王華龍, 米鐵柱, 甄 毓, 劉 乾, 于志剛
(1.中國(guó)海洋大學(xué)海洋生命學(xué)院,山東 青島 266003;2.海洋環(huán)境與生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,山東 青島 266100;3.海洋化學(xué)理論與工程技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,山東 青島 266100;4.海洋國(guó)家實(shí)驗(yàn)室海洋生態(tài)與環(huán)境科學(xué)功能實(shí)驗(yàn)室,山東 青島 266071)
基于瑪氏骨條藻轉(zhuǎn)錄組的細(xì)胞死亡相關(guān)功能基因解析*
王華龍1,2,4, 米鐵柱2,4**, 甄 毓2,4, 劉 乾1,2,4, 于志剛3,4
(1.中國(guó)海洋大學(xué)海洋生命學(xué)院,山東 青島 266003;2.海洋環(huán)境與生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,山東 青島 266100;3.海洋化學(xué)理論與工程技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,山東 青島 266100;4.海洋國(guó)家實(shí)驗(yàn)室海洋生態(tài)與環(huán)境科學(xué)功能實(shí)驗(yàn)室,山東 青島 266071)
本研究以瑪氏骨條藻(Skeletonemamarinoi)轉(zhuǎn)錄組信息為基礎(chǔ),發(fā)現(xiàn)瑪氏骨條藻中存在26個(gè)與細(xì)胞死亡相關(guān)的酶以及37個(gè)編碼這些酶的基因。這些編碼基因的序列比對(duì)結(jié)果表明,其與假微型海鏈藻(Thalassiosirapseudonana)和大洋海鏈藻(Thalassiosiraoceanica)的同源基因具有較高的一致性。對(duì)這些樣品進(jìn)行數(shù)字基因表達(dá)譜的差異基因分析,獲得了不同生長(zhǎng)時(shí)期時(shí)與細(xì)胞死亡過程有關(guān)的編碼基因的差異表達(dá)數(shù)據(jù)。結(jié)果發(fā)現(xiàn),在穩(wěn)定期和衰亡期,與抗氧化脅迫作用相關(guān)的關(guān)鍵酶 (如過氧化物酶5、銅鋅超氧化物歧化酶)、與RNA的加工與降解過程有關(guān)的功能基因(如多核糖核苷酸核苷轉(zhuǎn)移酶、5’~3’核糖核酸外切酶 2)以及細(xì)胞死亡特異蛋白的基因表達(dá)量顯著高于指數(shù)期。本論文主要是通過對(duì)轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行分析得到基因轉(zhuǎn)錄組水平差異表達(dá)結(jié)果,為蛋白水平研究提供一種可能性變化趨勢(shì)和潛在數(shù)據(jù)依據(jù),同時(shí)為以后研究提供數(shù)據(jù)基礎(chǔ)及研究方向。本研究也為進(jìn)一步探討硅藻的細(xì)胞死亡機(jī)制奠定了基礎(chǔ),也為深入理解赤潮的消亡過程提供了新的視角。
瑪氏骨條藻;轉(zhuǎn)錄組分析;細(xì)胞死亡
浮游植物的死亡是水體浮游植物生物量改變的重要原因[1]。浮游植物的死亡會(huì)改變水體浮游植物的多樣性以及引起食物鏈結(jié)構(gòu)的變化,繼而引起其他營(yíng)養(yǎng)級(jí)生物組成變化[2]。浮游植物的消亡過程對(duì)于全球海洋初級(jí)生產(chǎn)力的流通和營(yíng)養(yǎng)物質(zhì)的再循環(huán)具有重要作用[3]。浮游植物細(xì)胞死亡的主要原因包括浮游動(dòng)物和底棲濾食者的捕食、溶藻細(xì)菌和病毒侵染所引起的藻細(xì)胞裂解、程序性細(xì)胞死亡(Programmed cell death, PCD)[4-5]以及營(yíng)養(yǎng)鹽限制、光抑制等外部因素所引起的細(xì)胞死亡。目前,對(duì)于浮游植物細(xì)胞死亡的實(shí)驗(yàn)生態(tài)學(xué)研究較多[6-8],但針對(duì)細(xì)胞死亡的分子機(jī)制研究較少。
為更好地理解浮游植物對(duì)海洋生態(tài)系統(tǒng)的影響,明晰調(diào)節(jié)浮游植物死亡的分子機(jī)制是必不可少的。通過對(duì)不同培養(yǎng)條件的浮游植物轉(zhuǎn)錄組進(jìn)行高通量測(cè)序,能夠?qū)ζ浠蚪M進(jìn)行轉(zhuǎn)錄水平的分析,從而確定編碼代謝途徑相關(guān)酶的基因。在此基礎(chǔ)上解析相關(guān)的生物合成途徑,并對(duì)差異表達(dá)的基因和蛋白質(zhì)進(jìn)行定量與分析,有助于了解參與生物生長(zhǎng)代謝過程的代謝組件及其可能的參與方式以及它們與環(huán)境互作的作用機(jī)制[9-13]?,斒瞎菞l藻(Skeletonemamarinoi)是2005年由Sarno等分離確認(rèn)的,是一種在全球近岸海域廣泛分布的廣溫廣鹽型海洋微型浮游硅藻[14],亦是我國(guó)沿海主要的硅藻類群[15-16]。本研究中我們測(cè)定并分析了瑪氏骨條藻不同生長(zhǎng)時(shí)期的轉(zhuǎn)錄組,并在此基礎(chǔ)上分析瑪氏骨條藻細(xì)胞死亡相關(guān)基因的差異表達(dá),以期為闡明細(xì)胞死亡時(shí)的內(nèi)在分子機(jī)制提供依據(jù)。
1.1 瑪氏骨條藻的培養(yǎng)
瑪氏骨條藻分離自青島近海海域,藻種保存于中國(guó)海洋大學(xué)海洋環(huán)境與生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室藻種室,采用常規(guī)f/2培養(yǎng)基培養(yǎng),光暗周期為12 h/12 h,光照強(qiáng)度為100 μmol photons ·m-2·s-1,培養(yǎng)溫度為(20±1)℃。實(shí)驗(yàn)用海水取自青島近海,鹽度33,pH為7.8~8.0。
1.2 測(cè)序樣品準(zhǔn)備
本實(shí)驗(yàn)開始前,作者進(jìn)行了三次在指數(shù)生長(zhǎng)末期進(jìn)行接種培養(yǎng)的預(yù)處理,以保證藻細(xì)胞生長(zhǎng)狀態(tài)良好和同步。我們基于瑪氏骨條藻生長(zhǎng)趨勢(shì)收集實(shí)驗(yàn)第6天(指數(shù)期,Exponential phase, EP)、第13天(穩(wěn)定期,Stationary phase, SP)和第20 天(衰亡期,Decline phase, DP)的藻細(xì)胞。每個(gè)實(shí)驗(yàn)組3個(gè)平行樣,離心收集藻細(xì)胞,并迅速于液氮中保存樣品。樣品由北京諾禾致源生物信息科技有限公司進(jìn)行總RNA的提取及Illumina Hiseq2000雙端測(cè)序。
1.3 數(shù)據(jù)預(yù)處理及de novo拼接
高通量測(cè)序平臺(tái)Illumina HiSeq2000所得到的原始數(shù)據(jù)經(jīng)CASAVA堿基識(shí)別(Base Calling)分析轉(zhuǎn)化為原始測(cè)序序列(Sequenced Reads),即Raw Data或Raw Reads。繼而對(duì)Raw Data進(jìn)行質(zhì)量評(píng)估,主要包括測(cè)序錯(cuò)誤率分布檢查和A/T/G/C含量分布檢查2個(gè)部分。隨后,對(duì)原始數(shù)據(jù)進(jìn)行過濾處理,以保證信息分析質(zhì)量并得到有效序列(Clean Reads)。以Trinity軟件(r2012-10-05)[17]將有效序列進(jìn)行denovo拼接成為轉(zhuǎn)錄組,以此作為后續(xù)分析的參考序列。
1.4 功能注釋及代謝途徑分析
將拼接得到的轉(zhuǎn)錄組利用NCBI blast 2.2.28+[18]算法分別比對(duì)到NCBI的NR、NT、Swiss-Prot和KOG數(shù)據(jù)庫,KOG的E value閾值設(shè)為1E-3,另外3個(gè)E value閾值設(shè)為1E-5,繼而預(yù)測(cè)轉(zhuǎn)錄本的功能并進(jìn)行功能歸類。利用HMMER 3.0 package進(jìn)行Pfam蛋白結(jié)構(gòu)預(yù)測(cè)。利用軟件Blast2GO v2.5[19]和GO功能注釋得到基于NR和Pfam的蛋白注釋結(jié)果。拼接得到的轉(zhuǎn)錄組提交至KAAS服務(wù)器進(jìn)行KEGG代謝途徑分析[20-21]。最后利用RSEM軟件[22]將樣品的有效序列與參比序列進(jìn)行定位分析。RSEM中使用bowtie默認(rèn)參數(shù)。對(duì)bowtie的比對(duì)結(jié)果進(jìn)行統(tǒng)計(jì),進(jìn)一步得到每個(gè)樣品比對(duì)到每個(gè)基因上的read count數(shù)目。對(duì)read count數(shù)據(jù)采用基于負(fù)二項(xiàng)分布的DESeq處理后,進(jìn)行基因差異表達(dá)分析[23-25]。本實(shí)驗(yàn)中,定義Lf=log2(Fold Change)=log2(實(shí)驗(yàn)組read count/對(duì)照組read count)。以q-value<0.005和|Lf|>1為篩選條件判斷基因是否為差異基因[26],并利用該值對(duì)瑪氏骨條藻不同生長(zhǎng)時(shí)期相關(guān)代謝途徑中基因的表達(dá)水平進(jìn)行比較。
2.1 轉(zhuǎn)錄組測(cè)序信息及拼接
對(duì)Illumina Hiseq2000雙端測(cè)序所得原始數(shù)據(jù)進(jìn)行過濾以去除低質(zhì)量數(shù)據(jù),共獲得58 592 306 bp用于拼接的高質(zhì)量有效序列,占原始序列的96.15%。將所有的有效序列利用denovo拼接總共獲得39 098個(gè)轉(zhuǎn)錄本,20 319個(gè)unigene(每個(gè)基因中拼接獲得的最長(zhǎng)的轉(zhuǎn)錄本),長(zhǎng)度范圍200~20 000 bp。
2.2 功能注釋及分析
拼接得到的所有轉(zhuǎn)錄本比對(duì)到各數(shù)據(jù)庫(包括相關(guān)已測(cè)序硅藻序列)結(jié)果顯示,10 826個(gè)轉(zhuǎn)錄本能夠注釋到GO編號(hào),同時(shí)5 095個(gè)轉(zhuǎn)錄本能夠與KOG數(shù)據(jù)中的序列比對(duì)上。KEGG代謝途徑分析拼接得到的所有轉(zhuǎn)錄本,3 816個(gè)轉(zhuǎn)錄本可以比對(duì)分配到EC編號(hào),并注釋到225條代謝途徑,包括凋亡途徑、RNA降解、過氧化物酶體代謝等與細(xì)胞死亡相關(guān)的途徑。
基于轉(zhuǎn)錄組的功能注釋及分析,瑪氏骨條藻中與細(xì)胞死亡相關(guān)的途徑有26個(gè)相關(guān)酶以及37個(gè)編碼基因的轉(zhuǎn)錄本(見表1)。利用BLASTx進(jìn)一步比較分析了瑪氏骨條藻細(xì)胞死亡相關(guān)功能基因序列與假微型海鏈藻(Thalassiosirapseudonana)、大洋海鏈藻(Thalassiosiraoceanica)和三角褐指藻(Phaeodactylumtricornutum)同源基因的一致性,結(jié)果顯示,瑪氏骨條藻與同屬中心綱的假微型海鏈藻和大洋海鏈藻有著相對(duì)更高的基因序列一致性,而與羽紋綱的三角褐指藻的序列一致性相對(duì)較低(見表1)。
上表所述基因的主要相關(guān)細(xì)胞過程和功能涉及氧脅迫、RNA降解與PCD。浮游植物胞內(nèi)活性氧(Reactive oxygen species, ROS)升高是細(xì)胞死亡的一個(gè)重要指標(biāo),如Evans C研究發(fā)現(xiàn)不論病毒還是非病毒引起的赫氏顆石藻(Emilianiahuxleyi)死亡,ROS上升都是必要條件[27]。CO2脅迫也能導(dǎo)致加頓多甲藻(Peridiniumgatunense)ROS上升,而且在ROS上調(diào)之前加入過氧化氫酶,或者加入ROS清除劑,都可顯著減少細(xì)胞死亡,這些結(jié)果表明ROS在加頓多甲藻死亡過程中必不可少[28]。過氧化物酶5(PRDX5,EC: 1.11.1.15)和銅鋅超氧化物歧化酶(Cu-Zn-SOD,EC: 1.15.1.1)均具有較強(qiáng)的抗氧化脅迫作用,能夠清除胞內(nèi)有害的ROS。
在RNA分子合成過程中發(fā)生的任何錯(cuò)誤,或是不必要的RNA累積對(duì)于藻細(xì)胞都是有害的。因此清除有缺陷或是不再需要的RNA是藻細(xì)胞保持活力的一個(gè)關(guān)鍵步驟。在脅迫條件時(shí)RNA降解速率的顯著提高,也表明藻細(xì)胞活力已顯著降低,有可能會(huì)造成細(xì)胞死亡。多核糖核苷酸核苷轉(zhuǎn)移酶(PNPT,EC: 2.7.7.8)、CCR4-NOT轉(zhuǎn)錄復(fù)合體亞基6(CNOT6,EC: 3.1.13.4)、5’~3’核糖核酸外切酶 2(XRN2)、ATP依賴型RNA解旋酶(DDX6,EC: 3.6.4.13)、U6 核內(nèi)小RNA相關(guān)的類Sm蛋白(LSM8) 均為與RNA降解過程相關(guān)的關(guān)鍵酶或蛋白。
續(xù)表
注:NM表示該轉(zhuǎn)錄本在另三種硅藻中無相似序列;*表示與指數(shù)期相比較有顯著差異表達(dá)的功能基因。
Note:NM indicate the transcript is not have similar sequence in other three ditoms.*indicate the functional gene has significant difference compared to exponential phase.
浮游植物PCD最易接受的解釋是能夠從種群中移除受損害的細(xì)胞,可以讓各種資源被健康生長(zhǎng)的藻細(xì)胞所利用,或者通過部分細(xì)胞的死亡為同種群其他細(xì)胞提供生存機(jī)會(huì)[5]。死亡特異蛋白(Death specific protein,DSP)在浮游植物發(fā)生PCD過程中具有重要促進(jìn)作用。在衰老、光限制、光系統(tǒng)II (PSII)受到化學(xué)抑制時(shí),中肋骨條藻(Skeletonemacostatum)的DSP均能被誘導(dǎo)高表達(dá)[29]。假微型海鏈藻可以通過Fe限制誘導(dǎo)DSP高表達(dá)[30]。
2.3 細(xì)胞死亡途徑中基因差異表達(dá)的分析
比較瑪氏骨條藻在不同生長(zhǎng)時(shí)期與細(xì)胞死亡途徑相關(guān)基因的表達(dá)水平,結(jié)果發(fā)現(xiàn):穩(wěn)定期與衰亡期相比較,瑪氏骨條藻與細(xì)胞死亡途徑相關(guān)基因的表達(dá)水平無顯著差異;而與指數(shù)期相比較,在穩(wěn)定期和衰亡期,與細(xì)胞死亡途徑相關(guān)的26個(gè)酶編碼基因的表達(dá)水平(Lf值)有顯著差別的共計(jì)12個(gè)。圖1中列出了這些差異表達(dá)基因在不同培養(yǎng)時(shí)期的Lf值。
通過比較處于指數(shù)期、穩(wěn)定期和衰亡期瑪氏骨條藻基因差異表達(dá)水平,發(fā)現(xiàn)與氧脅迫相關(guān)的過氧化物酶5(PRDX5,EC: 1.11.1.15)和銅鋅超氧化物歧化酶(Cu-Zn-SOD,EC: 1.15.1.1)基因顯著差異表達(dá)。如圖1 (a)、(b)所示,參與抗氧化作用、能夠降低細(xì)胞內(nèi)ROS水平的過氧化物酶5在衰亡期的Lf值為-4.56,與指數(shù)期相比較顯著下調(diào)。能夠?qū)古c阻斷氧自由基對(duì)細(xì)胞造成損害的銅鋅超氧化物歧化酶在穩(wěn)定期、衰亡期的Lf值分別為-5.03和-2.93,均與指數(shù)期存在顯著差異。Mohamed研究發(fā)現(xiàn)當(dāng)細(xì)胞內(nèi)活性氧含量顯著升高繼而進(jìn)入凋亡過程時(shí), PRDX5基因表達(dá)量顯著降低[31]。上述結(jié)果表明,瑪氏骨條藻生長(zhǎng)進(jìn)入穩(wěn)定期、衰亡期后PRDX5和Cu-Zn-SOD基因轉(zhuǎn)錄組水平表達(dá)量顯著降低,可能會(huì)導(dǎo)致胞內(nèi)活性氧濃度較高而使得細(xì)胞已不能夠通過釋放大量抗氧化酶進(jìn)行自我修復(fù)。
與RNA降解過程相關(guān)的多核糖核苷酸核苷轉(zhuǎn)移酶(PNPT,EC: 2.7.7.8)、CCR4-NOT轉(zhuǎn)錄復(fù)合體亞基6(CNOT6,EC: 3.1.13.4)、5’~3’核糖核酸外切酶 2(XRN2)、ATP依賴型RNA解旋酶(DDX6,EC: 3.6.4.13)、U6 核內(nèi)小RNA相關(guān)的類Sm蛋白(LSM8)基因均在指數(shù)期、穩(wěn)定期和衰亡期顯著差異表達(dá)。如圖1 (c)、(d) 所示,與RNA的加工和降解過程相關(guān)的PNPT在穩(wěn)定期和衰亡期的Lf值均顯著高于指數(shù)期,分別為3.32和3.87。在mRNA降解過程中發(fā)揮重要作用的CNOT6在衰亡期的Lf值顯著高于指數(shù)期,Lf值為1.66。圖1(e)中,XRN2在穩(wěn)定期和衰亡期的Lf值分別為2.68和3.55,均顯著高于指數(shù)期。DDX6在穩(wěn)定期、衰亡期的Lf值顯著低于指數(shù)期,分別為-4.42和-2.81(見圖1(f))。與RNA的合成過程有關(guān)的LSM8在穩(wěn)定期的Lf值(-3.70)顯著低于指數(shù)期(見圖1(h)),表明在穩(wěn)定期RNA的合成速率可能顯著低于指數(shù)期。XRN2和PNPT基因的高表達(dá),能夠顯著促進(jìn)miRNAs的降解[32]。上述結(jié)果表明,在穩(wěn)定期與衰亡期,與RNA降解過程相關(guān)的PNPT、CNOT6、XRN2、 DDX6和LSM8基因轉(zhuǎn)錄組水平表達(dá)量與指數(shù)期存在顯著差異,表明藻細(xì)胞RNA降解速率可能加快,正常的生命活動(dòng)過程受到阻礙,促進(jìn)了細(xì)胞死亡過程的發(fā)生。
細(xì)胞周期蛋白B1和細(xì)胞周期蛋白B2(cyclin B,EC: 2.7.11.22)基因的表達(dá)在穩(wěn)定期的Lf值顯著低于指數(shù)期,分別為-4.20和-3.87(見圖1(h)、(i)),而且細(xì)胞周期蛋白B2在衰亡期的Lf值顯著低于指數(shù)期,為-3.21,表明藻細(xì)胞增殖能力在穩(wěn)定期和衰亡期可能已經(jīng)顯著降低。分子伴侶GroEL(EC: 3.6.4.9)在穩(wěn)定期和衰亡期的Lf值均顯著高于指數(shù)期,分別為5.65和5.75(見圖1(j)),該基因?yàn)樵S多蛋白正確折疊所必須,其高表達(dá)能夠促進(jìn)在脅迫條件時(shí)錯(cuò)誤折疊多肽的重新折疊。烯醇化酶1 (Enolase 1,EC: 4.2.1.11)在穩(wěn)定期的Lf值(1.84)顯著高于指數(shù)期 (見圖1(k)),表明在穩(wěn)定期藻細(xì)胞可能加快了糖酵解過程,促進(jìn)能量的產(chǎn)生與釋放,為生命活動(dòng)提供能量保障。
細(xì)胞死亡特異蛋白已經(jīng)在中肋骨條藻和假微型海鏈藻中發(fā)現(xiàn)[29-30]。在多細(xì)胞動(dòng)物中,細(xì)胞死亡蛋白能夠促使細(xì)胞內(nèi)鈣穩(wěn)態(tài)失衡,進(jìn)而損傷細(xì)胞并活化不同的鈣離子調(diào)控蛋白致使細(xì)胞死亡[33]。衰老及光限制時(shí),中肋骨條藻(Skeletonemacostatum)的死亡特異蛋白基因均能被誘導(dǎo)高表達(dá)[29]。死亡特異蛋白Lf值在衰亡期顯著高于指數(shù)期,為2.34(見圖1(l)),表明在衰亡期胞內(nèi)鈣離子穩(wěn)態(tài)可能已經(jīng)遭到破壞,細(xì)胞死亡百分比顯著升高。
綜上所述,瑪氏骨條藻在不同生長(zhǎng)時(shí)期與抗氧化脅迫作用相關(guān)的關(guān)鍵酶(如過氧化物酶5、銅鋅超氧化物歧化酶)、與RNA的加工與降解過程有關(guān)的功能基因(如多核糖核苷酸核苷轉(zhuǎn)移酶、5’~3’核糖核酸外切酶 2)以及細(xì)胞死亡特異蛋白等基因表達(dá)水平的變化體現(xiàn)了藻體在應(yīng)對(duì)不同生長(zhǎng)時(shí)期脅迫時(shí)做出的分子響應(yīng),同時(shí)指征細(xì)胞死亡亦可能與PCD相關(guān),可以作為后續(xù)研究重點(diǎn)。浮游植物死亡的調(diào)控是影響微生物動(dòng)態(tài)和多樣性、物種演替以及生源要素生物地球化學(xué)循環(huán)的重要因素[34-35],認(rèn)識(shí)并闡明浮游植物細(xì)胞死亡的分子機(jī)制對(duì)于認(rèn)識(shí)赤潮持續(xù)和消亡的分子機(jī)理,探究種群動(dòng)態(tài)變化和物質(zhì)循環(huán)過程都具有重要意義。
本研究通過對(duì)瑪氏骨條藻轉(zhuǎn)錄組測(cè)序與分析,發(fā)現(xiàn)瑪氏骨條藻中存在26個(gè)與細(xì)胞死亡相關(guān)的酶以及37個(gè)編碼這些酶的基因。序列比對(duì)結(jié)果表明,這些編碼基因與同屬中心綱的假微型海鏈藻和大洋海鏈藻有較高的序列一致性。通過比較瑪氏骨條藻不同生長(zhǎng)時(shí)期的轉(zhuǎn)錄組,發(fā)現(xiàn)與細(xì)胞死亡相關(guān)的一些功能基因存在顯著差異表達(dá)。相比于指數(shù)期,與抗氧化脅迫作用相關(guān)的關(guān)鍵酶(如過氧化物酶5、銅鋅超氧化物歧化酶)、與RNA的加工與降解過程有關(guān)的功能基因(如多核糖核苷酸核苷轉(zhuǎn)移酶、5’~3’核糖核酸外切酶 2)以及DSP基因在穩(wěn)定期和衰亡期顯著差異表達(dá),為蛋白水平研究提供一種可能性變化趨勢(shì)和潛在數(shù)據(jù)依據(jù),同時(shí)為以后研究提供數(shù)據(jù)基礎(chǔ)及研究方向。本實(shí)驗(yàn)結(jié)果為進(jìn)一步深入研究赤潮藻在遭受環(huán)境脅迫時(shí)細(xì)胞死亡相關(guān)基因的表達(dá)調(diào)控模式奠定了基礎(chǔ)。
[1] Agusti S, Alou E V A, Hoyer M V, et al. Cell death in lake phytoplankton communities[J]. Freshwater Biology, 2006, 51(8): 1496-1506.
[2] Franklin D J, Brussaard C P D, Berges J A. What is the role and nature of programmed cell death in phytoplankton ecology?[J]. European Journal of Phycology, 2006, 41(1): 1-14.
[3] Ray J L, Haramaty L, Thyrhaug R, et al. Virus infection ofHaptolinaericinaandPhaeocystispouchetiiimplicates evolutionary conservation of programmed cell death induction in marine haptophyte-virus interactions[J]. Journal of Plankton Research, 2014, 36(4): 943-955.
[4] Vargo G A. A brief summary of the physiology and ecology ofKareniabrevisDavis (G. Hansen and Moestrup comb. nov.) red tides on the West Florida Shelf and of hypotheses posed for their initiation, growth, maintenance, and termination[J]. Harmful Algae, 2009, 8(4): 573-584.
[5] 李杰, 丁奕, 項(xiàng)榮, 等. 浮游植物程序性細(xì)胞死亡研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 2010, 19(11): 2743-2748. Li J, Ding Y, Xiang R, et al. Programmed cell death in phytoplankton[J]. Ecology and Environmental Sciences, 2010, 19(11): 2743-2748.
[6] 李波, 藍(lán)文陸, 李天深, 等. 球形棕囊藻赤潮消亡過程環(huán)境因子變化及其消亡原因[J]. 生態(tài)學(xué)雜志, 2015(5): 1351-1358. Li B, Lan W L, Li T S, et al. Variation of environmental factors duringPhaeocystisglobosablooms and its implications for the bloom decay[J]. Chinese Journal of Ecology, 2015, 34(5): 1351-1358.
[7] 方濤, 李道季, 余立華, 等. 光照和營(yíng)養(yǎng)鹽磷對(duì)微型及微微型浮游植物生長(zhǎng)的影響[J]. 生態(tài)學(xué)報(bào), 2006, 26(9): 2783-2790. Fang T, Li D J, Yu L H, et al. Effect of irradiance and phosphate on growth of nanophytoplankton and picophytoplankton[J]. Acta Ecologica Sinica, 2006, 26(9): 2783-2790.
[8] 舒薇薇, 王小冬, 江濤, 等.氮源對(duì)雙胞旋溝藻生長(zhǎng)和鏈狀形態(tài)的影響[J]. 海洋環(huán)境科學(xué), 2012, 6(2): 789-792. Shu W W, Wang X D, Jiang T, et al. Effect of nitrogen source on growth and chain formation ofCochlodiniumgeminatun[J]. Marine Environmental Science, 2012, 6(2): 789-792.
[9] Sapriel G, Quinet M, Heijde M, et al. Genome-wide transcriptome analyses of silicon metabolism inPhaeodactylumtricornutumreveal the multilevel regulation of silicic acid transporters[J]. PLoS One, 2009, 4(10): e7458.
[10] Rismani-Yazdi H, Haznedaroglu B Z, Bibby K, et al. Transcriptome sequencing and annotation of the microalgaeDunaliellatertiolecta: pathway description and gene discovery for production of next-generation biofuels[J]. BMC Genomics, 2011, 12(1): 1.
[11] Beszteri S, Yang I, Jaeckisch N, et al. Transcriptomic response of the toxic prymnesiophytePrymnesiumparvum(N. Carter) to phosphorus and nitrogen starvation[J]. Harmful Algae, 2012, 18: 1-15.
[12] Shrestha R P, Tesson B, Norden-Krichmar T, et al. Whole transcriptome analysis of the silicon response of the diatomThalassiosirapseudonana[J]. BMC Genomics, 2012, 13(1): 499.
[13] Wan L L, Han J, Sang M, et al. De novo transcriptomic analysis of an oleaginous microalga: Pathway description and gene discovery for production of next-generation biofuels[J]. PloS One, 2012, 7(4): e35142.
[14] Sarno D, Kooistra W H C F, Medlin L K, et al. Diversity in the genusSkeletonema(Bacillariophyceae). II. An assessment of the taxonomy ofS.costatum-like with the description of four new species[J]. Journal of Phycology, 2005, 41(1): 151-176.
[15] 李揚(yáng). 中國(guó)近海海域微型硅藻的生態(tài)學(xué)特征和分類學(xué)研究 [D]. 廈門: 廈門大學(xué), 2006. Li Y. Ecological characteristics and Taxonomic Studies on Nano-diatoms in Coastal Waters of China [D]. Xiamen: Xiamen University, 2006.
[16] 高亞輝, 虞秋波, 齊雨藻, 等. 長(zhǎng)江口附近海域春季浮游硅藻的種類組成和生態(tài)分布[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2003(7): 1044-1048. Gao Y H, Yu Q B, Qi Y Z, et al. Species composition and ecological distribution of planktonic diatoms in the Changjiang River estuary during Spring[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1044-1048.
[17] Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7): 644-652.
[18] Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10(1): 1.
[19] G?tz S, García-Gómez J M, Terol J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Research, 2008, 36(10): 3420-3435.
[20] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1): 27-30.
[21] Moriya Y, Itoh M, Okuda S, et al. KAAS: an automatic genome annotation and pathway reconstruction server[J]. Nucleic Acids Research, 2007, 35(supp.2): W182-W185.
[22] Li B, Dewey C N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 1.
[23] Anders S, Huber W. Differential expression analysis for sequence count data[J]. Genome Biol, 2010, 11(10): R106.
[24] Trapnell C, Williams B A, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515.
[25] Dillies M A, Rau A, Aubert J, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis[J]. Briefings in Bioinformatics, 2013, 14(6): 671-683.
[26] Storey J D, Tibshirani R. Statistical significance for genomewide studies[J]. Proceedings of the National Academy of Sciences, 2003, 100(16): 9440-9445.
[27] Evans C, Malin G, Mills G P, et al. Viral infection ofEmilianiahuxleyi(Prymnesiophyceae) leads to elevated production of reactive oxygen species[J]. Journal of Phycology, 2006, 42(5): 1040-1047.
[28] Vardi A, Berman-Frank I, Rozenberg T, et al. Programmed cell death of the dinoflagellatePeridiniumgatunenseis mediated by CO2limitation and oxidative stress[J]. Current Biology, 1999, 9(18): 1061-1064.
[29] Chung C C, Hwang S P L, Chang J. Cooccurrence of ScDSP gene expression, cell death, and DNA fragmentation in a marine diatom,Skeletonemacostatum[J]. Applied and Environmental Microbiology, 2005, 71(12): 8744-8751.
[30] Thamatrakoln K, Bailleul B, Brown C M, et al. Death-specific protein in a marine diatom regulates photosynthetic responses to iron and light availability[J]. Proceedings of the National Academy of Sciences, 2013, 110(50): 20123-20128.
[31] Mohamed A R, Cumbo V, Harii S, et al. The transcriptomic response of the coralAcroporadigitiferato a competent Symbiodinium strain: The symbiosome as an arrested early phagosome[J]. Molecular Ecology, 2016.
[32] Zhang Z, Qin Y W, Brewer G, et al. MicroRNA degradation and turnover: Regulating the regulators[J]. Wiley Interdisciplinary Reviews: RNA, 2012, 3(4): 593-600.
[33] Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link[J]. Nature Reviews Molecular Cell Biology, 2003, 4(7): 552-565.
[34] Riemann L, Steward G F, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom[J]. Applied and Environmental Microbiology, 2000, 66(2): 578-587.
[35] Kirchman D L, Malmstrom R R, Cottrell M T. Control of bacterial growth by temperature and organic matter in the Western Arctic[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(24): 3386-3395.
責(zé)任編輯 高 蓓
Description of Functional Genes Related to Cell Death Based onSkeletonemamarinoiTranscriptome
WANG Hua-Long1,2,4, MI Tie-Zhu2,4, ZHEN Yu2,4, LIU Qian1,2,4, YU Zhi-Gang3,4
(1.College of Marine Life Science, Ocean University of China, Qingdao 266003, China; 2.The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; 3.The Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao 266100, China; 4.Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China)
The transcriptome ofSkeletonemamarinoiat different growth stages was analyzed with Illumina-Hiseq2000 platform sequencing technology, producing and identifying 39 098 transcripts. Assembled sequences were subjected to NR BLAST similarity searches and Kyoto Encyclopedia of Genes and annotated with Gene Ontology (GO) and Genomes orthology (KO) identifiers. These analyses identified many important metabolic pathways and functional genes ofS.marinoi, especially the functional genes related to cell death ofS.marinoiinvolving 26 enzymes and 37 coding genes was analyzed and constructed on the basis of its transcriptome data. Comparative analysis of the homologous genes ofS.marinoi,ThalassiosiraoceanicaandThalassiosirapseudonanawith BLASTx method, the results showed relatively high homologous genes betweenT.pseudonanaandS.marinoi. The gene differential expression related to cell death ofS.marinoiwas identified at different growth stages using digital gene expression profiling. Key enzymes related to antioxidant stress (peroxiredoxin 5,superoxide dismutase, Cu-Zn family), RNA processing and degradation (polyribonucleotide nucleotidyltransferase, 5'~3' exoribonuclease 2) and death specific protein (DSP) in stationary phase and decline phase were significantly higher compared to exponential growth phase. The expression of Cu-Zn-SOD gene was significantly lower in stationary phase and decline phase than in the exponential phase (stationary phase and decline phase log2(Fold Change) was -5.03 and -2.93; exponential phase log2(Fold Change) was 0). The gene expression of polyribonucleotide nucleotidyltransferase was significantly higher in stationary phase and decline phase than in the exponential phase (stationary phase and decline phase log2(Fold Change) was 3.32 and 3.87; exponential phase log2(Fold Change) was 0). The gene expression of DSP was significantly higher in decline phase than in the exponential phase (decline phase log2(Fold Change) was 2.34; exponential phase log2(Fold Change) was 0). The results indicated the different responses of functional genes related to cell death ofS.marinoiin different growth phases. Our study will contribute to analyze the protein expression, and provideing the basis of future research and new sight. Our study will contribute to analyze gene regulation of key enzymes related to cell death ofS.marinoi, and providing a basis to enhance our knowledge about gene expression and regulation mechanism in diatom cell death, which will be beneficial to in-depth understand the cell death of the harmful algae bloom decay.
Skeletonemamarinoi; RNA-seq; cell death
國(guó)家自然科學(xué)基金項(xiàng)目(41521064);海洋公益性行業(yè)科研專項(xiàng)(201205031);山東省自然科學(xué)基金項(xiàng)目(ZR2014DM007)資助
2016-06-08;
2016-09-15
王華龍(1989-),男,博士生。E-mail: wanghualong90@163.com
** 通訊作者:E-mail: mitiezhu@ouc.edu.cn
Q178.53
A
1672-5174(2017)04-058-08
10.16441/j.cnki.hdxb.20160210
王華龍, 米鐵柱, 甄毓, 等. 基于瑪氏骨條藻轉(zhuǎn)錄組的細(xì)胞死亡相關(guān)功能基因解析[J]. 中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017, 47(4): 58-65.
WANG Hua-Long, MI Tie-Zhu, ZHEN Yu, et al. Description of functional genes related to cell death based onSkeletonemamarinoitranscriptome[J]. Periodical of Ocean University of China, 2017, 47(4): 58-65.
Supported by the National Natural Science Foundation of China (41521064); Public Science and Technology Research Funds Projects of Ocean (201205031); National Natural Science Foundation of Shandong Province (ZR2014DM007)