013.
Research progress of soil property′s changes and its impacts on soil cadmium activity in flooded paddy field
HE Qian-feng,GUI Juan,LIU Dai-huan*,LI Xue-zhao,LI Peng-xiang,QUAN Sheng-xiang
(Hunan Yonker Environmental Protection Research Institute Co.,Ltd.,Changsha 410330,China)
Soil is the first line of defense to protect the crop safety,and the material basis for the human food quality and ecological environmental security.Since soil cadmium(Cd)pollution in paddy field and“Cd-polluted rice”issue become more severe in recent years,more and more researches focus on the changes of soil Cd activity and its pollution restoration.Previous results showed that submerged condition could help decrease soil Cd activity in soil and also lower the Cd content in rice.However,due to the complexity of the soil,and the diversity,comprehensiveness and uncertainty of external factors,especially under submerged condition,soil properties may have complex change. On one hand,the adsorption of soil colloid,aggregate,iron/manganese oxides,organic matters and phosphate,the rise of soil pH and reduction of Eh,the obstruction of oxide plaque on root surface,the coprecipitation of sulfide,the reduction of reducing bacteria,and the chelation of root exudates could lead to reduce Cd activity.On the other hand,the coordination of anions,the dissolution of iron/manganese oxides and carbonates,the adsorption of oxide plaque,the chelation of DOM,and activation of root exudates could increase Cd activity.These changes make the movement and transformation of Cd more complex,which may increase difficulty of Cd remediation in soil.In this paper,we summarized the changes of soil property and their effects on soil Cd activity in flooded paddy field,as well as pointed out future research directions.This paper could help provide theoretical basis for the agricultural production safety and references for Cd pollution remediation in paddy field.
flooding;paddy soil;soil property;Cd activity;Cd pollution
X53
A
1672-2043(2016)12-2260-09
10.11654/jaes.2016-0892
賀前鋒,桂娟,劉代歡,等.淹水稻田中土壤性質(zhì)的變化及其對土壤鎘活性影響的研究進展[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2016,35(12):2260-2268.
HE Qian-feng,GUI Juan,LIU Dai-huan,et al.Research progress of soil property′s changes and its impacts on soil cadmium activity in flooded paddy field[J]. Journal of Agro-Environment Science,2016,35(12):2260-2268.
2016-07-06
湖南省科技計劃項目(2016TP2018)
賀前鋒(1979—),男,碩士,工程師,主要研究方向為環(huán)境污染控制。E-mail:qianfeng.he@yonker.com.cn
*通信作者:劉代歡E-mail:36882233@qq.com