• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      黃芪和黃連活性提取物對凡納濱對蝦代謝相關(guān)酶的影響?

      2017-01-12 11:58:58高國瑞潘魯青宋夢思海水養(yǎng)殖教育部重點實驗室中國海洋大學(xué)山東青島266003
      關(guān)鍵詞:凡納濱對蝦黃連

      高國瑞, 潘魯青, 黃 輝, 宋夢思(海水養(yǎng)殖教育部重點實驗室(中國海洋大學(xué)),山東 青島 266003)

      黃芪和黃連活性提取物對凡納濱對蝦代謝相關(guān)酶的影響?

      高國瑞, 潘魯青??, 黃 輝, 宋夢思
      (海水養(yǎng)殖教育部重點實驗室(中國海洋大學(xué)),山東 青島 266003)

      本文研究了黃芪和黃連活性提取物在凡納濱對蝦(Litopenaeusvannamei)體內(nèi)的代謝過程及損傷效應(yīng)。實驗設(shè)置6個實驗組:黃芪多糖(黃芪提取物)0.5、1 g/kg,小檗堿(黃連提取物)0.5、1 g/kg,黃芪多糖0.5 g/kg+小檗堿0.5 g/kg,對照組(投喂配合飼料)。投喂含中草藥的飼料6天后投喂配合飼料10天,檢測凡納濱對蝦的代謝酶含量、抗氧化指標(biāo)及組織損傷指標(biāo)。研究表明:黃芪、黃連活性提取物對凡納濱對蝦代謝相關(guān)酶影響顯著(P<0.05)。各處理組肝胰腺CYP450含量、GST活性均于第6天時達到最大值,停藥3天后仍明顯高于對照組(P<0.05);混合處理組CYP450含量、GST活性高于同濃度單獨處理組。投喂6天內(nèi),黃芪、黃連活性提取物均顯著提高凡納濱對蝦T-AOC、SOD活性、GSH含量及GSH/GSSG;混合處理組各指標(biāo)高于同濃度單獨處理組,各組織抗氧化水平大小為:血淋巴>肝胰腺。黃芪多糖0.5、1 g/kg及黃芪多糖0.5 g/kg+小檗堿0.5 g/kg對凡納濱對蝦肝胰腺和鰓脂質(zhì)過氧化和蛋白質(zhì)羰基化無顯著影響,而小檗堿0.5、1 g/kg顯著造成凡納濱對蝦組織損傷;停藥3天后,脂質(zhì)過氧化程度恢復(fù)至正常水平,而羰基含量保持穩(wěn)定直到實驗結(jié)束。研究結(jié)果表明,各組織DNA損傷與中草藥活性提取物濃度顯著相關(guān),表現(xiàn)出明顯的時間劑量效應(yīng),可作為中草藥活性提取物對凡納濱對蝦安全性評價的指標(biāo)。

      黃芪;黃連;凡納濱對蝦;代謝酶;抗氧化防御;生物大分子損傷

      凡納濱對蝦(Litopenaeusvannamei)具有較強的適應(yīng)性和較快的生長速度,是我國重要的對蝦養(yǎng)殖種類。近年來,凡納濱對蝦病害頻繁發(fā)生,嚴重制約著養(yǎng)殖業(yè)的發(fā)展[1]。防治病害的傳統(tǒng)方法是使用抗生素,但會導(dǎo)致病菌耐藥性的產(chǎn)生、抗生素殘留等問題[2]。中草藥作為綠色天然藥物,具有多功效、不易誘發(fā)病原菌耐藥性等優(yōu)勢,在水產(chǎn)無公害養(yǎng)殖病害防治中具有廣闊的應(yīng)用前景[3]。已有研究表明,中草藥能顯著提高水產(chǎn)動物免疫力、抗氧化能力及疾病抵抗力等[4-6]。如彭婷等研究發(fā)現(xiàn)飼喂羅非魚(Oreochromisniloticus)100、200、400 mL/kg黃芪多糖脂質(zhì)體10 d,顯著提高肝臟超氧化物歧化酶(SOD)和谷胱甘肽過氧化物酶(GSH-Px)活性[7]。Zahran等研究表明,飼喂羅非魚(Oreochromisniloticus)0.15%黃芪多糖14 d,顯著提高外周血淋巴細胞吞噬活性、抗菌活性及溶菌酶活性[8]。藥物使用應(yīng)綜合考慮療效、代謝規(guī)律及副作用,然而目前漁用中草藥在應(yīng)用中只注重功效,缺乏在水產(chǎn)動物體內(nèi)代謝過程及副作用的研究。本文研究了黃芪、黃連活性提取物在凡納濱對蝦體內(nèi)代謝過程及組織損傷,探討了單一及混合中草藥在凡納濱對蝦體內(nèi)的代謝規(guī)律及損傷效應(yīng),為中草藥在水產(chǎn)養(yǎng)殖業(yè)的合理應(yīng)用提供科學(xué)依據(jù)。

      1 材料與方法

      1.1 實驗材料

      實驗所用凡納濱對蝦于2014年9月份購于青島膠州對蝦養(yǎng)殖場,體質(zhì)量為(15.2±2.6)g。實驗前暫養(yǎng)含125 L海水的水箱中(72 cm×56 cm×40 cm)一周,暫養(yǎng)條件保持穩(wěn)定:水溫(25±2)℃,鹽度30±1,pH8.2±0.2。暫養(yǎng)期間,連續(xù)充氣,日換水2次,換水量為1/3~1/2,除去殘餌和糞便,投喂配合飼料(粵海飼料集團生產(chǎn)),日投喂量為對蝦體重的5%。

      黃芪、黃連均購自青島市同仁堂藥店。將中草藥用研磨機粉碎,取100 g黃芪粉末加入1 L超純水,100℃回流萃取2次,每次2 h,合并上清液,旋轉(zhuǎn)蒸發(fā)濃縮至200 mL,加入800 mL 95%乙醇,靜置24 h,抽濾,沉淀依次用無水乙醇、丙酮洗滌后在50℃烘箱中烘干。取100 g黃連粉末加入1 L 85%乙醇,超聲震蕩10 min后于80℃回流萃取2 h,重復(fù)萃取2次,合并上清液,并用旋轉(zhuǎn)蒸發(fā)儀濃縮,氮氣吹干,收集提取物放置在密閉干燥容器中。已有研究表明,黃芪、黃連的主要活性成分分別為:黃芪多糖、小檗堿[8-9],經(jīng)測定黃芪提取物中黃芪多糖的含量為28.5%,黃連提取物中小檗堿的含量為40.6%。

      1.2 實驗方法

      1.2.1 實驗設(shè)置 本研究使用黃芪多糖、小檗堿分別作為黃芪、黃連活性提取物添加量的定量標(biāo)準(zhǔn),根據(jù)本實驗室之前篩選出的免疫增強劑配方,設(shè)置6個實驗組,分別為黃芪多糖0.5、1 g/kg,小檗堿0.5、1 g/kg,黃芪多糖0.5 g/kg +小檗堿0.5 g/kg,對照組(投喂配合飼料)。將各處理組中草藥活性提取物均勻噴灑在配合飼料表面,用魚油包裹,晾干備用[10]。

      實驗前將暫養(yǎng)在自然海水中健康的凡納濱對蝦隨機移入各實驗水箱中,每個梯度均設(shè)3個平行組,養(yǎng)殖管理與暫養(yǎng)條件相同,實驗期間凡納濱對蝦無死亡現(xiàn)象。向?qū)ξr投喂含中草藥飼料6 d后投喂配合飼料10 d,取樣時間點為0、3、6、7、9、12和16 d。

      1.2.2 樣品制備 各處理組取8尾蝦,用預(yù)先吸入0.3 mL預(yù)冷抗凝劑(0.01 mol/L HEPES、0.01 mol/L氯化鉀、0.45 mol/L氯化鈉、0.01 mol/L EDTA二鈉,滲透壓為750 mOsm/kg,pH=7.00)的1 mL無菌注射器,按照1∶1的比例在腹血竇處采血。于4℃下800g離心10 min,取上清液-80℃保存?zhèn)溆谩S诒辖馄史謩e取肝胰腺和鰓,液氮研磨,分裝于離心管中(每管裝80~100 mg),-80℃保存?zhèn)溆谩?/p>

      1.2.3 測定方法 細胞色素P450(CYP450)含量的測定參照Omura和Sato的方法[11]。

      谷胱甘肽硫轉(zhuǎn)移酶(GST)活性的測定參照Habig的方法[12]。GST活性以2,4-二硝基苯谷胱甘肽的增速表示,酶活力單位為nmol/mg蛋白。

      總抗氧化活力(T-AOC)使用試劑盒(南京建成生物科技有限公司)進行測定。

      超氧化物歧化酶(SOD)的測定參照Marklund和Marklund的方法[13]。SOD活力單位定義為:25℃下每分鐘抑制鄰苯三酚自氧化速率到50%時所需要的酶量。

      還原性谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量的測定參照Anderson的方法[14]。

      DNA損傷的測定采用堿解旋的方法[15]。提取各實驗組肝胰腺和鰓DNA并各分為3份,分別測定雙鏈、單鏈及堿解旋的熒光值。DNA損傷程度用F值表示,F(xiàn)值越小,表明DNA損傷程度越大,其計算公式為:

      蛋白質(zhì)羰基含量的測定參照Lund等的方法[16]。

      脂質(zhì)過氧化(LPO)程度采用測定丙二醛(MDA)含量的方法[17]。

      蛋白含量的測定采用考馬斯亮藍法[18],并以牛血清蛋白溶液為標(biāo)準(zhǔn)溶液作標(biāo)準(zhǔn)曲線。

      1.3 數(shù)據(jù)處理與分析

      所有實驗數(shù)據(jù)采用SPSS17.0進行分析。實驗結(jié)果以3個平行組數(shù)據(jù)的平均值±標(biāo)準(zhǔn)差(Means±SD)表示,并應(yīng)用單因素方差分析(One-Way ANOVA)和Duncan檢驗法進行統(tǒng)計分析。P<0.05代表差異顯著,P<0.01代表差異極其顯著。

      2 實驗結(jié)果

      2.1 中草藥活性提取物對凡納濱對蝦肝胰腺代謝活性的影響 由圖1可知,黃芪、黃連活性提取物對凡納濱對蝦肝胰腺CYP450含量及GST活性影響顯著(P<0.05),而對照組無明顯變化。各處理組肝胰腺中CYP450含量及GST活性在12d內(nèi)呈明顯的峰值變化,于6 d時達到最高值,停藥3 d后仍顯著高于對照組水平(P<0.05)。提取物混合處理組肝胰腺中CYP450含量及GST活性高于同濃度單獨處理組。停止投藥后,各處理組肝胰腺中CYP450含量及GST活性逐漸下降,于停藥6 d后恢復(fù)正常水平。

      2.2 中草藥活性提取物對凡納濱對蝦抗氧化防御指標(biāo)的影響 由圖2、3所知,黃芪、黃連活性提取物對凡納濱對蝦血淋巴和肝胰腺中抗氧化指標(biāo)影響顯著(P<0.05),而對照組無明顯變化。各處理組血淋巴和肝胰腺中T-AOC、SOD活力、GSH含量及GSH/GSSG在12 d內(nèi)呈明顯的峰值變化,于6 d時達到最高值,停藥3 d后仍顯著高于對照組水平(P<0.05)。投喂活性提取物6 d內(nèi),黃連提取物處理組中各抗氧化指標(biāo)高于同濃度黃芪提取物處理組;混合處理組血淋巴和肝胰腺中各抗氧化指標(biāo)高于同濃度單獨處理組。停止投藥后,各處理組血淋巴和肝胰腺中各抗氧化指標(biāo)逐漸下降,于停藥6 d后恢復(fù)正常水平。

      (“*”代表與對照組差異顯著(P<0.05),“**”代表與對照組差異極其顯著(P<0.01)。Significant differences from control in the sametime of sampling are indicated with an asterisk atP<0.05,and with two asterisks atP<0.01)

      圖1 中草藥活性提取物對凡納濱對蝦肝胰腺CYP450含量(A)及GST活性(B)的影響
      Fig.1 Effects of herb extracts on CYP450 content(A)and GST activity(B)in hepatopancreas ofL.vannamei

      (“*”代表與對照組差異顯著(P<0.05),“**”代表與對照組差異極其顯著(P<0.01)。Significant differences from control in the same time of sampling are indicated with an asterisk atP<0.05,and with two asterisks atP<0.01.)

      圖2 中草藥活性提取物對凡納濱對蝦血淋巴T-AOC(A),SOD(B),GSH(C)及GSH/GSSG(D)的影響
      Fig.2 Effects of herb extracts on T-AOC(A),SOD activity (B),GSH content(C)and the ratio of GSH/GSSG(D)in hemolymph ofL.vannamei

      2.3 中草藥活性提取物對凡納濱對蝦組織損傷效應(yīng)的影響 由圖4、5可知,黃芪、黃連活性提取物對凡納濱對蝦鰓和肝胰腺DNA損傷影響顯著(P<0.05),而對照組無明顯差異。各處理組F值在12 d內(nèi)呈明顯的峰值變化,均于6 d達到最低值,且與中草藥活性提取物濃度呈明顯的負相關(guān)(P<0.05),停藥3 d后仍顯著低于對照組水平。黃連活性提取物單獨作用對凡納濱對蝦鰓和肝胰腺脂質(zhì)過氧化及蛋白質(zhì)羰基化影響顯著(P<0.05),而黃芪活性提取物處理組、混合處理組與對照組相比無明顯變化。各處理組丙二醛及羰基含量分別在9、16 d內(nèi)呈峰值變化,均于6 d達到最高值,停藥3 d后,各處理組丙二醛含量恢復(fù)正常值,而羰基含量保持穩(wěn)定,直到實驗結(jié)束。

      (“*”代表與對照組差異顯著(P<0.05),“**”代表與對照組差異極其顯著(P<0.01)。Significant differences from control in the same time of sampling are indicated with an asterisk atP<0.05,and with two asterisks atP<0.01.)

      圖3 中草藥活性提取物對凡納濱對蝦肝胰腺T-AOC(A),SOD活性(B),GSH含量(C)及GSH/GSSG(D)的影響
      Fig.3 Effects of herb extracts on T-AOC(A),SOD activity (B),GSH content(C)and the ratio of GSH/GSSG(D)in hepatopancreas ofL.vannamei

      (“*”代表與對照組差異顯著(P<0.05),“**”代表與對照組差異極其顯著(P<0.01)。Significant differences from control in the same time of sampling are indicated with an asterisk atP<0.05,and with two asterisks atP<0.01.)

      圖4 中草藥活性提取物對凡納濱對蝦鰓DNA損傷(A)、脂質(zhì)過氧化(B)、蛋白質(zhì)羰基化(C)的影響
      Fig.4 Effects of herb extracts on DNA damage(A),lipid peroxidation(B)and protein carbonylation(C)in gill ofL.vannamei

      (“*”代表與對照組差異顯著(P<0.05),“**”代表與對照組差異極其顯著(P<0.01)。Significant differences from control in the same time of sampling are indicated with an asterisk atP<0.05,and with two asterisks atP<0.01.)

      圖5 中草藥活性提取物對凡納濱對蝦肝胰腺DNA損傷(A)、脂質(zhì)過氧化(B)、蛋白質(zhì)羰基化(C)的影響
      Fig.5 Effects of herb extracts on DNA damage (A),lipid peroxidation(B)and protein carbonylation(C)in hepatopancreas ofL.vannamei

      3 討論

      3.1 中草藥活性提取物在凡納濱對蝦體內(nèi)代謝過程的影響 中草藥活性提取物經(jīng)口服后,從對蝦胃中輸送到肝胰腺,通過解毒代謝酶系統(tǒng)進行代謝和消除[19]。CYP450在I相代謝中催化外源性化合物進行單加氧反應(yīng)[20]。GST是II相代謝中重要的代謝酶,可催化谷胱甘肽(GSH)與外源物質(zhì)及活性代謝產(chǎn)物結(jié)合,形成水溶性較強的代謝物排出體外[21-22]。李小彥等研究發(fā)現(xiàn)投喂100 mg/kg黃芩苷7 d,顯著提高中國對蝦(Fenneropenaeuschinensis)肝胰腺中CYP1A、CYP2及GST活性[23]。本研究表明投藥6 d,各處理組肝胰腺CYP450含量及GST活性顯著升高,混合處理組中CYP450含量及GST活性高于單獨處理組;停藥后各處理組肝胰腺CYP450含量及GST活性顯著減少,混合處理組中CYP450含量及GST活性高于單獨處理組,各指標(biāo)均于停藥第6天恢復(fù)正常水平,這與上述研究結(jié)果基本類似。由此可見,與單獨作用相比,黃芪、黃連活性提取物混合作用誘導(dǎo)了CYP450含量及GST活性的升高;凡納濱對蝦能提高機體CYP450含量增強轉(zhuǎn)化化合物的功能,并提高GST活性以強化中草藥活性提取物與GSH的結(jié)合能力,最終促進中草藥活性提取物的代謝。作者認為肝胰腺中CYP450含量及GST活性能綜合反映中草藥活性提取物在對蝦體內(nèi)的代謝規(guī)律,可為中草藥活性提取物療程的應(yīng)用提供科學(xué)依據(jù)。

      3.2 中草藥活性提取物對凡納濱對蝦抗氧化防御指標(biāo)的影響 中草藥活性提取物在代謝過程中產(chǎn)生活性氧(ROS),對蝦可通過調(diào)節(jié)機體的抗氧化防御系統(tǒng)如抗氧化酶活力等來適應(yīng)增長的活性氧[24],但活性氧的含量超過機體自身消除能力就會造成DNA損傷、脂質(zhì)過氧化、蛋白質(zhì)羰基化等氧化損傷[25]。T-AOC代表機體整體抗氧化水平。SOD是對蝦抗氧化防御系統(tǒng)重要的酶,可以通過還原氧化金屬離子活性位點來催化有毒的超氧陰離子快速反應(yīng)生成分子氧和過氧化氫[26]。GSH具有與體內(nèi)自由基結(jié)合的能力,轉(zhuǎn)化為易代謝酸物質(zhì),加速自由基的清除的作用,其含量的增加可反映機體抗氧化能力的提高[27]。在氧化應(yīng)激反應(yīng)下,機體內(nèi)谷胱甘肽還原型逐漸減少,GSSG含量逐漸上升[28]。已有研究表明,黃芪活性提取物能顯著提高水產(chǎn)動物抗氧化能力。如樊英等研究發(fā)現(xiàn)向刺參(Stichopusjaponicus)體腔中注射0.6 mg/頭的無菌黃芪多糖溶液3 d,顯著提高體腔液中SOD活力[29]。白東清等研究發(fā)現(xiàn)飼喂黃顙魚(Pelteobagrusfulvidraco)600~1200 mg/kg黃芪多糖56 d,顯著提高各組織SOD和過氧化氫酶(CAT)活力[30]。凡納濱對蝦血淋巴各指標(biāo)代表機體整體水平,而肝胰腺是主要的代謝器官。本研究表明,黃芪、黃連活性提取物單獨及混合作用均顯著提高凡納濱對蝦T-AOC,SOD活性,GSH含量及GSH/GSSG,各組織抗氧化能力大小為:血淋巴>肝胰腺,與上述研究結(jié)果基本類似。黃連提取物處理組中各抗氧化指標(biāo)高于同濃度黃芪處理組,表明黃連活性提取物具有較高的抗氧化增強作用。

      3.3 中草藥活性提取物對凡納濱對蝦組織損傷效應(yīng)的影響 DNA損傷是作評估基因毒性的生物標(biāo)志物之一[31],已有研究表明,農(nóng)藥、污染物、環(huán)境突變均可引起機體DNA損傷[32-34]。如養(yǎng)殖水域pH由7.3突變至5.6和9.3均造成凡納濱對蝦血細胞DNA損傷[35]。Chang等研究發(fā)現(xiàn)暴露于4.25 mol/L氯化鎘環(huán)境中,凡納濱對蝦血細胞DNA損傷顯著,暴露6 h后,DNA損傷逐漸恢復(fù)[36]。LPO是評價氧化損傷的重要指標(biāo)。已有研究表明,飼喂羅非魚(Oreochromisniloticus)0.15%黃芪多糖14 d,血漿中脂質(zhì)過氧化無明顯變化[8]。蛋白質(zhì)羰基化被廣泛用來評價氧化應(yīng)激和損傷效應(yīng)[37-38]。已有研究表明,暴露于1 μg/L溴氰菊酯4 d,顯著提高斑節(jié)對蝦(Penaeusmonodon)蛋白質(zhì)羰基化含量[39]。Parvez和Raisuddin研究發(fā)現(xiàn)農(nóng)藥脅迫顯著增加鯉魚(Channapunctata)各組織中蛋白質(zhì)羰基化含量[40]。本研究表明黃芪活性提取物處理組及混合處理組中脂質(zhì)過氧化及蛋白質(zhì)羰基化無顯著變化;黃連活性提取物處理組中DNA損傷、脂質(zhì)過氧化及蛋白質(zhì)羰基化均于6 d達到最大值,且與中草藥活性提取物濃度呈明顯的正相關(guān)(P<0.05),各組織損傷程度大小為:肝胰腺>鰓;停藥3 d后,各處理組脂質(zhì)過氧化恢復(fù)正常值,而羰基含量保持穩(wěn)定,直到實驗結(jié)束,這與上述結(jié)果基本類似。黃連活性提取物(小檗堿0.5、1 g/kg)處理組對凡納濱對蝦組織損傷影響顯著,說明黃連提取物在代謝過程中產(chǎn)生的活性氧含量超出凡納濱對蝦自身的抗氧化防御能力,因此造成氧化損傷。此外,黃芪、黃連活性提取物混合作用對凡納濱對蝦各組織損傷無顯著影響,說明黃芪活性提取物可降低黃連活性提取物對凡納濱對蝦的組織損傷。各組織DNA損傷與中草藥活性提取物濃度顯著相關(guān),表現(xiàn)出明顯的時間劑量效應(yīng),可作為中草藥活性提取物對凡納濱對蝦安全性評價的指標(biāo)。

      4 結(jié)語

      黃芪、黃連活性提取物單獨及混合作用均可顯著提高凡納濱對蝦肝胰腺CYP450含量及GST活性,血淋巴和肝胰腺中T-AOC、SOD活性、GSH含量及GSH/GSSG;混合處理組各抗氧化指標(biāo)高于同濃度單獨處理組,各組織抗氧化水平大小為:血淋巴>肝胰腺;黃芪多糖0.5、1 g/kg及黃芪多糖0.5 g/kg+小檗堿0.5 g/kg對凡納濱對蝦各組織脂質(zhì)過氧化和蛋白質(zhì)羰基化無顯著影響,而小檗堿0.5、1 g/kg顯著造成凡納濱對蝦各組織損傷。各組織DNA損傷可作為中草藥活性提取物對凡納濱對蝦安全性評價的指標(biāo)。

      [1] Walker P J, Winton J R.Emerging virus diseases of fish and shrimp [J]. Vet Res, 2010, 41(6): 41-51.

      [2] 俞開康, 戰(zhàn)文斌, 周麗, 等. 我國沿海養(yǎng)殖對蝦的疾病及研究現(xiàn)狀[J]. 中山大學(xué)學(xué)報 (自然科學(xué)版), 2000, 39(S1): 1-5. Yu K, Zhan W, Zhou L, et al. Shrimp disease research in mainland at China [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(S1): 1-5.

      [3] Kong X F, Wu G Y, Liao Y P, et al. Effects of Chinese herbal ultra-fine powder as a dietary additive on growth performance, serum metabolites and intestinal health in early-weaned piglets[J]. Livest Sci, 2007, 108(1): 272-275.

      [4] Yin G, Jeney G, Racz T, et al. Effect of two Chinese herbs(AstragalusradixandScutellariaradix)on non-specific immune response of tilapia,Oreochromisniloticus[J]. Aquaculture, 2006, 253(1): 39-47.

      [5] Jung H A, Min B S, Yokozawa T, et al. Anti-Alzheimer and antioxidant activities ofCoptidisRhizomaalkaloids [J]. Biol Pharm Bull, 2009, 32(8): 1433-1438.

      [6] Kong W J, Zhao Y L, Xiao X H, et al. Spectrum-effect relationships between ultra-performance liquid chromatography fingerprints and anti-bacterial activities ofRhizomacoptidis[J]. Anal Chim Acta, 2009, 634(2): 279-285.

      [7] 彭婷, 胡庭俊, 陳忠, 等. 黃芪多糖脂質(zhì)體對羅非魚免疫功能和抗氧化能力的影響[J]. 南方農(nóng)業(yè)學(xué)報, 2012, 43(12): 2087-2091. Peng T, Hu T, Chen Z, et al. Effects ofastragaluspolysaccharide lipsome on the immunity and antioxidation activities of Nile tilapia [J]. Journal of Southern Agriculture, 2012, 43(12): 2087-2091.

      [8] Zahran E, Risha E, AbdelHamid F, et al. Effects of dietaryAstragaluspolysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromisniloticus) [J]. Fish Shellfish Immunol, 2014, 38(1): 149-157.

      [9] Tang J, Feng Y, Tsao S, et al. Berberine andCoptidisrhizomaas novel antineoplastic agents: a review of traditional use and biomedical investigations [J]. J Ethnopharmacol, 2009, 126(1): 5-17.

      [10] Samuelsen O B, Bergh ?. Efficacy of orally administered florfenicol and oxolinic acid for the treatment of vibriosis in cod (Gadusmorhua) [J]. Aquaculture, 2004, 235(1): 27-35.

      [11] Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature [J]. Bio Chem, 1964, 239(7): 2370-2378.

      [12] Habig W H, Pabst M J, Jakoby W B. Glutathione S-transferases the first enzymatic step in mercapturic acid formation [J]. J Biol Chem, 1974, 249(22): 7130-7139.

      [13] Marklund S, Marklund G. Involvement of superoxide anion radical in the auto oxidation of pyrogallol and a convenient assay for superoxide dismutase [J]. Eur J Biochem, 1974, 47: 469-474.

      [14] Anderson M E. Determination of glutathione and glutathione disulfide in biological samples [J]. Method Enzymol, 1985, 113: 548-555.

      [15] Daniel F B, Haas D L, Santi L. Quantitation of chemically induced DNA strand breaks in human cells via an alkaline unwinding assay [J]. Anal Biochem, 1985, 144: 390-402.

      [16] Lund M N, Lametsch R, Hviid M S, et al. High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcinelongissimusdorsiduring chill storage [J]. Meat Sci, 2007, 77(3): 295-303.

      [17] Wills E D. Evaluation of Lipid Peroxidation in Lipids and Biological Membranes [M]. Washington: IRL Press, 1987: 127-152.

      [18] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72(1): 248-254.

      [19] Tu H T, Silvestre F, Phuong N T, et al. Effects of pesticides and antibiotics on penaeid shrimp with special emphases on behavioral and biomarker responses [J]. Environ Toxicol. Chem, 2010, 29(4): 929-938.

      [20] Hu F, Pan L, Xiu M, et al. Bioaccumulation and detoxification responses in the scallopChlamysfarreriexposed to tetrabromobisphenol A (TBBPA). Environ [J]. Toxicol Phar, 2015, 39(3): 997-1007.

      [21] Keen J H, Jakoby W B. Glutathione transferases Catalysisof nucleophilic reactions of glutathione [J]. J Biochem, 1978, 253 (16): 5654-5657.

      [22] Hayes J D, Wolf C R. Role of Glutathione Transferase Indrug Resistance. In: Glutathione Conjugation Mechanisms and Biological Significance [M]. London, UK: Academic Press Limited, 1988: 316-356.

      [23] 李小彥, 李健, 張喆, 等. 黃芩苷對中國對蝦細胞色素P450酶及谷胱甘肽-S-轉(zhuǎn)移酶活性的影響[J]. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2010, 40(3): 49-53. Li X, Li J, Zhang Z, et al. Effects of Baicalin on Cytochrome P450 Enzymes and Glutathione S-Transferase ofFenneropenaeuschinensis[J]. Periodical of Ocean University of China, 2010, 40(3): 49-53.

      [24] Livingstone D R. Oxidative stress in aquatic organisms in relation to pollution and aquaculture [J]. Rev Med Vet, 2003, 154: 427-430.

      [25] Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine [M]. New York: Oxford University Press, 1999.

      [26] Chen Z, Zhou Q, Zou D, et al. Chloro-benzoquinones cause oxidative DNA damage through iron-mediated ROS production inEscherichiacoli[J]. Chemosphere, 2015, 135: 379-386.

      [27] Cheng S Y, Hsu S W, Chen J C. Effect of sulfide on the immune response and susceptibility toVibrioalginolyticusin the kuruma shrimpMarsupenaeusjaponicas[J]. Fish Shellfish Immunol, 2007, 22: 16-26.

      [28] Sentellas S, Morales-Ibanez O, Zanuy M, et al. GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress [J]. Toxicol In Vitro, 2014, 28(5): 1006-1015.

      [29] 樊英, 王淑嫻, 葉海斌, 等. 黃芪多糖對仿刺參非特異性免疫功能的影響[J]. 水產(chǎn)科學(xué), 2010, 29(6): 321-324. Fan Y, Wang S, Ye H, et al. Effects of polysaccharides fromAstragalusmembranaceuson non-specific immune in sea cucumberApostichopusjaponicas[J]. Fisheries Science, 2010, 29(6): 321-324.

      [30] 白東青, 吳旋, 郭永軍, 等. 長期投喂黃芪多糖對黃顙魚抗氧化及非特異性免疫指標(biāo)的影響[J]. 動物營養(yǎng)學(xué)報, 2011, 23(9): 1622-1630. Bai D, Wu X, Guo Y, et al. Immune indices of yellow catfish (Pelteobagrusfulvidraco) over long-term feeding [J]. Chinese Journal of Animal Nutrition, 2011, 23(9): 1622-1630.

      [31] Malev O, Rut M, Maguire I, et al. Genotoxic, physiological and immunological effects caused by temperature increase, air exposure or food deprivation in freshwater crayfishAstacusleptodactylus[J]. Com Biochem Physiol C, 2010, 152: 433-443.

      [32] Li D, Huang Q, Lu M, et al. The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis [J]. Chemosphere, 2015, 135: 387-393.

      [33] Qiu J, Wang W N, Wang L, et al. Oxidative stress, DNA damage and osmolality in the Pacific white shrimp,Litopenaeusvannameiexposed to acute low temperature stress [J]. Com Biochem Physiol C, 2011, 154: 36-41.

      [34] Chen Z, Zhou Q, Zou D, et al. Chloro-benzoquinones cause oxidative DNA damage through iron-mediated ROS production inEscherichiacoli[J]. Chemosphere, 2015, 135: 379-386.

      [35] Wang W N, Zhou J, Wang P, et al. Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp,Litopenaeusvannameiwhen exposed to acute pH stress [J]. Comp Biochem Physiol C, 2009, 150: 428-435.

      [36] Chang M, Wang W N, Wang A L, et al. Effects of cadmium on respiratory burst, intracellular Ca2+and DNA damage in the white shrimpLitopenaeusvannamei[J]. Comp Biochem Physiol C, 2009, 149(4): 581-586.

      [37] Almroth B C, Sturve J, Stephensen E, et al. Protein carbonyls and antioxidant defenses in corkwing wrasse (Symphodusmelops) from a heavy metal polluted and a PAH polluted site [J]. Mar Environ Res, 2008, 66: 271-277.

      [38] Ren X, Pan L, Wang L. The detoxification process, bioaccumulation and damage effect in juvenile white shrimpLitopenaeusvannameiexposed to chrysene [J]. Ecotox Environ Safe, 2015, 114: 44-51.

      [39] Dorts J, Silvestre F, Tu H T, et al. Oxidative stress, protein carbonylation and heat shock proteins in the black tiger shrimp,Penaeusmonodon, following exposure to endosulfan and deltamethrin [J]. Environ Toxicol Phar, 2009, 28: 302-310.

      [40] Parvez S, Raisuddin S. Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fishChannapunctata(Bloch) [J]. Environ Toxicol Phar, 2005, 20: 112-117.

      責(zé)任編輯 朱寶象

      Effects ofAstragalusradixandCoptischinensisExtracts on Metabolic Enzymes Activities of White Shrimp (Litopenaeusvannamei)

      GAO Guo-Rui, PAN Lu-Qing, HUANG Hui, SONG Meng-Si
      (The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China)

      The effects ofAstragalusradixandCoptischinensisextracts on metabolic enzymes, antioxidant defense and biomolecule damage of shrimp (Litopenaeusvannamei) were investigated. Six diets containingA.radixextract (Astragaluspolysaccharide) (0.5, 1 g/kg),C.chinensisextract (berberine) (0.5, 1 g/kg), the combination ofAstragaluspolysaccharide (0.5 g/kg) and berberine (0.5g/kg), and a control were used. Shrimps were fed with the extract containing diets for 6 days followed by a period feeding the common diet for 10 days. Results showed thatA.radixandC.chinensisextracts had significant effects on metabolic enzymes, antioxidant parameters and biomolecule damage ofL.vannamei(P<0.05). CYP450 content and GST activity in hepatopancreas of the experimental groups increased in 12 days, and then recovered to those of the control in 6 days of feeding the common diet. CYP450 content and GST activity in composite extracts group were higher than those in single extract groups.A.radixandC.chinensisextracts significantly improved the T-AOC, SOD activity, GSH content and the ratio of GSH to GSSG in hemolymph and hepatopancreas of shrimpL.vannameiin 6 days of feeding. These parameters could provide the scientific basis for the application of herb extracts in aquaculture. F values in single extract groups showed peak changes in 12 days, reached the minimum on day 6 and recovered to that of control after 6 days of feeding the common diet. No significant DNA damage was observed in composite extracts group. The MDA and PC contents in hepatopancreas and gill ofC.chinensisextract groups reached the maximum on day 6, and MDA content recovered to that of the control after 3 days of feeding the common diet. There was no significant MDA content and PC content inA.radixextract groups and composite extracts group. Our findings indicated that DNA damage in hepatopancreas and gill was significantly dose and time dependent, and could be used as a safety evaluation index of herbal extracts.

      Astragalusradix;Coptischinensis;Litopenaeusvannamei; metabolic enzyme; antioxidant defense; biomolecule damage

      海洋公益性行業(yè)科研專項經(jīng)費項目(201305005)資助 Supported by the National Marine Public Industry Research Project(201305005)

      2016-04-19;

      2017-01-11

      高國瑞(1988-),男,博士生。E-mail:gaoguoruily@163.com

      ?? 通訊作者:E-mail:panlq@ouc.edu.cn

      S96

      A

      1672-5174(2017)06-061-08

      10.16441/j.cnki.hdxb.20160135

      高國瑞,潘魯青,黃輝,等. 黃芪和黃連活性提取物對凡納濱對蝦代謝相關(guān)酶的影響研究[J]. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2017, 47(6): 61-68.

      GAO Guo-Rui, PAN Lu-Qing, HUANG Hui, et al. Effects ofAstragalusradixandCoptischinensisextracts on metabolic enzymes activities of white shrimp (Litopenaeusvannamei) [J]. Periodical of Ocean University of China, 2017, 47(6): 61-68.

      猜你喜歡
      凡納濱對蝦黃連
      對蝦養(yǎng)殖弱勢群體的管理
      對蝦吃料慢的原因分析和處理
      對蝦免疫增強劑研究進展
      黃連、黃連-生地配伍中5種生物堿在正常、抑郁大鼠中體內(nèi)藥動學(xué)的比較
      中成藥(2021年5期)2021-07-21 08:38:12
      對蝦常見環(huán)境性疾病的防治
      凡納濱對蝦白斑綜合征病毒防治研究進展(一)
      黃連解毒湯對SAM-P/8小鼠行為學(xué)作用及機制初探
      中成藥(2017年12期)2018-01-19 02:06:50
      凡納濱對蝦與點帶石斑魚的混養(yǎng)模式
      凡納濱對蝦CTSL基因與生長相關(guān)的SNP位點的特征
      大黃黃連瀉心湯加味治療胃癌癌前病變30例
      灵武市| 玉溪市| 遂平县| 会泽县| 桓台县| 柏乡县| 博客| 镶黄旗| 延庆县| 马山县| 林西县| 青龙| 金秀| 平遥县| 汨罗市| 文登市| 昌平区| 龙岩市| 定日县| 台北县| 昔阳县| 三门县| 平泉县| 台中市| 景宁| 博白县| 呼图壁县| 易门县| 华坪县| 修文县| 定安县| 荣昌县| 凤翔县| 万宁市| 文水县| 鄄城县| 新疆| 新宁县| 岱山县| 石台县| 喀喇|