江建芹,崔 磊,顧曉雯,蔡榮芳
(1.南通大學(xué)第二附屬醫(yī)院影像科,江蘇 南通 226001;2.鹽城市第一人民醫(yī)院放射科,江蘇 鹽城 224005;3.蘇州市立醫(yī)院影像科,江蘇 蘇州 215001)
體素內(nèi)不相干運動模型擴散加權(quán)成像在腫瘤療效評估中的進展
江建芹1,2,崔 磊1*,顧曉雯3,蔡榮芳1
(1.南通大學(xué)第二附屬醫(yī)院影像科,江蘇 南通 226001;2.鹽城市第一人民醫(yī)院放射科,江蘇 鹽城 224005;3.蘇州市立醫(yī)院影像科,江蘇 蘇州 215001)
DWI的體素內(nèi)不相干運動(IVIM)模型可區(qū)分水分子的真性擴散與微循環(huán)灌注形成的假性擴散,獲得純擴散系數(shù)(D)、偽擴散系數(shù)(D*)和灌注分?jǐn)?shù)(f),能有效檢出腫瘤治療后細(xì)胞活性及微循環(huán)灌注的變化,可早期評價腫瘤療效、優(yōu)化治療方案及預(yù)測預(yù)后,為臨床選擇合適的治療方案提供依據(jù)。本文對IVIM在腫瘤療效評估中的應(yīng)用和研究進展進行綜述。
磁共振成像;體素內(nèi)不相干運動;腫瘤
影像學(xué)檢查是目前臨床評估腫瘤療效的主要方法,采用實體瘤療效評價(RECIST 1.1)標(biāo)準(zhǔn)[1],方法簡便易行。但這種基于形態(tài)學(xué)變化的評估方法存在一定的滯后性、局限性,特別是對于新興的分子靶向藥物治療[2]及淋巴瘤、多發(fā)性骨轉(zhuǎn)移等全身病灶的療效評估[3-4]。DWI是對組織水分子運動定量評估的功能學(xué)成像技術(shù),具有無輻射、無需對比劑的優(yōu)點。但其采用單指數(shù)模型,忽略了微循環(huán)灌注對信號衰減的影響。DWI的體素內(nèi)不相干運動(intravoxel incoherent motion, IVIM)模型可區(qū)分水分子的真性擴散與微循環(huán)灌注形成的假性擴散,獲得純擴散系數(shù)(D)、偽擴散系數(shù)(D*)和灌注分?jǐn)?shù)(f)等參數(shù),為早期預(yù)測和評估腫瘤療效提供更多的信息[5]。本文就IVIM在腫瘤療效評估的應(yīng)用和研究進展做一綜述。
惡性腫瘤代謝旺盛,細(xì)胞密度高,DWI表現(xiàn)為水分子擴散受限,基于單指數(shù)模型,這種擴散受限的程度用ADC表示。根據(jù)公式Sb/S0=exp(-b×ADC)計算得出ADC值,b為擴散敏感因子,S為信號強度。水分子的擴散敏感度隨b值的增加而增加,但圖像的信噪比隨b值增加而下降。同時,當(dāng)b<150 s/mm2時,其信號強度不僅取決于水分子的單純擴散,還取決于毛細(xì)血管網(wǎng)微循環(huán)灌注形成的假性擴散。而IVIM模型采用多個b值,根據(jù)公式Sb/S0=(1-f)exp(-bD)+fexp[-b(D*+D)][5],對高b值擴散信號進行線性擬合,獲得D值,再將b值用非線性最小二乘法(nonlinear least squares, NLLS)模型擬合,計算出D*、f值。其中,D值代表水分子擴散運動的能力;D*值代表血流速度,與平均血流速度和平均毛細(xì)血管長度成正比;f值代表血容量,是可探測到的水占毛細(xì)血管網(wǎng)的體積比[5]。
超高場強MRI設(shè)備的應(yīng)用及快速掃描序列的發(fā)展,提高了圖像的信噪比,縮短了檢查時間,使IVIM的臨床應(yīng)用具有廣闊的前景;尤其是在腫瘤領(lǐng)域,例如腫瘤的診斷與分期[6]、療效評估[3]及檢出殘留或復(fù)發(fā)腫瘤組織[7]等。
抗腫瘤治療有效時,一方面,細(xì)胞毒性作用使腫瘤細(xì)胞發(fā)生壞死、溶解,細(xì)胞密度減低,水分子擴散運動增加[8];另一方面,抗血管靶向作用可減少病灶的血流灌注[9]。基于此理論,IVIM可在治療后腫瘤形態(tài)改變之前檢測出細(xì)胞活性及微循環(huán)灌注的變化。
2.1頭頸部鱗狀細(xì)胞癌(squamous cell carcinomas of the head and neck, HNSCC) 臨床上為盡可能保留HNSCC患者的吞咽、語言等功能,常選擇放化療(chemoradiotherapy, CRT)等非手術(shù)療法。早期評估療效可避免不必要的輻射劑量升級對周圍器官的傷害。研究[10]證實ADC值可作為監(jiān)測HNSCC患者早期療效的生物學(xué)標(biāo)記因子。有學(xué)者用IVIM參數(shù)進行隨訪,Ding等[11]對31例人乳頭狀瘤病毒陽性的口咽鱗癌患者研究發(fā)現(xiàn),ADC、D及f值在CRT后2~3周后即明顯升高,提示有效治療后腫瘤細(xì)胞發(fā)生壞死,血流灌注上升,CRT前后的變化值(ΔADC和ΔD)可在治療中期有效區(qū)分出完全緩解組病例。還有研究[12]提出,由于腫瘤的不均質(zhì)性,治療后早期D值變化率的第25百分位數(shù)預(yù)測鼻竇鱗狀細(xì)胞癌化療效果的價值高于ΔD。而治療前的參數(shù)值在某種程度上反映了腫瘤治療前的病理狀態(tài),Hauser等[13]發(fā)現(xiàn)治療前較高的f值提示相對差的預(yù)后,推測可能是靶病灶內(nèi)的血管分布不同導(dǎo)致了療效的差異;但Ding等[11]研究結(jié)果與之不同,并認(rèn)為是研究對象的不均質(zhì)性影響了最后的結(jié)果。同時,頸部IVIM成像易受吞咽運動、磁敏感偽影的影響,導(dǎo)致圖像質(zhì)量欠佳;此外,廣泛運用的NLLS擬合模型導(dǎo)致D*、f值的測量變異較大[11]。因此,評價HNSCC CRT療效,ΔADC和ΔD的價值得到肯定,而治療前參數(shù)的預(yù)測價值有待進一步大樣本研究。
2.2鼻咽癌(nasopharyngeal carcinoma, NPC) CRT已作為中晚期NPC患者提高局部控制率、延長無進展生存期的首選療法。研究[14-15]發(fā)現(xiàn),晚期NPC患者在誘導(dǎo)化療(induction chemotherapy, IC)后3周、新輔助化療(neoadjuvant chemotherapy, NAC)后3天即表現(xiàn)出D值、ADC值的明顯升高和D*值的明顯減低,與Lai等[16]對NPC CRT后纖維化的研究結(jié)果類似,提示NPC在有效治療后發(fā)生了細(xì)胞層面壞死及微循環(huán)灌注的減低。同時,研究[7,14-15]還提出治療前D值、D*值可潛在預(yù)測IC或NAC療效,特別是D值;Guo等[14]提出治療前D值預(yù)測IC療效的效能最高,以0.847×10-3s/mm2為閾值可在化療前有效區(qū)分出有效組和無效組(敏感度75.0%,特異度88.9%),而Xiao-Ping等[7]認(rèn)為早期D值的變化率預(yù)測化療療效的效能最高,治療前D值預(yù)測CRT后腫瘤殘余組織的效能最高。盡管D值的研究結(jié)果存在差異,但其價值是目前研究一致肯定的,反映了D值能真正代表腫瘤組織內(nèi)水分子擴散運動能力的特性,因此在以后的研究中,D值有可能代替ADC值成為新的腫瘤標(biāo)記物因子。
近年來,抗血管靶向治療成為研究的熱點。Cui等[9]研究發(fā)現(xiàn)IVIM可敏感地檢測到抗血管生成藥ZD6474對裸鼠NPC的早期治療效果,其中治療組的灌注相關(guān)參數(shù)于第1天即顯著降低,為NPC靶向治療的早期療效評估帶來了希望。
2.3肝細(xì)胞肝癌(hepatocellular carcinoma, HCC)和肝臟轉(zhuǎn)移瘤 目前,介入治療如射頻消融術(shù)(radiofrequency, RF)、TACE廣泛應(yīng)用于HCC和肝轉(zhuǎn)移瘤姑息治療中;但依靠傳統(tǒng)的影像學(xué)檢查技術(shù)難以區(qū)分殘留或復(fù)發(fā)的腫瘤。Guo等[17]采用兔VX2肝腫瘤模型發(fā)現(xiàn),RF后1 h凝固性壞死區(qū)D值明顯升高,D*和f值明顯降低,而殘留腫瘤組織表現(xiàn)為D*、f值升高,與動態(tài)對比增強MRI(dynamic contrast-enhanced MRI, DCE-MRI)、CT灌注成像的灌注參數(shù)血容量(blood volume, BV)變化一致。提示IVIM不僅可在RF早期評價有無殘留腫瘤組織,還可在毛細(xì)血管網(wǎng)水平獲得腫瘤RF后的灌注信息。目前臨床上主要依靠CT、MRI顯示碘油的沉積來評估TACE療效,而Park等[18]研究發(fā)現(xiàn)碘油沉積良好組治療前D*值明顯高于碘油沉積不良組,提示D*值能有助于前瞻性預(yù)測TACE療效。
目前HCC的血管靶向治療是研究熱點,包括血管阻滯藥(vascular disrupting agents, VDAs)和抗血管生成藥。Joo等[19]用IVIM監(jiān)測兔VX2肝腫瘤模型VDAs(CKD-516)療效,發(fā)現(xiàn)D*、f值在治療后4 h的相對變化與VDAs療效呈正相關(guān),而D值的變化遲于D*、f值。Joo等[20]還發(fā)現(xiàn)D*、f值可替代DCE-MRI反映VDAs治療后腫瘤灌注的動態(tài)變化。同時,Granata等[21]對抗血管生成藥貝伐單抗治療直腸癌肝轉(zhuǎn)移的臨床研究也肯定了f的價值。提示D*、f值在HCC血管靶向治療中存在較大的發(fā)展空間。但目前對IVIM評價多靶點藥物索拉菲尼治療晚期HCC的療效尚存爭議[2,22-23],可能是索拉菲尼靶點較多,作用復(fù)雜,或是選擇的觀察時間窗并不合適,此外,灌注參數(shù)的可重復(fù)性也是原因之一。
2.4乳腺癌和宮頸癌 近年來,NAC越來越多地被用于晚期乳腺癌、宮頸癌的術(shù)前輔助治療或姑息治療,而DCE-MRI是評估乳腺癌NAC療效最常用的方法,但治療后腫瘤周圍組織的壞死、纖維化、炎癥等易使DCE-MRI高估病變范圍,而微小殘留腫瘤組織的部分容積效應(yīng)及化療藥物的抗血管效應(yīng)則可使DCE-MRI低估病變范圍。IVIM反映腫瘤組織的內(nèi)在特征,在某種程度上可克服DCE-MRI的局限性。Che等[8]研究證實IVIM參數(shù)在局灶性晚期乳腺癌NAC療效評估方面的潛在價值。
Wang等[24]研究發(fā)現(xiàn),兩種模型的擴散系數(shù)在預(yù)測和監(jiān)測宮頸癌NAC療效方面的效能相當(dāng),且提示ADC值的臨床可行性更高,該結(jié)果有待進一步證實。同步放化療(concurrent chemoradiotherapy, CCRT)是中晚期宮頸癌的主要治療方法,與ADC值類似,CCRT后1個月[25]甚至2周[26]即可觀察到D值的明顯升高,提示腫瘤細(xì)胞壞死;而f值變化較為復(fù)雜[25-26],其中,Zhu等[26]研究推測由于治療后抗血管生成作用及放療引起的局部纖維化,取代了細(xì)胞溶解在初期的主導(dǎo)作用,導(dǎo)致腫瘤微循環(huán)的改變,造成灌注水平下降。
2.5直腸癌 長療程的CRT是局灶性晚期直腸癌標(biāo)準(zhǔn)療法的第一步,旨在縮小腫瘤和降低分期,以便進一步手術(shù)治療。但ADC值評估和預(yù)測直腸癌CRT療效的價值尚存爭議[27],歸因于多方面,如b值的選擇、ADC值混雜了灌注效應(yīng)、單層ROI下腫瘤的異質(zhì)性等[28]。為此,Nougaret等[28]用36個b值的IVIM模型定量監(jiān)測了直腸癌CRT后的腫瘤本身和灌注水平的變化,并用體積法ROI來解決腫瘤的異質(zhì)性,發(fā)現(xiàn)CRT后有效組D值、ADC值均明顯升高,而D*值和f值未發(fā)生明顯變化,提示灌注效應(yīng)對CRT療效評估影響小,也反映了D值對直腸癌CRT療效評估的價值更高,且用體積法ROI分析更加可靠。
2.6全身性腫瘤 隨著MRI技術(shù)的發(fā)展,DWI逐漸被應(yīng)用于全身組織,使得形態(tài)學(xué)難以評估的全身性腫瘤如多發(fā)性骨髓瘤、全身性骨轉(zhuǎn)移瘤、淋巴瘤的療效評估成為可能。Gaeta等[4]研究了15例乳腺癌患者的16個溶骨性轉(zhuǎn)移灶,發(fā)現(xiàn)所有病灶的D值、ADC值在放療后均明顯上升,部分病灶的D*值明顯降低,提示放療后發(fā)生囊變、壞死和微循環(huán)灌注的下降。劉小華等[3]也發(fā)現(xiàn)IVIM在淋巴瘤化療療效評估和預(yù)測中的價值。DWI檢查無輻射的優(yōu)勢有利于兒童全身性腫瘤的療效評估,但檢查時間長,特別是采用多個b值的IVIM-DWI;未來有待設(shè)備及技術(shù)優(yōu)化,實現(xiàn)全身IVIM的廣泛臨床應(yīng)用。
首先,IVIM參數(shù)的可重復(fù)性尚未被充分評估,特別是D*值和f值,以及其在上腹部、胸部、口咽部等受運動影響較大的器官。其次,IVIM掃描技術(shù)還沒有規(guī)范和共識,不同的采集方式、b值均可導(dǎo)致IVIM參數(shù)的差異。此外,由于不同的研究機構(gòu)、設(shè)計方案及個體差異,導(dǎo)致IVIM評估療效的數(shù)據(jù)仍是高度的異質(zhì)性。
總之,IVIM-DWI是非常有前景的非侵入性檢查技術(shù),能有效檢出腫瘤治療后的細(xì)胞活性及微循環(huán)灌注的變化。相比形態(tài)學(xué)評估方法,IVIM-DWI可早期評估腫瘤療效、優(yōu)化治療方案、預(yù)測預(yù)后,為臨床實現(xiàn)個體化治療提供依據(jù)。
[1] Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer, 2009,45(2):228-247.
[2] Shirota N, Saito K, Sugimoto K, et al. Intravoxel incoherent motion MRI as a biomarker of sorafenib treatment for advanced hepatocellular carcinoma: A pilot study. Cancer Imaging, 2016,16:1.
[3] 劉小華,張忠林,李文瑜,等.DWI中基于單指數(shù)與IVIM雙指數(shù)模型早期預(yù)測淋巴瘤療效效能比較.中國醫(yī)學(xué)影像技術(shù),2014,30(11):1636-1640.
[4] Gaeta M, Benedetto C, Minutoli F, et al. Use of diffusion-weighted, intravoxel incoherent motion, and dynamic contrast-enhanced MR imaging in the assessment of response to radiotherapy of lytic bone metastases from breast cancer. Acad Radiol, 2014, 21(10):1286-1293.
[5] Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988,168(2):497-505.
[6] Liu C, Liang C, Liu Z, et al. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: Comparison with conventional DWI. Eur J Radiol, 2013,82(12):e782-e789.
[7] Xiao-Ping Y, Jing H, Fei-ping L, et al. Intravoxel incoherent motion MRI for predicting early response to induction chemotherapy and chemoradiotherapy in patients with nasopharyngeal carcinoma. J Magn Reson Imaging, 2016,43(5):1179-1190.
[8] Che S, Zhao X, Ou Y, et al. Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer. Medicine (Baltimore), 2016,95(4):e2420.
[9] Cui Y, Zhang C, Li X, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for monitoring the early response to ZD6474 from nasopharyngeal carcinoma in nude mouse. Sci Rep, 2015,5:16389.
[10] Kim S, Loevner L, Quon H, et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res, 2009,15(3):986-994.
[11] Ding Y, Hazle JD, Mohamed AS, et al. Intravoxel incoherent motion imaging kinetics during chemoradiotherapy for human papillomavirus-associated squamous cell carcinoma of the oropharynx: Preliminary results from a prospective pilot study. NMR Biomed, 2015,28(12):1645-1654.
[12] Fujima N, Yoshida D, Sakashita T, et al. Prediction of the treatment outcome using intravoxel incoherent motion and diffusional kurtosis imaging in nasal or sinonasal squamous cell carcinoma patients. Eur Radiol, 2017,27(3):956-965.
[13] Hauser T, Essig M, Jensen A, et al. Characterization and therapy monitoring of head and neck carcinomas using diffusion-imaging-based intravoxel incoherent motion parameters—preliminary results. Neuroradiology, 2013,55(5):527-536.
[14] Guo W, Luo D, Lin M, et al. Pretreatment intra-voxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in predicting induction chemotherapy response in locally advanced hypopharyngeal carcinoma. Medicine (Baltimore), 2016,95(10):e3039.
[15] Xiao Y, Pan J, Chen Y, et al. Intravoxel incoherent motion-magnetic resonance imaging as an early predictor of treatment response to neoadjuvant chemotherapy in locoregionally advanced nasopharyngeal carcinoma. Medicine (Baltimore), 2015,94(24):e973.
[16] Lai V, Li X, Lee VH, et al. Intravoxel incoherent motion MR imaging: Comparison of diffusion and perfusion characteristics between nasopharyngeal carcinoma and post-chemoradiation fibrosis. Eur Radiol, 2013,23(10):2793-2801.
[17] Guo Z, Zhang Q, Li X, et al. Intravoxel incoherent motion diffusion weighted MR imaging for monitoring the instantly therapeutic efficacy of radiofrequency ablation in rabbit VX2 tumors without evident links between conventional perfusion weighted images. PLoS One, 2015,10(5):e0127964.
[18] Park YS, Lee CH, Kim JH, et al. Using intravoxel incoherent motion (IVIM) MR imaging to predict lipiodol uptake in patients with hepatocellular carcinoma following transcatheter arterial chemoembolization: A preliminary result. Magn Reson Imaging, 2014,32(6):638-646.
[19] Joo I, Lee JM, Han JK, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for monitoring the therapeutic efficacy of the vascular disrupting agent CKD-516 in rabbit VX2 liver tumors. Radiology, 2014,272(2):417-426.
[20] Joo I, Lee JM, Grimm R, et al. Monitoring vascular disrupting therapy in a rabbit liver tumor model: Relationship between tumor perfusion parameters at IVIM diffusion-weighted MR imaging and those at dynamic contrast-enhanced MR imaging. Radiology, 2016,278(1):104-113.
[21] Granata V, Fusco R, Catalano O, et al. Early assessment of colorectal cancer patients with liver metastases treated with antiangiogenic drugs: The role of intravoxel incoherent motion in diffusion-weighted imaging. PLoS One, 2015,10(11):e0142876.
[22] Lewin M, Fartoux L, Vignaud A, et al. The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: A pilot study. Eur Radiol, 2011,21(2):281-290.
[23] Yang SH, Lin J, Lu F, et al. Evaluation of antiangiogenic and antiproliferative effects of sorafenib by sequential histology and intravoxel incoherent motion diffusion-weighted imaging in an orthotopic hepatocellular carcinoma xenograft model. J Magn Reson Imaging, 2017,45(1):270-280.
[24] Wang YC, Hu DY, Hu XM, et al. Assessing the early response of advanced cervical cancer to neoadjuvant chemotherapy using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging: A Pilot Study. Chin Med J (Engl), 2016,129(6):665-671.
[25] Wang Y, Hu S, Hu X, et al. Intravoxel incoherent motion magnetic resonance imaging for diagnosis of cervical cancer and evaluation of response of uterine cervical cancer to radiochemotherapy: A pilot study. Oncology and Translational Medicine, 2015,1(4):164-170.
[26] Zhu L, Zhu L, Shi H, et al. Evaluating early response of cervical cancer under concurrent chemo-radiotherapy by intravoxel incoherent motion MR imaging. BMC Cancer, 2016,16:79.
[27] Xie H, Sun T, Chen M, et al. Effectiveness of the apparent diffusion coefficient for predicting the response to chemoradiation therapy in locally advanced rectal cancer: A systematic review and meta-analysis. Medicine (Baltimore), 2015,94(6):e517.
[28] Nougaret S, Vargas HA, Lakhman Y, et al. Intravoxel incoherent motion-derived histogram metrics for assessment of response after combined chemotherapy and radiation therapy in rectal cancer: Initial experience and comparison between single-section and volumetric analyses. Radiology, 2016,280(2):446-454.
Progresses of intravoxel incoherent motion DWI in evaluation of treatment response of tumors
JIANGJianqin1,2,CUILei1*,GUXiaowen3,CAIRongfang1
(1.DepartmentofRadiology,SecondAffiliatedHospitalofNantongUniversity,Nantong226001,China;2.DepartmentofRadiology,YanchengCityNo.1People'sHospital,Yancheng224005,China;3.DepartmentofRadiology,SuzhouMunicipalHospital,Suzhou215001,China)
Intravoxel incoherent motion (IVIM) can distinguish the molecular diffusion from the pseudo-diffusion of microcircular perfusion to obtain true diffusion coefficient (D), pseudo-diffusion coefficient (D*) and perfusion fraction (f), which are sensitive to detect alterations in cellularity and microcirculation perfusion. IVIM can also evaluate early therapeutic effects, optimize treatment plan, predict prognoses, and provide information for choosing appropriate treatment methods. In this paper, the principle of IVIM and its application in tumor response evaluation were reviewed.
Magnetic resonance imaging; Intravoxel incoherent motion; Neoplasms
江建芹(1990—),女,江蘇鹽城人,碩士,醫(yī)師。研究方向:腫瘤及胸部影像診斷。E-mail: 1021809719@qq.com
崔磊,南通大學(xué)第二附屬醫(yī)院影像科,226001。
E-mail: cuigeleili@126.com
2016-11-23
2017-03-27
R73; R445.2
A
1003-3289(2017)06-0949-05
10.13929/j.1003-3289.201611120