邢榮春 綜述 秦周萍 審校
(1. 三峽大學(xué)第一臨床醫(yī)學(xué)院 急診與創(chuàng)傷外科,湖北 宜昌443003;2. 湖北省宜昌市中心人民醫(yī)院 急診與創(chuàng)傷外科,湖北 宜昌443003;3. 三峽大學(xué)人民醫(yī)院 心胸外科,湖北 宜昌443002;4. 湖北省宜昌市第一人民醫(yī)院 心胸外科,湖北 宜昌443002)
胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma,PDAC)占胰腺惡性腫瘤的95%以上,在所有癌癥導(dǎo)致患者死亡人數(shù)中排名第三[1-2]。對(duì)PDAC遺傳方面的研究[3]表明,隨著時(shí)間的推移,突變慢慢積累,突變基因包括KRAS(約90%)、p16/INK4a/CDKN2A(約75%)、TP53(約65%)和SMAD4(約50%)。此外,KRAS、p16/INK4a/CDKN2A和TP53的突變所致的細(xì)胞衰老逃逸,這些都會(huì)導(dǎo)致腫瘤的進(jìn)展[4]。由于缺乏早期癥狀、常規(guī)篩查和有效的治療方案[5],其次是治療困難和早期轉(zhuǎn)移導(dǎo)致<5%的患者存活超過(guò)5年[6],診斷時(shí)只有10%~20%的PDAC患者適合手術(shù)治療,5年后只有<20%的患者接受了治愈性切除術(shù)[3]。因此,了解PDAC的生物學(xué)行為對(duì)于開發(fā)和改進(jìn)有效的治療方案有重要意義。
相關(guān)研究[7]表明,PDAC惡性上皮細(xì)胞僅占腫瘤體積的20%左右,而造血基質(zhì)占腫瘤塊的約80%。因此,PDAC的惡性特征可能與基質(zhì)、逃避免疫監(jiān)視、促進(jìn)腫瘤進(jìn)展和生長(zhǎng),以及耐藥性傳遞和轉(zhuǎn)移方面存在密切的相關(guān)性[8],本文主要綜述PDAC細(xì)胞基質(zhì)相關(guān)信號(hào)調(diào)節(jié)通路的研究進(jìn)展。
PDAC基質(zhì)由支持腫瘤生長(zhǎng)所必需的網(wǎng)絡(luò)組成。異質(zhì)組分包括胰島細(xì)胞(pancreatic stellate cells,PSC),微血管浸潤(rùn)的免疫細(xì)胞和活化狀態(tài)的CAF,基質(zhì)中含有多糖、蛋白質(zhì)、細(xì)胞因子、生長(zhǎng)因子和酶[9-10]。先前的研究[11]表明,升高的基質(zhì)水平與預(yù)后不良相關(guān),基質(zhì)隔室的消融改善了化療療效,認(rèn)為基質(zhì)在PDAC的發(fā)生過(guò)程中發(fā)揮了重要作用[11]。此外,聚糖結(jié)合蛋白galectin-1(Gal1)在PDAC中大量表達(dá),并且在腫瘤發(fā)生過(guò)程中起著重要的刺激作用[12]。PDA小鼠模型中Gal1通過(guò)阻礙腫瘤增殖、血管生成、阻礙發(fā)育和免疫監(jiān)視來(lái)延緩腫瘤的進(jìn)展,20%的PDA小鼠生存期有改善[12]。此外,癌相關(guān)間充質(zhì)干細(xì)胞不僅從CAF中分離出來(lái),而且還分泌粒細(xì)胞巨噬細(xì)胞集落刺激因子(GM-CSF),促進(jìn)PDAC生長(zhǎng)、存活、侵襲和轉(zhuǎn)移[13-14]。
成纖維細(xì)胞激活蛋白α(fibroblast activation protein,F(xiàn)APα)是CAF特異性表達(dá)的一種膜蛋白,F(xiàn)APα發(fā)揮多效的腫瘤促進(jìn)作用,包括阻斷免疫監(jiān)視,使PDAC適應(yīng)宿主,增強(qiáng)腫瘤血管密度和適應(yīng)腫瘤生長(zhǎng)微環(huán)境[15-16]。因此,CAF中FAPα的減少,不僅恢復(fù)了移植腫瘤的免疫監(jiān)視(即抗腫瘤)效應(yīng),而且降低了PDAC的侵襲性。在CAF中,可通過(guò)CXCL12促進(jìn)免疫抑制,CXCL12是一種趨化因子,其通與受體CXCR4的相互作用排出細(xì)胞毒性CD8+T細(xì)胞[15]。CXCR4的抑制通過(guò)恢復(fù)和使得細(xì)胞毒性CD8+T細(xì)胞的腫瘤內(nèi)積累迅速導(dǎo)致多種腫瘤消除作用[16]。因此CXCR4的抑制作用是通過(guò)CD8+T細(xì)胞在腫瘤內(nèi)迅速聚集導(dǎo)致多種腫瘤消除作,靶向CXCR4可能導(dǎo)致免疫介導(dǎo)的抗腫瘤效應(yīng),并在不久的將來(lái)開發(fā)潛在的治療方案。
此外,CAF與癌細(xì)胞相互作用,部分原因是通過(guò)釋放化學(xué)信使,將化學(xué)信使包裝成稱為CAF衍生外來(lái)體(CAF-derived exosomes,CDE)的微型雙膜狀結(jié)構(gòu)[17]。CDE的代謝產(chǎn)物包括氨基酸、脂質(zhì)和檸檬酸循環(huán)的中間體。CDE可以重新攝取癌細(xì)胞的代謝產(chǎn)物。在CDE攝取后,線粒體氧化磷酸化和正常的氧能釋放顯著降低,而糖酵解和糖消耗在癌細(xì)胞中增強(qiáng)[17]。因此,CDE影響了癌細(xì)胞中的碳代謝,即使腫瘤處于營(yíng)養(yǎng)剝奪條件下,也能進(jìn)一步促進(jìn)腫瘤生長(zhǎng)[17]。
令人失望的是,上述有看似非常有意義的實(shí)驗(yàn)結(jié)果尚未帶來(lái)令人滿意的臨床應(yīng)用。近來(lái)對(duì)基質(zhì)生物學(xué)的研究有了不同的見(jiàn)解。例如,?zdemir等[18]在小鼠模型的研究發(fā)現(xiàn),肌成纖維細(xì)胞的消融產(chǎn)生了免疫抑制(即腫瘤促進(jìn))、PDAC更多的侵襲性以及預(yù)后不良。這個(gè)發(fā)現(xiàn)引發(fā)了疑問(wèn),PDAC中的腫瘤基質(zhì)是否確實(shí)是雙刃劍[19]。腫瘤間質(zhì)串?dāng)_的機(jī)制和功能可能比以前預(yù)期的要復(fù)雜得多。僅單獨(dú)的分組不能驗(yàn)證上皮細(xì)胞周圍的生物學(xué)特性。然而,需要以不偏不倚的方式對(duì)多因素參數(shù)之間的串?dāng)_進(jìn)行徹底的評(píng)估。正增長(zhǎng)信號(hào)與負(fù)增長(zhǎng)信號(hào)之間復(fù)雜的相互作用可能會(huì)使腫瘤侵襲延緩或促進(jìn)[20]。
腫瘤浸潤(rùn)性免疫細(xì)胞顯示對(duì)腫瘤進(jìn)展、轉(zhuǎn)移和化療耐藥至關(guān)重要[21]。免疫抑制細(xì)胞在PDAC發(fā)生過(guò)程中的增加,包括骨髓來(lái)源的抑制細(xì)胞(myeloid-derived suppressive cells,MDSC)、T調(diào)節(jié)細(xì)胞(T regulatory cells,Tregs)和腫瘤相關(guān)巨噬細(xì)胞(tumor-associated macrophages,TAM)。它們一起降低了CD8+T細(xì)胞的抗腫瘤功能,從而導(dǎo)致腫瘤識(shí)別和消除能力減弱。最初,腫瘤分泌GM-CSF,作用是將骨髓祖細(xì)胞募集到周圍基質(zhì),并可以進(jìn)一步分化成MDSC[22]。在腫瘤基質(zhì)中,MDSC進(jìn)一步阻斷細(xì)胞毒性CD8+T細(xì)胞自然發(fā)揮的免疫監(jiān)視功能[20]。最近的研究[23]表明,配體和受體之間的相互作用對(duì)于排除這種免疫檢查過(guò)程有重要作用。抑制性受體,例如程序性細(xì)胞死亡1受體(programmed cell death 1 receptor,PD-1)可以被其從腫瘤細(xì)胞分泌的配體PD-1L掩蔽和鈍化。PD-1與PD-1L的結(jié)合消除了CD8+T細(xì)胞或自然殺傷細(xì)胞的腫瘤消除功能。逃避免疫監(jiān)測(cè)的結(jié)果使得其提供了一個(gè)腫瘤微環(huán)境,用于培養(yǎng)PDAC擴(kuò)增。
另一方面,歸因于與抑制性細(xì)胞因子如白細(xì)胞介素10(interleukin 10,IL-10)、細(xì)胞毒性T淋巴細(xì)胞相關(guān)蛋白4(cytotoxic T lymphocyteassociated protein 4,CTLA-4)和轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor,TGF-β)的分泌有關(guān)的免疫抑制模式。CD4+T細(xì)胞亞群可受T G F-β刺激的影響,然后分化為獲得額外的免疫抑制(即腫瘤促進(jìn))的白細(xì)胞介素17(interleukin 17,IL-17)分泌型CD4+T細(xì)胞(稱為Th17)功能[24]。有趣的是,Th17的浸潤(rùn)顯示出有致癌性KRAS G12D的參與[24]。
Wu等[25]研究發(fā)現(xiàn)引起IL-17細(xì)胞因子家族之一IL-17B在調(diào)節(jié)炎癥中發(fā)揮重要作用,遞送中和抗體降低腫瘤負(fù)荷,并且增加異種移植模型小鼠的存活率,其表現(xiàn)為抑制的腫瘤增殖和阻止癌轉(zhuǎn)移,這一研究揭示了這一現(xiàn)象的根本機(jī)制。IL-17與其受體的結(jié)合誘導(dǎo)REG3β的表達(dá),其進(jìn)一步促進(jìn)細(xì)胞生長(zhǎng),并通過(guò)激活gp130-JAK2-STAT3依賴性途徑而使細(xì)胞死亡[26]。另一項(xiàng)研究報(bào)告表明,IL-17B與其受體IL-17RB結(jié)合,然后誘導(dǎo)CCL20/CXCL1/IL-8/TFF1激活,隨后呈現(xiàn)明顯的腫瘤促進(jìn)作用,如癌細(xì)胞侵襲、募集巨噬細(xì)胞和內(nèi)皮細(xì)胞,降低治療效果[25]??傊?,IL-17在癌癥的病理生理學(xué)中起著復(fù)雜的作用,從腫瘤發(fā)生、增殖、轉(zhuǎn)移到賦予免疫和化療耐藥[3]。
關(guān)于巨噬細(xì)胞,TAM可以根據(jù)它們分為兩種亞型發(fā)育狀態(tài)和功能:原始狀態(tài)M1(促炎癥)和腫瘤發(fā)生的M2(免疫抑制和腫瘤促進(jìn))。據(jù)報(bào)道[27],M2-TAM的升高部分與淋巴結(jié)轉(zhuǎn)移、神經(jīng)侵襲、化學(xué)耐藥性、惡化預(yù)后和存活風(fēng)險(xiǎn)增加相關(guān)。此外,M2-TAM分泌IL-10,已知其與免疫抑制和促腫瘤功能相關(guān)。M2-TAM增強(qiáng)腫瘤侵襲轉(zhuǎn)移能力不僅通過(guò)防止腫瘤細(xì)胞被CD8+細(xì)胞毒性T細(xì)胞或天然殺傷細(xì)胞消除,而且通過(guò)促進(jìn)癌細(xì)胞增殖,刺激細(xì)胞外基質(zhì)分解,并增加上皮間質(zhì)轉(zhuǎn)化[3],這是一個(gè)預(yù)示癌癥干細(xì)胞表型的事件[28]。在這個(gè)概念下,據(jù)報(bào)道[29],TAM分泌一種抗菌肽hCAP-18/LL-37,其含有CD133+的惡性細(xì)胞亞群并顯示癌癥干細(xì)胞表型。從原始狀態(tài)M1到PDAC中的促腫瘤M2的關(guān)鍵轉(zhuǎn)變可能是癌癥患者預(yù)后差的主要原因之一。證據(jù)顯示,M2通過(guò)STAT3途徑在小鼠模型中被Reg3β介導(dǎo)[30],這意味著STAT3通路可能成為有希望的治療靶點(diǎn)。
癌癥疫苗通過(guò)增加腫瘤相關(guān)抗原對(duì)免疫系統(tǒng)的暴露來(lái)刺激免疫系統(tǒng)產(chǎn)生和腫瘤浸潤(rùn)特異性細(xì)胞毒性效應(yīng)T細(xì)胞[31]。最有希望的疫苗是GVAX,其由設(shè)計(jì)用于分泌GM-CSF的同種異體PDAC細(xì)胞系組成。在給予切除或轉(zhuǎn)移性PDAC患者后,GVAX能夠促進(jìn)外周淋巴細(xì)胞中抗腫瘤CD8+T細(xì)胞的產(chǎn)生,結(jié)果與改善患者的生存率相關(guān)。另一項(xiàng)研究顯示,與ipilimumab單一療法相比,GVAX和ipilimumab(抗體阻斷CTLA-4)的組合治療可以提高轉(zhuǎn)移性PDAC患者的總體存活率[32]。同樣,GVAX與PD-1/PD-L1阻斷的組合一起促進(jìn)了小鼠模型中的效應(yīng)T細(xì)胞浸潤(rùn)到胰腺腫瘤中[23]。
由于腫瘤浸潤(rùn)性效應(yīng)淋巴細(xì)胞不足,PDAC最近被認(rèn)為是“非免疫原性”惡性腫瘤之一[3]。Lutz等[33]通過(guò)結(jié)合GVAX與低劑量環(huán)磷酰胺來(lái)消除Tregs治療PDAC的臨床試驗(yàn)。通過(guò)誘導(dǎo)T細(xì)胞的浸潤(rùn),患者存活率有所改善,增強(qiáng)接種后T細(xì)胞的應(yīng)答,并增加了腫瘤內(nèi)T細(xì)胞/Treg比率。此外,Le等[34]開發(fā)了一種稱為GVAXCRS-207基于的GVAX的嵌合疫苗,其不僅包含GVAX,而且還包括減毒活利斯特氏菌的間皮素以刺激先天和適應(yīng)性免疫。據(jù)報(bào)道[34],間皮素是許多人類癌癥中表達(dá)的常見(jiàn)抗原,包括PDAC[35]。GVAXCRS-207加環(huán)磷酰胺治療的結(jié)果顯示,能延長(zhǎng)患者存活并具有最小的細(xì)胞毒性??偠灾?,未來(lái)創(chuàng)新的治療方案可以適應(yīng)GVAX與其他靶因子的協(xié)同效應(yīng)。
最近開發(fā)了另一種由黏蛋白1加基于DNA的可變數(shù)目串聯(lián)重復(fù)序列組成的疫苗,并轉(zhuǎn)染至未成熟的樹突狀細(xì)胞[36]。在獲得質(zhì)粒構(gòu)建體pVAX1-MUC1-VNTR6時(shí),樹突細(xì)胞不僅產(chǎn)生增加的免疫原性,而且它們相鄰的一起共同培養(yǎng)的T細(xì)胞也獲得了明顯的細(xì)胞毒性,這表明對(duì)PDAC的生長(zhǎng)有抑制作用[37]。
總而言之,PDAC的發(fā)展可被各種腫瘤微環(huán)境因子調(diào)節(jié),并且其中一些已被用于開發(fā)靶向治療。未來(lái)改進(jìn)的胰腺癌治療方案可能包括旨在降低不良反應(yīng)、抑制致瘤性信號(hào)通路、重編程免疫抑制、糾正異常miRNA調(diào)節(jié)和實(shí)施癌癥疫苗的組合方案[38-40]。
[1]Schneider G, Schmid RM. Genetic alterations in pancreatic carcinoma[J]. Mol Cancer, 2003, 2:15.
[2]Hezel AF, Kimmelman AC, Stanger BZ, et al. Genetics and biology of pancreatic ductal adenocarcinoma[J]. Genes Dev, 2006,20(10):1218–1249.
[3]Lin HJ, Lin J. Seed-in-Soil:Pancreatic Cancer In fl uenced by Tumor Microenvironment[J]. Cancers (Basel), 2017, 9(7). pii: E93. doi:10.3390/cancers9070093.
[4]Moir JA, White SA, Mann J. Arrested development and the great escape—the role of cellular senescence in pancreatic cancer[J].Int J Biochem Cell Biol, 2014, 57:142–148. doi: 10.1016/j.biocel.2014.10.018.
[5]Wegner CS, Hauge A, Gaustad JV, et al. Dynamic contrastenhanced MRI of the microenvironment of pancreatic adenocarcinoma xenografts[J]. Acta Oncol, 2017, doi:10.1080/0284186X.2017.1343494. [Epub ahead of print]
[6]Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010[J]. CA Cancer J Clin, 2010 ,60(5):277–300. doi: 10.3322/caac.20073.
[7]Farrow B, Albo D, Berger DH. The role of the tumor microenvironment in the progression of pancreatic cancer[J]. J Surg Res., 2008, 149(2):319–328. doi: 10.1016/j.jss.2007.12.757.
[8]Apte MV, Wilson JS, Lugea A, et al. A starring role for stellate cells in the pancreatic cancer microenvironment[J]. Gastroenterology,2013, 144(6):1210–1219. doi: 10.1053/j.gastro.2012.11.037.
[9]Begum A, Ewachiw T, Jung C, et al. The extracellular matrix and focal adhesion kinase signaling regulate cancer stem cell function in pancreatic ductal adenocarcinoma[J]. PLoS One, 2017,12(7):e0180181. doi: 10.1371/journal.pone.0180181.
[10]Liu Q, Liao Q, Zhao Y. Chemotherapy and tumor microenvironment of pancreatic cancer[J]. Cancer Cell Int, 2017, 17:68. doi: 10.1186/s12935–017–0437–3.
[11]Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer[J]. Science, 2009, 324(5933):1457–1461. doi:10.1126/science.1171362.
[12]Martínez-Bosch N, Fernández-Barrena MG, Moreno M, et al.Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation[J]. Cancer Res,2014, 74(13):3512–24. doi: 10.1158/0008–5472.CAN–13–3013.
[13]Hasegawa K, Suetsugu A, Nakamura M, et al. Imaging the role of multinucleate pancreatic cancer cells and cancer-associated fi broblasts in peritoneal metastasis in mouse models[J]. Anticancer Res, 2017, 37(7):3435–3440.
[14]Waghray M, Yalamanchili M, Dziubinski M, et al. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer[J].Cancer Discov, 2016, 6(8):886–899. doi: 10.1158/2159–8290.CD–15–0947.
[15]Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance[J]. Cancer Immunol Res, 2014, 2(3):187–193. doi:10.1158/2326–6066.CIR–14–0002.
[16]Lo A, Wang LS, Scholler J, et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells[J]. Cancer Res,2015, 75(14):2800–2810. doi: 10.1158/0008–5472.CAN–14–3041.
[17]Zhao H, Yang L, Baddour J, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism[J]. Elife,2016, 5:e10250. doi: 10.7554/eLife.10250.
[18]?zdemir BC, Pentcheva-Hoang T, Carstens JL, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival[J]. Cancer Cell, 2014, 25(6):719–734. doi: 10.1016/j.ccr.2014.04.005.
[19]Gore J, Korc M. Pancreatic cancer stroma: Friend or foe?[J]. Cancer Cell, 2014, 25(6):711–712. doi: 10.1016/j.ccr.2014.05.026.
[20]Neesse A, Algül H, Tuveson DA, et al. Stromal biology and therapy in pancreatic cancer: a changing paradigm[J]. Gut, 2015,64(9):1476–1484. doi: 10.1136/gutjnl–2015–309304.
[21]Mielgo A, Schmid MC. Impact of tumour associated macrophages in pancreatic cancer[J]. BMB Rep, 2013, 46(3):131–138.
[22]Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocytemacrophage colony-stimulating factor regulates myeloid in fl ammation and T cell immunity in pancreatic cancer[J]. Cancer Cell, 2012, 21(6):822–835. doi: 10.1016/j.ccr.2012.04.025.
[23]Soares KC, Rucki AA, Wu AA, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell in fi ltration into pancreatic tumors[J]. J Immunother, 2015, 38(1):1–11 doi:10.1097/CJI.0000000000000062.
[24]Regateiro FS, Howie D, Nolan KF, et al. Generation of antiinflammatory adenosine by leukocytes is regulated by TGF-β[J]. Eur J Immunol, 2011, 41(10):2955–2965. doi: 10.1002/eji.201141512.
[25]Wu HH, Hwang-Verslues WW, Lee WH, et al. Targeting IL-17BIL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines[J]. J Exp Med,2015, 212(3):333–349. doi: 10.1084/jem.20141702.
[26]Loncle C, Bonjoch L, Folch-Puy E, et al. IL17 functions through the novel REG3beta-JAK2-STAT3 inflammatory pathway to promote the transition from chronic pancreatitis to pancreatic cancer[J].Cancer Res, 2015, 75(22):4852–4862. doi: 10.1158/0008–5472.CAN–15–0896.
[27]Meng F, Li C, Li W, et al. Interaction between pancreatic cancer cells and tumor-associated macrophages promotes the invasion of pancreatic cancer cells and the differentiation and migration of macrophages[J]. IUBMB Life, 2014, 66(12):835–846. doi: 10.1002/iub.1336.
[28]Xu S, Chheda C, Ouhaddi Y, et al. Characterization of mouse models of early pancreatic lesions induced by alcohol and chronic pancreatitis[J]. Pancreas, 2015, 44(6):882–887. doi: 10.1097/MPA.0000000000000380.
[29]Sainz B Jr, Alcala S, Garcia E, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment[J]. Gut, 2015, 64(12):1921–1935.doi: 10.1136/gutjnl–2014–308935.
[30]Gironella M, Calvo C, Fernández A, et al. Reg3β de fi ciency impairs pancreatic tumor growth by skewing macrophage polarization[J].Cancer Res, 2013, 73(18):5682–5694. doi: 10.1158/0008–5472.CAN–12–3057.
[31]Skelton RA, Javed A, Zheng L, et al. Overcoming the resistance of pancreatic cancer to immune checkpoint inhibitors[J]. J Surg Oncol,2017, 116(1):55–62. doi: 10.1002/jso.24642.
[32]Lutz E, Yeo CJ, Lillemoe KD, et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety,efficacy, and immune activation[J]. Ann Surg, 2011, 253(2):328–335. doi: 10.1097/SLA.0b013e3181fd271c.
[33]Lutz ER, Wu AA, Bigelow E, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation[J]. Cancer Immunol Res, 2014, 2(7):616–631.doi: 10.1158/2326–6066.CIR–14–0027.
[34]Le DT, Lutz E, Uram JN, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer[J]. J Immunother, 2013, 36(7):382–389. doi: 10.1097/CJI.0b013e31829fb7a2.
[35]Le DT, Wang-Gillam A, Picozzi V, et al. Safety and survival with GVAX pancreas prime and listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer[J]. J Clin Oncol, 2015, 33(12):1325–1333. doi: 10.1200/JCO.2014.57.4244.
[36]Hassan R, Thomas A, Alewine C, et al. Mesothelin immunotherapy for cancer: ready for prime time?[J]. J Clin Oncol, 2016,34(34):4171–4179.
[37]Gong YF, Zhou QB, Liao YD, et al. Optimized construction of MUC1-VNTRn DNA vaccine and its anti-pancreatic cancer efficacy[J]. Oncol Lett, 2017, 13(4):2198–2206. doi: 10.3892/ol.2017.5717.
[38]Zeng Y, Rucki AA, Che X, et al. Shifting paradigm of developing biologics for the treatment of pancreatic adenocarcinoma[J].J Gastrointest Oncol, 2017, 8(3):441–448. doi: 10.21037/jgo.2016.10.02.
[39]Zhang Q, Lou Y, Zhang J, et al. Hypoxia-inducible factor-2α promotes tumor progression and has crosstalk with Wnt/β-catenin signaling in pancreatic cancer[J]. Mol Cancer, 2017, 16(1):119. doi:10.1186/s12943–017–0689–5.
[40]Murakami T, Homma Y, Matsuyama R, et al. Neoadjuvant chemoradiotherapy of pancreatic cancer induces a favorable immunogenic tumor microenvironment associated with increased major histocompatibility complex class I-related chain A/B expression[J]. J Surg Oncol, 2017, 116(3):416–426. doi: 10.1002/jso.24681.