張京京, 管 博, 范家誠, 李正炎,2??
(1.中國海洋大學環(huán)境科學與工程學院,山東 青島 266100;2.中國海洋大學海洋環(huán)境與生態(tài)教育部重點實驗室,山東 青島 266100)
中國近海環(huán)境中三丁基錫水質(zhì)基準推導與生態(tài)風險初步評價?
張京京1, 管 博1, 范家誠1, 李正炎1,2??
(1.中國海洋大學環(huán)境科學與工程學院,山東 青島 266100;2.中國海洋大學海洋環(huán)境與生態(tài)教育部重點實驗室,山東 青島 266100)
中國近海環(huán)境中三丁基錫化合物(TBT)的廣泛使用對海洋生物產(chǎn)生了一定危害,但中國目前還沒有建立相關(guān)的水質(zhì)基準或標準,妨礙了該污染物的生態(tài)風險評價。本文根據(jù)文獻篩選得到的59種生物的急性毒性數(shù)據(jù)和29種生物的慢性毒性數(shù)據(jù),采用物種敏感性分布模型推導了中國TBT的海水水質(zhì)基準,在此基礎(chǔ)上,應(yīng)用商值法和概率風險評價法對中國沿海地區(qū)水體中的TBT進行了初步生態(tài)風險評價。結(jié)果表明,中國近海環(huán)境中TBT的急性和慢性水質(zhì)基準分別為0.137和0.006μg/L;兩種評價方法結(jié)果均表明中國近海水體存在一定的風險,并且慢性風險遠高于急性風險。因此中國近海環(huán)境中TBT的生態(tài)風險需要進一步關(guān)注。
三丁基錫;水質(zhì)基準;物種敏感度分布法;生態(tài)風險評價;沿海水體
1960年代以來,有機錫被廣泛應(yīng)用于海洋船舶防污涂料、PVC穩(wěn)定劑、催化劑、防腐劑和殺蟲劑。有機錫是迄今為止引入海洋環(huán)境中毒性最大的化合物之一,其中三丁基錫化合物(Tributyltin,TBT)在有機錫化合物中毒性最大。TBT對海洋中多種生物有著長期有效的殺生效果,同時也對各種非目標生物產(chǎn)生毒害作用[1]。研究表明,1 ng/L的TBT可導致海產(chǎn)腹足類發(fā)生性畸變,2 ng/L的TBT會抑制太平洋牡蠣(Crassostreagigas)的鈣代謝,而當TBT濃度達到300 ng/D時,可對多數(shù)水生生物產(chǎn)生明顯的內(nèi)分泌毒性效應(yīng)[2-4]。TBT具有脂溶性,易在生物體內(nèi)富集,其在藍貝(Mytilussp.)體內(nèi)的生物富集系數(shù)可高達100 000[5-6]。作為一種內(nèi)分泌干擾物,TBT會干擾水生生物體內(nèi)性激素的產(chǎn)生、釋放、代謝、排泄等過程,進而影響生物的生殖功能[7]。因此,研究TBT在中國沿海水體中的分布并對其進行生態(tài)風險評價是很有必要的。
美國環(huán)境保護署(U.S Environmental Protection Agency)將生態(tài)風險評價(Ecological Risk Assessment, ERA)定義為“評估由于一種或多種外界因素導致可能發(fā)生或正在發(fā)生的不利生態(tài)影響的過程”[8]。目前,用于生態(tài)風險評估的方法主要有商值法和概率生態(tài)風險評估法。2003年,歐盟委員會頒布了《風險評價技術(shù)導則》(Technical Guidance Document on Risk Assessment, TGD),該導則詳細介紹了推導污染物水環(huán)境質(zhì)量基準(WQC)即預測無效應(yīng)濃度值(Predicted NoEffect Concentration, PNEC)的方法和應(yīng)用風險商(Risk Quotient, RQ)對生態(tài)風險進行表征的方法[9]。商值法是目前國際上應(yīng)用最為廣泛的確定性風險評估方法[10],是一種“點估計”方法。概率生態(tài)風險評估(PERA)可以將風險評價結(jié)論以連續(xù)分布曲線的形式得出,綜合考慮暴露濃度和效應(yīng)濃度的變異性和不確定性,對污染的生態(tài)風險作出整體評價[11],包括聯(lián)合概率曲線法及概率風險商等方法。
風險商為預測環(huán)境濃度值(Predicted Environmental Concentration, PEC)與PNEC的比值(RQ=PEC/PNEC),其中的PEC可以通過模型預測或者實地監(jiān)測得到,而PNEC可以通過兩種方法計算得到,即物種敏感度分布法(Species Sensitivity Distribution, SSD)和評價因子法(Assessment Factor, AF)[12]。SSD法是美國和歐洲1970年代發(fā)展起來的用于評估生態(tài)風險的方法[13]。在理論上,SSD法認為生態(tài)系統(tǒng)中的不同物種由于生理或地域等特征的不同而對同一劑量的同一污染物有著不同的劑量-效應(yīng)關(guān)系,即不同的物種對同一污染物存在著敏感性差異,而這些敏感性差異遵循某種概率分布(物種敏感性分布)。將不同物種對某種污染物的敏感性分布進行函數(shù)擬合,通過計算即可求得能夠保護一定百分比物種的污染物濃度,進而推算出基準閾值[14-15]。評價因子法比較簡單,但該方法不能充分利用所收集的數(shù)據(jù),推導出的結(jié)果容易產(chǎn)生偏差,存在很大的不確定性,因此一般在毒性數(shù)據(jù)量較少不能滿足物種敏感性分布法時使用。
水質(zhì)基準(Water Quality Criteria, WQC)是水環(huán)境質(zhì)量基準的簡稱,指水體中各物質(zhì)成分對水環(huán)境中的特定對象(水生生物或人)不產(chǎn)生有害效應(yīng)的最大濃度或劑量[16]。美國制定的水質(zhì)基準是雙值基準,包括基準最大濃度(CriteriaMaximum Concentration, CMC)和基準連續(xù)濃度(Criteria Continuous Concentration, CCC)。其中,基準最大濃度考慮的是短期內(nèi)的急性毒性效應(yīng),而基準連續(xù)濃度考慮的則是長期的慢性毒性效應(yīng)。雙值基準在某些情況下(例如短期暴露)允許水生生物體內(nèi)污染物的含量超過基準連續(xù)濃度但又不對該生物體產(chǎn)生不可接受的影響,從而避免“過保護”的問題,因此,雙值水質(zhì)基準被越來越多的人采用[17-18]。國外一些發(fā)達國家在幾十年前就已經(jīng)展開了水質(zhì)基準研究工作,并且形成了較為系統(tǒng)的水質(zhì)基準研究體系,而中國的水質(zhì)基準研究工作開始較晚[19]。近幾年中國一些研究者開始了水質(zhì)基準和風險評估研究工作,并取得了一些成果[20-23]。
到目前為止,美國和加拿大等國家已經(jīng)制定了TBT海水水質(zhì)基準[24-25],而我國還沒有發(fā)布水體中TBT基準或標準的相關(guān)文件,有關(guān)TBT水質(zhì)基準的研究報道也很少,穆景利等[26]雖然通過SSD法推導出了我國海水水質(zhì)基準高值和水質(zhì)基準低值,但其選用的毒性數(shù)據(jù)涵蓋了淡水物種的毒性數(shù)據(jù)。美國環(huán)保署規(guī)定淡水生物的毒性數(shù)據(jù)不能用于推導海水水質(zhì)基準[27]。筆者認為這樣推導出的水質(zhì)基準不適用于海水環(huán)境。因此,本文選取海水物種毒性數(shù)據(jù),通過SSD模型推導我國的TBT海水水質(zhì)基準,并在此基礎(chǔ)上分別用商值法和概率生態(tài)風險評估法對我國近海環(huán)境中的TBT進行生態(tài)風險評價。
1.1 毒性數(shù)據(jù)的篩選
本文所采用的毒性數(shù)據(jù)來源于美國環(huán)保署ECOTOX毒性數(shù)據(jù)庫(http://cfpub.epa.gov/ecotox/)、中國知網(wǎng)(http:// www.cnki.net/)和相關(guān)公開文獻。對毒性數(shù)據(jù)的篩選主要考慮了其可靠性、精確性和適當性原則[28]。為保證所建立的水質(zhì)基準符合中國海水生物區(qū)系特征,本文所選物種均廣泛分布于中國沿海,包括本地物種和已經(jīng)在中國成功養(yǎng)殖并廣泛分布的物種。在所選用的數(shù)據(jù)中,用于毒性試驗所使用的TBT化合物主要是三丁基氯化錫(TBTCl)和三丁基氧化錫(TBTO)。
在急性毒性數(shù)據(jù)獲取中,無脊椎動物選取的指標為48 h LC50或EC50(半數(shù)致死濃度或半數(shù)效應(yīng)濃度),而脊椎動物和藻類選取的指標為96 h LC50或EC50,在沒有符合條件的情況下再選擇其他時間的毒性終點,但均不超過96 h。在慢性毒性數(shù)據(jù)獲取中,選取的脊椎動物、無脊椎動物和藻類的暴露時間分別為≥14、≥7和≥3 d,慢性毒性數(shù)據(jù)的終點是生長或繁殖的NOEC(無觀察效應(yīng)濃度),如果沒有可用的NOEC則用 1/2LOEC(最低可觀察效應(yīng)濃度)代替,當對同一物種有多個可供選擇的毒理數(shù)據(jù)時,則選擇暴露時間最長的 NOEC。對于同一物種、同一暴露時間和同一暴露終點的不同毒理數(shù)據(jù)則選擇這些數(shù)據(jù)的幾何均值。
1.2 SSD模型的擬合
SSD法是以不同生物的毒性數(shù)據(jù)(LC50/EC50/NOEC等)的對數(shù)值為橫坐標,以每個數(shù)值的累積概率為縱坐標做散點圖,然后選擇一個曲線模型對其進行擬合即得到SSD曲線[29]??捎玫那€模型有l(wèi)og-triangular、log-normal和log-logistic等,本文選用的是應(yīng)用范圍較廣的log-normal分布模型,因為在該模型中每個毒性數(shù)據(jù)都參與基準值的定值,在某種程度上減輕了個別異常低值對最后水質(zhì)基準定值的影響[26]。本文利用荷蘭公共健康和環(huán)境研究所研發(fā)的ETX 2.0軟件對篩選的數(shù)據(jù)進行處理[30]。應(yīng)用Anderson-Darling檢驗(A-D檢驗)和Kolmogorov-Sminov 檢驗( K-S檢驗)對經(jīng)對數(shù)轉(zhuǎn)換的毒性數(shù)據(jù)的正態(tài)分布擬合度進行檢驗。根據(jù)得到的SSD曲線來估計該污染物的危害濃度(Hazardous Concentriation, HCp)。HCp表示在此濃度下,生境中p%的生物會受到影響,而(100-p)%的生物是相對安全的[13,31],通常,危害濃度值選取HC5。根據(jù)歐盟委員會頒布的《風險評價技術(shù)導則》(TGD),水體的PNEC可以通過下面的公式計算得到:
PNEC= HC5/AF。
其中AF為評價因子,反映數(shù)據(jù)的不確定性,其取值范圍為1~5[9]。本文根據(jù)所選物種的代表性、數(shù)據(jù)的質(zhì)量和數(shù)量及模型的擬合度將急性數(shù)據(jù)和慢性數(shù)據(jù)的AF均選為2。
1.3 生態(tài)風險評價
1.3.1 商值法 本文首先利用商值法(RQ=PEC/PNEC)對水體中的TBT進行生態(tài)風險評估。由于我國沿海水體中TBT的相關(guān)數(shù)據(jù)不足,本文選用中國沿海水體中TBT的實測濃度(Measured Environmental Concentration, MEC)取代PEC進行生態(tài)風險評價。某一區(qū)域的急性和慢性風險商分別利用該區(qū)域TBT濃度的最高值和平均值計算得到。風險等級的劃分依據(jù)為:當RQ<0.1時,表明水環(huán)境處于低風險狀;當0.1≤RQ≤1時,表明水環(huán)境處于中度風險狀態(tài);當RQ>1時,表明水環(huán)境處于高度風險狀態(tài)[32-33]。
1.3.2 概率風險評價法 概率風險評價法通過分析暴露濃度與毒性數(shù)據(jù)的概率分布曲線,考察污染物對生物的毒害程度,從而確定污染物對生態(tài)系統(tǒng)的風險。本文選用聯(lián)合概率曲線法用ETX 2.0軟件以污染物暴露濃度的累積函數(shù)為橫坐標,以受影響物種的比例為縱坐標作圖[22]。由聯(lián)合概率曲線與橫坐標軸之間的面積來表征污染物的生態(tài)風險,該面積可用ETX2.0軟件計算。由TBT的急性毒性數(shù)據(jù)和各個區(qū)域TBT暴露濃度的最大值得出急性聯(lián)合概率曲線,由TBT的慢性毒性數(shù)據(jù)和各個區(qū)域TBT暴露濃度的平均值得出慢性聯(lián)合概率曲線。
2.1 TBT毒性數(shù)據(jù)
篩選出的TBT急性毒性數(shù)據(jù)涵蓋藻類、輪蟲、環(huán)節(jié)、節(jié)肢、棘皮、軟體和脊索等七大生物門類的59種生物(見表1)。急性毒性最大值出現(xiàn)在硅藻門下的丹麥細柱藻,為122μg/L,最小值出現(xiàn)在節(jié)肢動物門下的糠蝦,為0.374μg/L。慢性毒性數(shù)據(jù)涵蓋藻類、節(jié)肢、輪蟲、軟體、棘皮和脊索等六大門類的29種生物(見表2)。慢性毒性最大值也出現(xiàn)在硅藻門下的丹麥細柱藻,為100μg/L,最小值出現(xiàn)在節(jié)肢動物門下的湯氏紡錘水蚤,為0.009μg/L。沒被采用的數(shù)據(jù)未列出。
2.2 TBT的海水水質(zhì)基準
應(yīng)用log-normal模型將表1和表2中的毒性數(shù)據(jù)擬合成SSD曲線,急性毒性數(shù)據(jù)和慢性毒性數(shù)據(jù)的SSD曲線分別對應(yīng)圖1和圖2。根據(jù)SSD曲線可推導出TBT急、慢性毒性終點的HC5分別為0.273和0.011μg/L,對應(yīng)的95%置信區(qū)間分別為0.157~0.426μg/L和0.003~0.027μg/L。根據(jù)HC5和評價因子可以得到海水中TBT的急性水質(zhì)基準和慢性水質(zhì)基準分別為0.137和0.006μg/L。
表1 三丁基錫對海水生物的急性毒性數(shù)據(jù)
續(xù)表1
門類Phylum物種俗名Speciescommonname物種拉丁名Speciesscientificname種平均急性毒性/μg·L-1Speciesmeantoxicityvalue數(shù)據(jù)來源Datesource硅藻門瑪氏骨條藻Skeletonemamarinoi3.16[36]硅藻門丹麥細柱藻Leptocylindrusdanicus122[36]黃藻門赤潮異灣藻Heterosigmaakashiwo1.57[36]棘皮動物門長海膽Echinometramathaei1.60[37]棘皮動物門馬糞海膽Hemicentrotuspulcherrimus2.02[26]棘皮動物門大連黃海膽Glyptocidariscrenularis14.2[38]輪蟲動物門褶皺臂尾輪蟲Brachionusplicatilis12.8[39?40]環(huán)節(jié)動物門海蚯蚓Arenicolacristata3.94[41]環(huán)節(jié)動物門沙蠶Neanthesarenaceodentata6.46[42]環(huán)節(jié)動物門沙蠶Armandiabrevis22.3[43]節(jié)肢動物門豐年蟲Artemiasalina0.037[44]節(jié)肢動物門糠蝦Acanthomysissculpta0.374[45]節(jié)肢動物門火腿許水蚤Schmackeriapoplesia0.398[46]節(jié)肢動物門日本虎斑猛水蚤Tigriopusjaponicus0.535[26,47?48]節(jié)肢動物門湯氏紡錘水蚤Acartiatonsa0.948[35,49?50]節(jié)肢動物門圓腮麥桿蟲CaprellapenantisR?thpe1.07[51]節(jié)肢動物門黑褐新糠蝦Neomysisawatschensis1.45[26]節(jié)肢動物門糠蝦Americamysisbahia1.51[52]節(jié)肢動物門中華哲水蚤Calanussinicus1.59[53]節(jié)肢動物門真寬水蚤Eurytemoraaffinis1.76[49,54]節(jié)肢動物門糠蝦Metamysidopsiselongata3.02[42]節(jié)肢動物門草蝦Palaemonetessp.3.86[55]節(jié)肢動物門七足長腕蝦Heptacarpusfutilirostris5.00[56]節(jié)肢動物門長腮麥稈蟲Caprellaequilibra5.88[51]節(jié)肢動物門鉤蝦Gammarussp.11.1[49]節(jié)肢動物門日本囊對蝦Marsupenaeusjaponicus14.9[56]節(jié)肢動物門草蝦Palaemonetespugio19.0[57]節(jié)肢動物門泥蟹Rhithropanopeusharrisii33.1[58]節(jié)肢動物門濱蟹Hemigrapsusnudus78.9[59]軟體動物門紫貽貝Mytilusedulis0.619[60]軟體動物門扁蛤Mercenariamercenaria1.47[61]軟體動物門紅樹牡蠣Isognomoncalifornicum2.01[37]軟體動物門美洲巨蠣Crassostreavirginica3.53[61]軟體動物門骨螺T.cluvigeru4.99[62]軟體動物門方斑東風螺幼體Babyloniaareolata15.1[63]脊索動物門黑鯛Sparusmacrocephalus0.900[26]脊索動物門太平洋鯡魚Brevoortiatyrannus4.32[64]脊索動物門星斑川鰈Plarichthysstellatus9.00[49]脊索動物門鲯鰍Coryphaenahippurus14.9[65]脊索動物門乳色阿匍鰕虎魚Acanthogobiuslactipes17.5[26]脊索動物門紅鰭笛鯛Lutjanuserythopterus17.8[66]脊索動物門紅鱸Cyprinodonvariegatus23.1[49]
注:表中所列均為換算成TBT以后的濃度值。
Note: The toxicity values were given as TBT content.
表2 三丁基錫對海水生物的慢性毒性數(shù)據(jù)
注:表中所列均為換算成TBT以后的濃度值。
Note: The toxicity values were given as TBT content.
表3對不同國家的TBT海水水質(zhì)基準進行了比較,本文研究所得的海水TBT慢性基準值與美國慢性基準值相當,急性基準值約為美國急性基準值的二分之一。產(chǎn)生這種差異的原因可能有以下兩個方面:一方面,美國在推導急性水質(zhì)基準時沒有考慮藻類的毒性數(shù)據(jù);另一方面,中國和美國生態(tài)系統(tǒng)中的生物存在地域性差異,因而會引起物種敏感性的不同,從而導致生物對TBT毒性效應(yīng)的反應(yīng)程度不同。本研究推導出的TBT慢性基準值比加拿大公布的TBT慢性基準值高很多,原因主要是兩者采用的推導方法不同。加拿大的推導方法為評價因子法,其水質(zhì)基準由最敏感物種的毒性效應(yīng)值除以評價因子10得到,該方法得出的基準值主要取決于最敏感物種的毒性值,結(jié)果有很大的不確定性。本文則采用物種敏感度分布法,得出的結(jié)果更具有說服力。
圖1 TBT 的海水急性物種敏感性分布曲線
/μg·L-1
Note:①China;②Ainerica;③Canada
圖2 TBT 的海水慢性物種敏感性分布曲線
2.3 中國沿海水體中TBT的生態(tài)風險評價結(jié)果
本研究從已發(fā)表的文獻及相關(guān)資料中搜集到中國沿海水體中TBT的環(huán)境暴露水平,其濃度范圍從低于檢測限至8.73μg/L不等,其中最高值出現(xiàn)在廣東惠陽港。各研究區(qū)域的具體位置以及TBT的濃度范圍和平均值見表4。
表4 中國沿海水體三丁基錫的濃度分布
注:“nd”表示低于檢測限?!皀d”means not been detected
①Jiaozhou Bay; ②Begau Bay; ③Shanhaiguan Port; ④Beihai; ⑤Yantai; ⑥Hongkong; ⑦Dalian; ⑧Xiamen Port; ⑨Shantou Port; ⑩Huiyang Port
2.3.1 商值法評價結(jié)果 圖3詳細描述了中國部分沿海地區(qū)的TBT急性風險商和慢性風險商。急性風險商范圍為0.25~63.7,平均為10.1;慢性風險商的范圍為0.67~498,平均為79.7;急性和慢性高風險區(qū)域分別占所研究區(qū)域的50%和90%;急性風險商和慢性風險商的最高值均出現(xiàn)在廣東惠陽港,主要是因為惠陽港南段與大亞灣相鄰,是廣東省著名的天然深水港,擁有大規(guī)模的石化碼頭,2 000年吞吐量達5 000萬t[82]。所研究的10個地區(qū)均存在不同程度的風險。從圖3可以看出,東北部的秦皇島山海關(guān)港口、渤海灣、煙臺黃海娛樂城和膠州灣均處在急性中等風險狀態(tài),而東南部的廈門港、汕頭港、惠陽港和香港近岸則處在急性高風險狀態(tài),主要是因為中國東南部沿海地區(qū)經(jīng)濟比較發(fā)達,船舶流通量大,而船舶防污漆的使用是海洋環(huán)境中TBT化合物的主要來源[83]。除了膠州灣處于慢性中等風險狀態(tài)以外,另外9個地區(qū)均處在慢性高風險狀態(tài),并且慢性風險商要遠高于急性風險商,主要是因為TBT毒性大,即使其在水體中的濃度很低,經(jīng)過長期的作用也會對生物體產(chǎn)生嚴重的危害。
圖3 中國沿海水體TBT的生態(tài)風險商值分布
圖4 TBT對水生生物的急性聯(lián)合概率曲線
圖5 TBT對水生生物的慢性聯(lián)合概率曲線
2.3.2 概率風險評價結(jié)果 經(jīng)檢驗中國近海環(huán)境中TBT經(jīng)log對數(shù)轉(zhuǎn)化后的暴露濃度服從正態(tài)分布。圖4和5分別為中國近海水體中TBT 對水生生物的急性和慢性聯(lián)合概率曲線。曲線離橫坐標軸越近代表生態(tài)風險越低。由聯(lián)合概率曲線和橫坐標軸之間的面積可得出中國近海水體急性和慢性風險值分別為16.64%和32.92%,表明水體存在一定的風險。一般認為,當水體中受影響的物種超過5%時表明該水體存在生態(tài)風險[84]。從圖中可以看出,中國近海水體中超過60%的水體存在急性風險,超過90%的水體存在慢性風險,且慢性風險高于急性風險,與商值法得到的結(jié)論相一致。
三丁基錫化合物在中國的廣泛使用及其對各種生物的不利影響,使其受到越來越多的關(guān)注。中國迄今尚未建立TBT的海水水質(zhì)基準。本研究篩選了中國本地物種的急性和慢性毒性數(shù)據(jù)并建立了SSD模型,根據(jù)模型擬合,推導出中國海水水體TBT的急性和慢性水質(zhì)基準分別為0.137和0.006μg/L。根據(jù)推導出的水質(zhì)基準,分別應(yīng)用商值法和概率風險評價法對中國部分沿海地區(qū)水體中的TBT進行生態(tài)風險評價。兩種評價方法的結(jié)果均表明,中國近海水體存在生態(tài)風險,并且慢性風險遠高于急性風險。由商值法得出的結(jié)果表明,急慢性風險商最高值均出現(xiàn)在廣東惠陽港,急性和慢性高風險地區(qū)分別占所研究區(qū)域的50%和90%。由概率風險評價法得出急性和慢性風險地區(qū)所占比例分別超過60%和90%。由此可以看出,TBT在我國沿海地區(qū)已廣泛分布,其生態(tài)風險需要進一步關(guān)注。
[1] Jr H L, Pinkney A E. Acute and sublethal effects of organotin compounds on aquatic biota: An interpretative literature evaluation[J]. Critical Reviews in Toxicology, 1985, 14(2): 159-209.
[2] Chagot D, Alzieu C, Sanjuan J, et al. Sublethal and histopathological effects of trace levels of tributyltin fluoride on adult oysterCrassostreagigas[J]. Aquatic Living Resources, 1990, 3(2): 121-130.
[3] Hoch M. Organotin compounds in the environment. An overview [J]. Applied Geochemistry, 2001, 16: 719-743.
[4] Axiak V, Micallef D, Muscat J, et al. Imposex as a biomonitoring tool for marine pollution by tributyltin:some further observations [J]. Environment International, 2003, 28(8): 743-749.
[5] 高峻敏, 鄭澤根. 環(huán)境系統(tǒng)中有機錫化合物的分布和歸宿[J].上海環(huán)境科學, 2003, 22(增刊): 20-25. Gao J. Distribution and fate of organotin compounds in environmental system[J]. Shanghai Environmental Sciences, 2003, 22(susupment): 20-25.
[6] Salazar M H, Salazar S M. Mussels as Bioindicators: Effects of TBT on Survival, Bioaccumulation, and Growth Under Natural Conditions[M]. London: Springer Netherlands, 1996: 305-330.
[7] Kavelock R J. Research needs for risk assessment of health and environment effects of endocrine disrupters, a report of the U.S.EPA-Sponsored Workshop[J]. Environ Health Perspect, 1996, 104(4): 715-740.
[8] US EPA.Guidelines for Ecological Risk Assessment,U.S[J].Federal Register, 1996: 61.
[9] ECB(European Chemicals Bureau). Technical Guidance Document on Risk Assessment[M].Brussels: European Commission Joint Research Center, 2003.
[10] Lin Z, Siyu Z, Xin D, et al. Probabilistic ecological risk assessment of polycyclic aromatic hydrocarbons in southwestern catchments of the Bohai Sea, China.[J]. Ecotoxicology, 2013, 22(8):1221-31.
[11] Solomon K R, Paul S. New concepts in ecological risk assessment: where do we go from here?[J]. Marine Pollution Bulletin, 2002, 44(4): 279-85.
[12] 馮承蓮, 趙曉麗, 侯紅, 等. 中國環(huán)境基準理論與方法學研究進展及主要科學問題[J]. 生態(tài)毒理學報, 2015, 10(1): 2-17. Feng C L, Zhao X L, Hou H, et al. Research progress and main scientific problems of theory and methodology of Chinas Environmental Quality Criteria[J]. Asian Journal of Ecotoxicology, 2015, 10(1): 2-17.
[13] Kooijman S A L M. A safety factor for LC 50 values allowing for differences in sensitivity among species[J]. Water Research, 1987, 21(3): 269-276.
[14] 吳豐昌, 孟偉, 曹宇靜, 等. 鎘的淡水水生生物水質(zhì)基準研究[J]. 環(huán)境科學研究, 2011, 24(2): 172-183. Feng-Chang W U, Wei M, Cao Y J, et al. Derivation of aquatic life water quality criteria for cadmium in freshwater in China[J]. Research of Environmental Sciences, 2011, 24(2): 172-184.
[15] Posthuma L, SuterⅡ G W Traas T P. Species sensitivity distributions in ecotoxicology[M]. Lewis: Lewis Publishors, 2002.
[16] Yang S, Xu F, Wu F, et al. Development of PFOS and PFOA criteria for the protection of freshwater aquatic life in China[J]. Science of the Total Environment, 2014, 470-471(2): 677-683.
[17] Yang S W, Yan Z G, Xu F F, et al. Development of freshwater aquatic life criteria for Tetrabromobisphenol in China[J]. Environmental Pollution, 2012, 169(15): 59-63.
[18] Shuhaimi-Othman M,Nadzifah Y,Nur-Amalina R,et al. Deriving freshwater quality criteria for copper, cadmium, aluminum and manganese for protection of aquatic life in Malaysia.[J]. Chemosphere, 2013, 90(11): 2631-6.
[19] 馮承蓮, 吳豐昌, 趙曉麗, 等. 水質(zhì)基準研究與進展[J]. 中國科學: 地球科學, 2012(5): 646-656. Feng C L, Wu F C, Zhao X L, et al. Water quality criteria research and progress[J]. Sci China: Earth Sci, 2012(5): 646-656.
[20] 吳豐昌, 馮承蓮, 曹宇靜,等. 鋅對淡水生物的毒性特征與水質(zhì)基準的研究[J]. 生態(tài)毒理學報, 2011, 6(4): 367-382. Wu F C, Feng C L, Cao Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria[J]. Asian Journal of Ecotoxicology, 2011, 6(4): 367-382.
[21] 穆景利, 王瑩, 王菊英. 應(yīng)用淡水生物毒性數(shù)據(jù)推導海水水質(zhì)基準的可行性及適用性初探[J]. 海洋環(huán)境科學, 2012, 31(1): 92-96. Mu J L, Wang Y, Wang J Y. Preliminary analysis on feasibility and applicability of using freshwater data to extrapolate the saltwater marine quality criteria[J]. Marine Environmental Science, 2012, 31(1): 92-96.
[22] 王瑩, 穆景利, 王菊英. 我國硝基苯的海水水質(zhì)基準及生態(tài)風險評估研究[J]. 生態(tài)毒理學報, 2015, 10(1): 160-168. Wang Y, Mu J L, Wang J Y. Derivation of marine water quality criteria and assessment of ecological risk of nitrobenzene in China[J]. Asian Journal of Ecotoxicology, 2015, 10(1): 160-168.
[23] 吳豐昌, 馮承蓮, 張瑞卿,等. 我國典型污染物水質(zhì)基準研究[J]. 中國科學:地球科學, 2012(5): 665-672. Wu F C, Feng C L, Zhang R Q, et al. Derivation of water quality criteria for representative water-body pollutants in China[J]. Sci China: Earth Sci, 2012(5): 665-672.
[24] U.S.EPA. Environmental Ambient Aquatic Life Water Quality Criteria tor TBT-Final [R]. Washington, DC:U.S. Environmental Protection Agency, 2003.
[25] CCME. Canada Water Quality Guidelines for the Protection of Aquatic Life. Canadian Environmental Quality Guidelines [R]. Canadn: Canadian Council of Ministers of the Environment, 1999.
[26] 穆景利, 王瑩, 王菊英. 我國海水水質(zhì)基準的構(gòu)建: 以TBT為例[J]. 生態(tài)毒理學報, 2010(6): 776-786. Mu J L, Wang Y, Wang J Y. Construction of marine water quality criterion in China: A case study of Tributyltin(TBT)[J]. Asian Journal of Ecotoxicology, 2010(6): 776-786.
[27] US EPA.Guidelines for Deriving Numerical National Water Quality Criteia for the Protection of Aquatic Organisms and Their Uses [R]. PB85-227094. Washington. DC: U.S.Environmental Protection Agency, 1985.
[28] Klimisch H J, Andreae M, Tillmann U. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data [J]. Regulatory Toxicology & Pharmacology Rtp, 1997, 25(1): 1-5.
[29] 王印, 王軍軍, 秦寧, 等. 應(yīng)用物種敏感性分布評估DDT和林丹對淡水生物的生態(tài)風險[J]. 環(huán)境科學學報, 2009, 11: 2407-2414. Wang Y, Wang J J, Qin N, et al. Assessing ecological risks of DDT and lindane to freshwater organisms by species sensitivity distribution [J]. Acta Scientaae Circum Stantiae, 2009, 11: 2407-2414.
[30] Van V P, Traas T P, Wintersen A M, et al. ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data[J]. Rijksinstituut Voor Volksgezondheid En Milieu Rivm, 2007.
[31] Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions: data and model choice [J]. Mar Pollut Bull,2002, 45: 192-202.
[32] Warren-Hicks W, Cardwell RC. Aquatic Ecological Risk Assessment: A Multi-tiered Approach, Project 91-AER-1[R]. Alexandria (VA): Water Environment Research Foundation, 1996.
[33] 郭廣慧, 吳豐昌, 何宏平, 等. 太湖梅梁灣、貢湖灣和胥口灣水體PAHs的生態(tài)風險評價[J]. 環(huán)境科學學報, 2011, 12: 2804-2813. Guo G H, Wu F C, He H P, et al. Ecological risk assessment of PAHs in the Meiliang Bay, Gonghu Bay, and Xukou Bay of Taihu Lake[J]. Acta Scientaae Circum Stantiae, 2011, 12: 2804-2813.
[34] 高尚德, 吳以平, 趙心玉. 有機錫對海洋微藻的生理效應(yīng)Ⅰ. 三苯基錫和三丁基錫對光合色素含量的影響[J]. 海洋與湖沼, 1994(3): 259-265. Gao S, Wu Y, Zhao X. The physiological effects of organotin on marine microalgae Ⅰ. effects of organotin on photosynthetic pigments of two marine phytoplankto[J]. Oceanologia Et Limnologia Sinica, 1994(3): 259-265.
[35] 田斐, 何寧, 段舜山.三種環(huán)境激素對四種海洋微藻的急性毒性效應(yīng)研究[J]. 生態(tài)科學, 2013, 32(4): 401-407. Tian F, He N, Duan S S. Acute toxic effects of environmental hormones on marine microalgae[J]. Ecological Science, 2013, 32(4): 401-407.
[36] 謝永紅, 蘇榮國, 張麗笑, 等. 三丁基錫對中國近海主要優(yōu)勢浮游植物的毒性作用研究[J].環(huán)境科學, 2011, 10: 2909-2915. Xie Y H, Su R G, Zhang L X, et al. Toxic effects of Chloride Tributylyin on the predominant phytoplankton species of China Coastal Sea[J]. Environmental Science, 2011, 10: 2909-2915.
[37] Ringwood A H. Comparative sensitivity of gametes and early developmental stages of a sea urchin species (Echinometramathaei) and a bivalve species (Isognomoncalifornicum) during metal exposures[J]. Archives of Environmental Contamination & Toxicology, 1992, 22(22): 288-95.
[38] 夏重大, 王媛, 柴曉杰, 等. 三苯基錫和三丁基錫對海膽的急性毒性研究[J]. 河北漁業(yè), 2014(6): 6-9. Xia Z D, Wang Y, Cai X J, et al. Acute toxicity of tributyltin chloride and tributyltin chloride and triphenyltin chloride onSeaurchin[J]. Hebei Fisheries, 2014(6): 6-9.
[39] 黨志超, 于春燕, 李永祺. 三丁基錫(TBT)對褶皺臂尾輪蟲(Brachionusplicatilis)的影響[J]. 海洋環(huán)境科學, 1993(2): 6-11. Dang Z C, Yu C Y, Li Y Q. Effects of TBT toBrachionusplicatilis[J]. Marine Environmental Science, 1993(2): 6-11.
[40] 陳天乙, 于仁誠, 孫紅文. 有機錫對輪蟲的毒性及QSAR分析[J].海洋通報, 1993(6): 36-39. Chen T Y, Yu R C, Sun H W. Toxicity and qsar of organotin compounds on fotifer[J]. Marine Science Bulletin, 1993(6): 36-39.
[41] Walsh G E, Louie M K, MaLaugh L L, et al. Lugworm (Arenicolacristata) larvae in toxicity tests: Survival and development when exposed to organotins [J]. Environmental Toxicology and Chemistry, 1986, 5(8): 749-754
[42] Salazar M H, Salazar S M. Acute Effects of (Bis) tributyltin Oxide on Marine Organisms [R]. San Diego: Naval Ocean Systems Center Technical Report 1299,1989.
[43] Meador J P. Comparative toxicokinetics of tributyltin in five marine species and utility in predicting bioaccumulation on and acute toxicity [J]. Aquatic Toxicology, 1997, 37(4): 307-326
[44] Panagoula B, Panayiota M, Iliopoulou-Georgudaki J. Acute toxicity of TBT and IRGAROL inArtemiasalina[J]. International Journal of Toxicology, 2002, 21(3): 231-3.
[45] Davidson B, Valkirs A, Seligman P. Acute and Chronic Effects of Tributyltin of the MysidAcanthomysissculpta(Crustacea, Mysidacea)[C].New York. OCEANS '86. IEEE, 1986: 1219-1225.
[46] 黃瑛. 火腿許水蚤的繁殖生物學研究和在三丁基氧化錫毒性評價中的應(yīng)用[D].青島:中國海洋大學, 2008. Huang Y. Reproductive biology ofSchmackeriapoplesiaand its use in ecotoxicological study of bis(tributyltin) oxide[D]. Qingdao: Ocean University of China, 2008.
[47] Ara K, Fujita Y, Hiromi J, et al. Acute and subchronic toxicity of tributyltin chloride (TBTCl) to the marine harpacticoid copepodTigriopusjaponicusmori[J]. Journal of Water & Environment Technology, 2010, 8(4): 293-303.
[48] Kwok K W H, Leung K M Y. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea,Copepoda): Effects of temperature and salinity[J]. Marine Pollution Bulletin, 2005, 51(8-12): 830-837.
[49] Bushong S J, Jr L W H, Hall W S, et al. Acute toxicity of tributyltin to selected Chesapeake Bay fish and invertebrates[J]. Water Research, 1988, 22(8): 1027-1032.
[50] 郝瑩, 曹鐵華, 張偉杰. 法呢醇、三丁基錫和乙烯菌核利對湯氏紡錘水蚤的急性和亞急性毒性[J]. 上海大學學報(自然科學版), 2015(2): 257-266. Hao Y, Cao T H, Zhang W J. Acute and subchronic toxicity of farnesol, tributyltinand vinclozolin to marine crustaceanAcartiatonsa[J]. Journal of Shanghai University(Natural Science), 2015 (2): 257-266.
[51] Ohji M, Takeuchi I, Takahashi S, et al. Differences in the acute toxicities of tributyltin between the Caprellidea and the Gammaridea (Crustacea: Amphipoda)[J]. Marine Pollution Bulletin, 2002, 44(1): 16-24.
[52] Goodman L R, Cripe G M, Moody P H, et al. Acute toxicity of malathion, tetrabromobisphenol-A, and tributyltin chloride to mysids (Mysidopsisbahia) of three ages[J]. Bulletin of Environmental Contamination & Toxicology, 1988, 41(5): 746-53.
[53] 周浩, 朱麗巖, 陳志鑫, 等. 幾種環(huán)境因子影響下銅和TBT對中華哲水蚤的毒性效應(yīng)[J]. 中國海洋大學學報(自然科學版), 2010, 40(S1): 131-136. Zhou H, Zhu L Y, Chen Z X, et al. Toxicity of Copper and TBT to the CopepodCalanussinicus(Crustacea,Copepoda): Effects of Acidity,Temperature and Salinity[J]. Periodical of Ocean University of China, 2010, 40(S1): 131-136.
[54] Hall L W, Bushong S J, Hall W S, et al. Acute and chronic effects of tributyltin on a chesapeake bay copepod[J]. Environmental Toxicology & Chemistry, 1988, 7(1): 41-46.
[55] Khan A T, Weis J S, Saharig C E, et al. Effect of tributyltin on mortality and telson regeneration of grass shrimp,Palaemonetespugio[J]. Bulletin of Environmental Contamination & Toxicology, 1993, 50(1): 152-7.
[56] Hori H, Tateishi M, Yamada H. Acute toxicities of organotin compounds, pesticides and chromium (VI) toPenaeusjaponicusandHeptacarpusfutilirostris: Effects of moulting, water temperature and salinity.[J]. Nihon-Suisan-Gakkai-Shi, 2002, 68(1): 29-36.
[57] Clark J R, Patrick J M, Moore J C, et al. Waterborne and sediment-source toxicities of six organic chemicals to grass shrimp (Palaemonetespugio) and amphioxus (Branchiostomacaribaeum) [J]. Archives of Environmental Contamination and Toxicology, 1987, 16(4): 401-407
[58] Laughlin RB, Jr. Physicochemical factors influencing toxicity of organotin compounds to crab zoea,Rhithropanopeusharrisii[C]. Philadelphia, PA: Annual Meeting of the American Society of Zoologists, 1983, 23: 1004.
[59] Laughlin R B, French W J. Comparative study of the acute toxicity of a homologous series of trialkyltins to larval shore crabs,Hemigrapsusnudus, and lobster,Homarusamericanus[J]. Bulletin of Environmental Contamination & Toxicology, 1980, 25(5): 802-809.
[60] Stenalt E, Johansen B, Lillienskjold S, et al. Mesocosm study ofMytilusedulislarvae and postlarvae, including the settlement phase, exposed to a gradient of tributyltin.[J]. Ecotoxicology & Environmental Safety, 1998, 40(3): 212-25.
[61] Roberts M H. Acute toxicity of tributyltin chloride to embryos and larvae of two bivalve mollusks,CrassostreavirginicaandMercenariamercenaria.[J]. Bulletin of Environmental Contamination & Toxicology, 1988, 39(6): 1012-1019.
[62] Horiguchi T, Imai T, Cho H S, et al.Acute toxicity of organotin compounds to the larvae of the rock shell, thais clavigera, the diskabalone, Haliotis discus discus and the giant abalone [J]. Haliotis Madaka Mar Environ Res, 1998, 46: 469-473
[63] 謝湘筠, 張原秋, 柯才煥. 甲醛和三丁基錫對方斑東風螺幼體的急性毒性實驗[J]. 集美大學學報(自然科學版), 2007(4): 306-310. Xie X J, Zhang Y Q, Ke C H. Acute toxicity test of formaldehyde and tributyltin toBabyloniaareolataVeliger Larvae[J]. Journal of Jinei University (Natural Science), 2007(4): 306-310.
[64] Meador J P. Comparative toxicokinetics of tributyltin in five marine species and its utility in predicting bioaccumulation and acute toxicity[J]. Aquatic Toxicology, 1997, 37(4): 307-326.
[65] Shenker T A H J. Acute lethal and teratogenic effects of tributyltin chloride and copper chloride on mahi mahi (Coryphaenahippurus) eggs and larvae ?[J]. Environmental Toxicology & Chemistry, 2008, 27(10): 2131-2135.
[66] 陳海剛, 蔡文貴, 秦潔芳, 等. 三丁基氯化錫對紅鰭笛鯛的急性毒性及不同組織生化指標的影響[J]. 生態(tài)毒理學報, 2011(5): 532-538. Chen H G, Cai W G, Qin J F, et al. Acute toxicity and biochemical effect of tributyltin chloride on juvenile crimson sanner (Lutjanuserythopterus)[J]. Asian Journal of Ecotoxicology, 2011(5): 532-538.
[67] Kusk K O, Petersen S. Acute and chronic toxicity of tributyltin and linearalkylbenzene sulfonate to the marine copepodAcartiatonsa[J]. Environmental Toxicology & Chemistry, 1997, 16(8): 1629-1633.
[68] Bushong S J, Ziegenfuss M C, Unger M A, et al. Chronic tributyltin toxicity experiments with the Chesapeake bay copepod,Acartiatonsa[J]. Environmental Toxicology & Chemistry, 1990, 9(3): 359-366.
[69] Hall L W, Bushong S J, Ziegenfuss M C, et al. Chronic toxicity of tributyltin to Chesapeake bay biota[J]. Water Air & Soil Pollution, 1988, 39(3): 365-376.
[70] Tillmann M, Schulte-Oehlmann U, Duft M, et al. Effects of endocorine disruptors on prosobranch snails (Mollusca:Gastropoda) in the laboratory. PartⅢ: Cyproterone acetate and vinclozolin as antiandrogens [J]. Ecotoxicology, 2001, 10(6): 373-388
[71] Huang G, Wang Y. Effects of tributyltin chloride on marine bivalve mussels[J]. Water Research, 1995, 29(8): 1877-1884.
[72] Lapota D, Rosenberger D E, Platter-Rieger M F, et al. Growth and survival ofMytilusedulislarvae exposed to low levels of dibutyltin and tributyltin[J]. Marine Biology, 1993, 115(3): 413-419.
[73] Thain J E, Waldock M J, Waite M E. Toxicity and Degradation Studies of Tributyltin (TBT)and Dibutyltin (DBT) in the Aquatic Environment[M]. Washington, DC: Marine Technology Society, 1987: 1398-1404.
[74] 李興暖. 有機錫污染對太平洋牡蠣生理生化特性的影響[D]. 汕頭: 汕頭大學, 2003. Li X N. Effects of Organotin Compounds Pollution on the Physiological and Biochemical Characteristics ofCrassostreagigas[D]. Shantou: Shantou University, 2003.
[75] Stronkhorst J, Hattum B V, Bowmer T. Bioaccumulation and toxicity of tributyltin to a burrowing heart urchin and an amphipod in spiked, silty marine sediments[J]. Environmental Toxicology & Chemistry, 1999, 18(10): 2343-2351.
[76] 李遠友, 杜永兵, 譚燕, 等. 有機錫和辛基苯酚對孔雀魚、藍子魚的毒性效應(yīng)[C]. //持久性有機污染物論壇2006暨第一屆持久性有機污染物全國學術(shù)研討會論文集.北京:清華大學持久性有機污染物研究中心、國家環(huán)境保護總局斯德歌爾摩公約履約辦公室、中國化學會環(huán)境化學專業(yè)委員會、中國環(huán)境科學學會, 2006. Li Y Y, Du Y B, Tan Y, et al. Toxic effects of tributyltin and octyphenlo on the guppyPoeciliareticulatesand rabbitfishSiganidacoramin[C]. In POPs Forum National Academic Seminar. Beijing: POPs Research Center of Tsinghua University, 2006.
[77] 張麗笑. 膠州灣丁基錫污染狀況調(diào)查及三丁基錫對常見微藻的毒性研究[D]. 青島: 中國海洋大學, 2010. Zhang L X. Distribution Characteristics of Butyltins in Jiaozhou Bay and TBT Toxicity on the Common Microalgas[D]. Qingdao: Ocean University of China, 2010.
[78] Gao J M, Hu J Y, Wan Y, et al. Butyltin compounds distribution in the coastal waters of Bohai Bay, People's Republic of China.[J]. Bulletin of Environmental Contamination & Toxicology, 2004, 72(5): 945-53.
[79] Jiang G B, Zhou Q F, Liu J Y, et al. Occurrence of butyltin compounds in the waters of selected lakes, rivers and coastal environments from China.[J]. Environmental Pollution, 2001, 115(1): 81-87.
[80] Lau M M. Tributyltin antifoulings: a threat to the Hong Kong marine environment.[J]. Archives of Environmental Contamination & Toxicology, 1991, 20(3): 299-304.
[81] 黃長江, 董巧香, 雷瓚, 等. 我國東南沿海3港口有機錫污染的調(diào)查[J]. 海洋學報(中文版), 2005, 27(1): 57-63. Huang C J, Dong Q X, Lei Z, et al. An investigation of organotin compound contamination in three harbors along southeast coast of China[J]. Acta Oceanologica Sinica, 2005, 27(1): 57-63.
[82] 中華人民共和國交通部網(wǎng)頁(www.moc. gov. cn /shuiluys /yanhai /). The Ministry of Communications of the People’s Republic of China website (www.moc. gov. cn /shuiluys /yanhai /).
[83] 施華宏.中國沿海海產(chǎn)腹足類性畸變及有機錫污染的生物監(jiān)測[D].廣州:暨南大學. 2003. Shi H H. Imposex in Gastropods from the Coastal Waters of China and the Biomonitoring of Organotin Compound Contamination[D]. Chengdu: Southwest Jiaotong University, 2003.
[84] Hunt J,Birch G, Warne M S. Quantifying reduction in ecological risk in Penrhyn Estuary, Sydney, Australia, following groundwater remediation[J]. Integrated Environmental Assessment and Management, 2011, 8(1): 98-106.
責任編輯 龐 旻
Derivation of Marine Water Quality Criteria and Preliminarye Cological Risk Assessment for Tributyltin in Coastal Waters of China
ZHANG Jing-Jing1, GUAN Bo1, FAN Jia-Cheng1, LI Zheng-Yan1,2
(1.College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100,China; 2.The Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100,China)
Tributyltin(TBT) is widely used in China and causes adverse effects to various marine species. The lack of water quality criteria for TBT in China, however, hinders the risk assessment for this pollutant. This study screened 59 acute data and 29 chronic data, which were used to derive the marine water quality criteria for TBT according to the SSD methodology. With the derived criteria, the ecological risk in surface waters of China was assessed with RQ methodology and probability ecological risk assessment method. The results demonstrated that the acute and chronic water quality criteria were 0.137μg/L and 0.006μg/L, respectively. Two methods both demonstrated that all the study area were in high risk status . And the chronic risk is much higher than the acute risk. The ecological risk of TBT therefore warrants further study.
tributyltin;water quality criteria;species sensitivity distribution;ecological risk assessment;coastal water
國家自然科學基金項目(41476090)資助 Supported by the National Natural Science Foundation of China(41476090)
2016-03-09;
2016-04-28
張京京(1991-),女,碩士生。E-mail:1531895018@qq.com
?? 通訊作者:E-mail:zhengyan@ouc.edu.cn
X171.5
A
1672-5174(2017)01-032-11
10.16441/j.cnki.hdxb.20160097
張京京, 管博, 范家誠, 等. 中國近海環(huán)境中三丁基錫水質(zhì)基準推導與生態(tài)風險初步評價[J]. 中國海洋大學學報(自然科學版), 2017, 47(1): 32-42.
ZHANG Jing-Jing, GUAN Bo, FAN Jia-Cheng, et al. Derivation of marine water quality criteria and preliminaryecological risk assessment for tributyltin in coastal waters of China[J]. Periodical of Ocean University of China, 2017, 47(1): 32-42.