曹莉培,王正閣,張 冰*
(1.南京大學醫(yī)學院,江蘇 南京 210093;2.南京大學醫(yī)學院附屬鼓樓醫(yī)院醫(yī)學影像科,江蘇 南京 210008)
青少年肌陣攣癲癇丘腦—皮質網絡的磁共振波譜研究進展
曹莉培1,2,王正閣2,張 冰2*
(1.南京大學醫(yī)學院,江蘇 南京 210093;2.南京大學醫(yī)學院附屬鼓樓醫(yī)院醫(yī)學影像科,江蘇 南京 210008)
青少年肌陣攣癲癇是一種特發(fā)性全面性癲癇綜合征,對其診斷主要依靠病史、臨床癥狀和腦電圖,常規(guī)影像學檢查未見腦內器質性病變。MRS可無創(chuàng)地定量測定腦內神經代謝物濃度,評估患者大腦代謝改變。目前,丘腦—皮質網絡功能障礙是本病的研究熱點,該網絡中存在神經代謝物濃度改變以及神經遞質谷氨酸和γ-氨基丁酸代謝失衡。而癲癇的發(fā)病與腦內興奮性和抑制性氨基酸的比例失衡有關,且癲癇發(fā)作可引起神經元損傷,導致神經元相關代謝產物濃度改變。本文將物質代謝、神經結構和功能相結合,對青少年肌陣攣癲癇患者的磁共振波譜研究進行綜述。
青少年;癲癇,肌陣攣;磁共振波譜成像;丘腦—皮質網絡
青少年肌陣攣癲癇(juvenile myoclonic epilepsy, JME)是常見的特發(fā)性全面性癲癇(idiopathic generalized epilepsy, IGE)綜合征,發(fā)作特點是肌陣攣、全面強直陣攣性發(fā)作和失神發(fā)作。JME約占所有癲癇的5%~10%,占IGE的18%,發(fā)作高峰年齡為12~18歲[1]。JME的診斷與分類主要依靠病史、臨床癥狀和腦電圖(electroencephalography, EEG),常規(guī)MRI無器質性病變[2]?;隗w素的形態(tài)學分析(voxel-based morphometry, VBM)證實JME患者額葉皮質—丘腦網絡發(fā)生改變,且皮層下結構變化更明顯[3],fMRI可發(fā)現JME存在丘腦—運動皮質網絡異常[4],而MRS則可通過非侵入性檢查定量檢測癲癇患者腦內代謝物改變,也可利用MRS定位技術選擇ROI,將代謝與結構相結合。用于MRS的原子核有多種,其中以感應性和敏感性最高的1H-MRS應用較廣泛。本文將物質代謝、神經結構和功能相結合,對JME患者的MRS研究進行綜述。
癲癇發(fā)作是由腦內神經元突發(fā)超同步放電所致,期間神經細胞代謝改變引起腦內多種生化物質濃度改變。癲癇反復發(fā)作造成細胞結構損傷和功能障礙,甚至導致細胞死亡,引起腦內物質濃度改變。與正常大腦比較,癲癇患者腦中與代謝相關的N-乙酰天冬氨酸(N-acetylaspartate, NAA)、肌酸類(creatine, Cr)、膽堿類化合物(choline, Cho)、肌醇(myo-Inositol, MI)、谷氨酸(glutamate, Glu)和谷氨酰胺(glutamine, Gln)、γ-氨基丁酸(Gamma-aminobutyric acid, GABA)等濃度發(fā)生改變[5]。1H-MRS主要檢測上述物質的濃度,根據其生理功能分為兩類。
1.1 神經代謝產物類 NAA僅存在于神經元和軸突的線粒體,反映神經元數量,當神經元受到破壞,NAA濃度降低,可由此評估神經元損傷。Cr是肌酸/磷酸肌酸類,為能量代謝中高能磷酸鍵的緩沖儲備物,分布相對穩(wěn)定,其變化反映能量代謝改變,一般作為波譜分析的參照物。Cho是膽堿/磷酸膽堿類,為細胞膜成分之一,反映膠質細胞數量。MI是細胞膜特有成分,參與細胞內第二信使通路,可調節(jié)神經細胞興奮性,其濃度受癲癇發(fā)作和膠質細胞增生影響。在癲癇組織中,Cho、Cr及MI升高,提示膠質細胞增生和代謝增高,丙戊酸鹽可使細胞內MI濃度下降約10%,但對Cho和Cr無明顯影響[6]。
1.2 神經遞質類 包括Glu、Gln和GABA,其中Glu、Gln合稱為Glx,為興奮性神經遞質,GABA為抑制性神經遞質。Glx與GABA的代謝相互關聯(lián),均發(fā)生在“神經膠質細胞—神經元單位”(glial-neuronal unit, GNU)。Glu與Gln在GNU間形成Glu—Gln循環(huán),神經膠質細胞特異性合成的谷氨酰胺合成酶將Glu轉化為Gln,從而清除突觸間隙的Glu,神經元內的谷氨酰胺酶將Gln轉化為Glu。Glu是GABA的前體,通過谷氨酸脫羧酶合成GABA。突觸間隙的GABA清除是通過神經元再攝取,重新生成GABA神經遞質,或通過GABA轉氨酶生成琥珀酸參與線粒體的三羧酸循環(huán)[5]。
GABA在癲癇發(fā)作中具有重要作用,但常規(guī)MRS難以將其檢出,因GABA信號在2.0 ppm、3.0 ppm和2.3 ppm處分別與NAA、Cr和Glx的信號重疊,而GABA在人腦中含量較后三者低,其信號淹沒于較高濃度物質的信號中,另外,GABA不同C原子上的H質子間存在耦合作用,導致3.0 ppm與1.9 ppm的信號耦合,常規(guī)MRS對其無法檢出[7]。利用GABA質子信號耦合的特性并結合差譜的思想設計的MEGA-PRESS序列,分別對1.9 ppm和3.0 ppm的脈沖進行編輯,可將GABA信號從較強的疊加信號中分離[7-8]。目前MEGA-PRESS序列已成為檢測GABA的標準方法,推進了腦內GABA變化與疾病關系的研究。
癲癇的特征是神經興奮性異常增高,其發(fā)作與Glx和GABA失衡密切相關。癲癇發(fā)作間期,發(fā)作部位的Glx低于對側,而在發(fā)作期則高于對側[9]。復雜部分癲癇患者發(fā)作前致癇海馬細胞外GABA濃度較低,Glu濃度較高并持續(xù)升高達潛在的神經毒性濃度直至發(fā)作,由此推測細胞外Glu升高可導致癲癇發(fā)作[10]。細胞興奮毒性破壞GNU的相互作用,也可使GABA濃度降低,導致癲癇發(fā)作[5]。另外,反復持續(xù)癲癇發(fā)作使GABA受體被抑制,神經元和神經膠質細胞Glu受體過度激活和攝取轉運蛋白表達改變,導致對神經元抑制減弱,進而導致癲癇[11]。近期研究[12]表明JME患者大腦的GABA水平較低,即使癲癇發(fā)作控制良好,其大腦GABA水平仍低于健康人。Glx升高和GABA降低導致大腦的興奮與抑制失衡,引起癲癇發(fā)作,而后者又導致Glx和GABA濃度改變,形成惡性循環(huán)。
Zhang等[13]根據物質分類對JME的MRS結果進行Meta分析發(fā)現,JME的主要受累腦區(qū)為丘腦、額葉、枕葉、后扣帶回、紋狀體和島葉等,其中以丘腦與額葉皮質代謝物濃度改變的聯(lián)系最密切。目前各腦區(qū)在丘腦—皮質網絡中的作用仍存在爭議,后文將以該網絡的受累腦區(qū)為線索對JME的MRS結果及與該腦區(qū)相關的結構與功能改變進行分析,闡述癲癇可能的起源與擴散機制。
2.1 丘腦 VBM分析發(fā)現JME患者雙側丘腦灰質減少[14],丘腦前部萎縮[15],而EEG-fMRI發(fā)現不同核團參與癲癇樣放電的起源、早期傳播及維持的不同過程[16],其中丘腦是丘腦—皮質網絡的重要組成部分。
對MRS的研究[17]發(fā)現JME患者丘腦NAA/Cr比值較正常人顯著下降,即使癥狀控制良好,其雙側丘腦NAA和NAA/Cr仍低于對照組[18]。全面強直陣攣癲癇(generalized tonic-clonic seizure, GTCS)次數越多,丘腦NAA水平越低[19],排除發(fā)作頻率和服藥的影響,丘腦NAA/Cr下降與年齡增長和病程延長相關,提示JME神經功能呈進行性損害[20]。
JME患者丘腦Glx顯著升高,伴NAA或NAA/Cr顯著降低,可能是Glx的興奮毒性引起神經元損傷所致[19]。JME患者丘腦GABA濃度降低,優(yōu)勢半球更顯著,提示丘腦GABA能神經元損害[21]。而丘腦Glx升高和GABA降低提高了丘腦的興奮性,參與癲癇發(fā)作的過程。Park等[22]利用結構體積進行有效連接分析發(fā)現,JME具有從整個大腦皮層向丘腦的顯著有效連接,而無丘腦向皮質的顯著有效連接,因此認為JME是皮質起源的病變而非丘腦。因此,丘腦可能是癲癇發(fā)作的早期受損區(qū)域,并參與癇樣放電的傳播。
2.2 額葉 額葉參與人體運動、感覺、認知等復雜生理過程,是丘腦—皮質網絡的重要部分,其中前內側額葉皮質及運動皮質在JME中研究較多。Seneviratne等[23]通過對IGE的癥狀學、EEG、神經心理、神經病理及神經影像學的分析發(fā)現,部分EEG及神經影像學研究揭示額葉的全面棘慢波放電在時間上先于丘腦,且JME的神經心理學表現為額葉功能受損,推測額葉可能是JME的起源部位。
JME患者額葉的NAA和NAA/Cr明顯降低[13],與GTCS患者表現為丘腦NAA下降顯著不同,提示JME可能具有獨特的解剖結構甚至發(fā)病機制[24]。額葉神經遞質的變化也有相似結論,Lin等[20]發(fā)現JME前內側額葉的Glx/Cr顯著下降,Hattigen等[21]發(fā)現優(yōu)勢半球Gln和GABA顯著升高,且GABA升高與GTCS相關性更高[25],推測可能是JME的神經遞質水平與IGE其他亞型間存在差異,或其丘腦皮質網絡存在微小結構差異而致局部GABA能神經元密度升高,或皮質過度興奮局限。也有學者[26]提出JME為多局灶發(fā)病,是“額葉多區(qū)域—丘腦皮質網絡”癲癇,而非全面性癲癇綜合征。
運動皮質的NAA/Cr降低[13],優(yōu)勢半球NAA/Cr及雙側Glx/Cr顯著降低,變化趨勢與丘腦一致[20],而服用新型抗癲癇藥者優(yōu)勢半球的GABA和Gln可升高[21]。另外,在發(fā)生肌陣攣抽搐時,初級運動區(qū)激活[27],fMRI發(fā)現輔助運動區(qū)結構連接顯著下降而與枕葉聯(lián)系增高[28],前運動區(qū)與丘腦間存在聯(lián)系[29],故運動皮質的結構和功能異常可能是癲癇起源與擴散的機制之一。
2.3 后扣帶回 Lin等[20]發(fā)現JME的后扣帶回雙側NAA/Cr降低,但無顯著差異,雙側Glx/Cr降低,優(yōu)勢半球下降顯著,而Zhang等[13]對JME進行Meta分析未發(fā)現后扣帶回Glx/Cr發(fā)生顯著改變。后扣帶回是默認模式網絡(default mode network, DMN)的重要腦區(qū),在IGE研究[30]中發(fā)現DMN連接可能促進發(fā)作間期癲癇樣放電,但DMN對JME特異的腦網絡作用還需進一步研究。
2.4 紋狀體、島葉 紋狀體是椎體外系的重要部分,參與運動的控制和調節(jié),且與島葉與額葉、顳葉和頂葉皮層相通,組成邊緣系統(tǒng)。紋狀體內含有GABA能神經元,右利手的JME患者左側Glx/Cr顯著升高,雙側紋狀體、島葉的NAA/Cr和右側Glx/Cr無顯著改變[20,31],而紋狀體、島葉又與丘腦毗鄰,可能誘導丘腦過度興奮[13]。Bartolini等[32]通過對光敏感JME的研究,推測光刺激發(fā)作反應可能是紋狀體—丘腦皮質系統(tǒng)的表現形式,但采用VBM的大腦深部灰質研究[33]并未發(fā)現紋狀體發(fā)生顯著的結構變化。
2.5 枕葉、頂葉 JME枕葉皮質未發(fā)現Glx、GABA等發(fā)生顯著改變[23],而在光敏感JME中發(fā)現優(yōu)勢半球NAA和Cr升高,NAA升高可能是枕葉代謝增高或NAA代謝異常而沉積造成,Cr升高可能由神經元興奮性增高和能量代謝增高引起[34];另外,JME網絡的多元回歸分析發(fā)現枕葉與丘腦間存在相關性[20]。不伴人格障礙的JME患者頂葉NAA/Cr升高,且優(yōu)勢半球顯著,而伴人格障礙者NAA/Cr則降低,可能其腦網絡損傷更嚴重[31]。頂葉與初級運動區(qū)、楔前葉、中央后回和右側海馬等節(jié)點連接增強[27],提示頂葉可能在癲癇傳播過程中發(fā)揮作用。
2.6 海馬 多數JME的研究未提及海馬,但JME患者海馬存在NAA/Cr改變,尤其是海馬頭部[35]。VBM研究[33]發(fā)現JME疾病持續(xù)時間與左側海馬體積相關,而首次發(fā)作年齡則與右側海馬體積相關;JME存在海馬萎縮,并出現記憶功能障礙[36];JME網絡節(jié)點中連接增強的部位包括右側海馬[27];海馬與同側丘腦的有效連接顯著[22],因此海馬可能參與JME的發(fā)病,但還有待進一步研究。
在JME的起源與擴散機制研究中,MRS通過無創(chuàng)檢查獲得神經代謝物與神經遞質的濃度改變,從代謝角度解釋丘腦—皮質網絡的神經元損傷及異常神經興奮與癲癇發(fā)作的關系,但結果尚存在爭議。由于MRS檢查要求患者高度配合,通常只能在發(fā)作間期進行,因此獲得的是代謝改變的結果,無法同步觀察發(fā)作時的代謝物濃度變化。盡管EEG可同步記錄發(fā)作時的癇樣放電部位,時間分辨率達毫秒級,但1H-MRS的時間分辨率為秒,兩者難以同步,需要更多的研究方法將兩者結合。另一方面,不同研究出現的部分差異性結果難以用現有理論解釋,是系統(tǒng)性差異還是存在其他的發(fā)病機制仍需更多研究探討。
在疾病發(fā)展過程中,代謝改變早于功能與結構異常,MRS的優(yōu)勢在于可定量檢測腦內代謝物和神經遞質的濃度,以此定位代謝異常的腦區(qū),對于疾病早期尚未出現結構異常的腦區(qū)具有提示作用,有望成為提示亞臨床認知改變的敏感技術[17],也可用于預測藥物反應[37],為臨床早期干預及預后評估提供參考。另外,對同一個體進行MRS隨訪,可比較藥物對代謝物濃度的影響及個體的藥物療效[38],對個體化治療具有積極意義。在MRS與EEG的病例對照研究中,MRS表現出對顳葉癲癇病變定位較高的準確率[39],但是否適用于JME的早期診斷,需進一步探究。
[1] Camfield CS, Striano P, Camfield PR. Epidemiology of juvenile myoclonic epilepsy. Epilepsy Behav, 2013,28(Suppl 1):S15-S17.
[2] [No authors listed]. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on classification and terminology of the International League Against Epilepsy. Epilepsia, 1989,30(4):389-399.
[3] Swartz BE, Spitz J, Vu AL, et al. Heterogeneity of anatomic regions by MR volumetry in juvenile myoclonic epilepsy. Acta Neurol Scand, 2016,134(4):300-308.
[4] Jiang S, Luo C, Liu Z, et al. Altered local spontaneous brain activity in juvenile myoclonic epilepsy: A preliminary resting-state fMRI study. Neural Plast, 2016,2016:3547203.
[5] Pan JW, Williamson A, Cavus I, et al. Neurometabolism in human epilepsy. Epilepsia, 2008,49(Suppl 3):31-41.
[6] Simister, RJ, McLean MA, Barker GJ, et al. The effect of sodium valproate on proton MRS visible neurochemical concentrations. Epilepsy Res, 2007,74(2-3):215-219.
[7] Puts NA, Edden RA. In vivo magnetic resonance spectroscopy of GABA: A methodological review. Prog Nucl Magn Reson Spectrosc, 2012,60:29-41.
[8] Mullins PG, McGonigle DJ, O'Gorman RL, et al. Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. Neuroimage, 2014,86:43-52.
[9] Pfund Z, Chugani DC, Juhasz C, et al. Evidence for coupling between glucose metabolism and glutamate cycling using FDG PET and1H magnetic resonance spectroscopy in patients with epilepsy. J Cereb Blood Flow Metab, 2000,20(5):871-878.
[10] During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet, 1993,341(8861):1607-1610.
[11] Barker-Haliski M, White HS. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med, 2015,5(8):a022863.
[12] Durst CR, Michael N, Tustison NJ, et al. Noninvasive evaluation of the regional variations of GABA using magnetic resonance spectroscopy at 3 Tesla. Magn Reson Imaging, 2015,33(5):611-617.
[13] Zhang L, Li H, Hong P, et al. Proton magnetic resonance spectroscopy in juvenile myoclonic epilepsy: A systematic review and meta-analysis. Epilepsy Res, 2016,121:33-38.
[14] Cao B, Tang Y, Li J, et al. A meta-analysis of voxel-based morphometry studies on gray matter volume alteration in juvenile myoclonic epilepsy. Epilepsy Res, 2013,106(3):370-377.
[15] Mory SB, Betting LE, Fernandes PT, et al. Structural abnormalities of the thalamus in juvenile myoclonic epilepsy. Epilepsy Behav, 2011,21(4):407-411.
[16] Tyvaert L, Chassagnon S, Sadikot A, et al. Thalamic nuclei activity in idiopathic generalized epilepsy: An EEG-fMRI study. Neurology, 2009,73(23):2018-2022.
[17] Cevik N, Koksal A, Dogan VB, et al. Evaluation of cognitive functions of juvenile myoclonic epileptic patients by magnetic resonance spectroscopy and neuropsychiatric cognitive tests concurrently. Neurol Sci, 2016,37(4):623-627.
[18] Haki C, Gumustas OG, Bora I, et al. Proton magnetic resonance spectroscopy study of bilateral thalamus in juvenile myoclonic epilepsy. Seizure, 2007,16(4):287-295.
[19] Helms G, Ciumas C, Kyaga S, et al. Increased thalamus levels of glutamate and glutamine (Glx) in patients with idiopathic generalised epilepsy. J Neurol Neurosurg Psychiatry, 2006,77(4):489-494.
[20] Lin K, Carrete H Jr, Lin J, et al. Magnetic resonance spectroscopy reveals an epileptic network in juvenile myoclonic epilepsy. Epilepsia, 2009,50(5):1191-1200.
[21] Hattingen E, Luckerath C, Pellikan S, et al. Frontal and thalamic changes of GABA concentration indicate dysfunction of thalamofrontal networks in juvenile myoclonic epilepsy. Epilepsia, 2014,55(7):1030-1037.
[22] Park KM, Lee BI, Shin KJ, et al. Juvenile myoclonic epilepsy may be a disorder of cortex rather than thalamus: An effective connectivity analysis. J Clin Neurosci, 2017,35:127-132.
[23] Seneviratne U, Cook M, D'Souza W. Focal abnormalities in idiopathic generalized epilepsy: A critical review of the literature. Epilepsia, 2014,55(8):1157-1169.
[24] Doelken MT, Mennecke A, Stadlbauer A, et al. Multi-voxel magnetic resonance spectroscopy at 3T in patients with idiopathic generalised epilepsy. Seizure, 2010,19(8):485-492.
[25] Chowdhury FA, O'Gorman RL, Nashef L, et al. Investigation of glutamine and GABA levels in patients with idiopathic generalized epilepsy using MEGAPRESS. J Magn Reson Imaging, 2015,41(3):694-699.
[26] Koepp MJ. Juvenile myoclonic epilepsy—a generalized epilepsy syndrome? Acta Neurol Scand Suppl, 2005,181:57-62.
[27] Caeyenberghs K, Powell HW, Thomas RH, et al. Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis. Neuroimage Clin, 2015,7:98-104.
[28] Vollmar C, O'Muircheartaigh J, Symms MR, et al. Altered microstructural connectivity in juvenile myoclonic epilepsy: The missing link. Neurology, 2012,78(20):1555-1559.
[29] von Podewils F, Runge U, Kruger S, et al. Diffusion tensor imaging abnormalities in photosensitive juvenile myoclonic epilepsy. Eur J Neurol, 2015,22(8):1192-1200.
[30] Lopes R, Moeller F, Besson P, et al. Study on the relationships between intrinsic functional connectivity of the default mode network and transient epileptic activity. Front Neurol, 2014,5:201.
[31] de Araujo Filho GM, Lin K, Lin J, et al. Are personality traits of juvenile myoclonic epilepsy related to frontal lobe dysfunctions? A proton MRS study. Epilepsia, 2009,50(5):1201-1209.
[32] Bartolini, E, Pesaresi I, Fabbri S, et al. Abnormal response to photic stimulation in juvenile myoclonic epilepsy: An EEG-fMRI study. Epilepsia, 2014,55(7):1038-1047.
[33] Saini J, Sinha S, Bagepally BS, et al. Subcortical structural abnormalities in juvenile myoclonic epilepsy (JME): MR volumetry and vertex based analysis. Seizure, 2013,22(3):230-235.
[34] Aydin-Ozemir Z, Terzibasioglu E, Altindag E, et al. Magnetic resonance spectroscopy findings in photosensitive idiopathic generalized epilepsy. Clin EEG Neurosci, 2010,41(1):42-49.
[35] Ristic AJ, Ostojic J, Kozic D, et al. Hippocampal metabolic dysfunction in juvenile myoclonic epilepsy: 3D multivoxel spectroscopy study. J Neurol Sci, 2011,305(1-2):139-142.
[36] Lin K, de Araujo Filho GM, Pascalicchio TF, et al. Hippocampal atrophy and memory dysfunction in patients with juvenile myoclonic epilepsy. Epilepsy Behav, 2013,29(1):247-251.
[37] Campos BA, Yasuda CL, Castellano G, et al. Proton MRS may predict AED response in patients with TLE. Epilepsia, 2010,51(5):783-788.
[38] Munakata M, Togashi N, Sakamoto O, et al. Reduction in glutamine/glutamate levels in the cerebral cortex after adrenocorticotropic hormone therapy in patients with west syndrome. Tohoku J Exp Med, 2014,232(4):277-283.
[39] Azab SF, Sherief LM, Saleh SH, et al. Childhood temporal lobe epilepsy: Correlation between electroencephalography and magnetic resonance spectroscopy: A case-control study. Ital J Pediatr, 2015,41:32.
Progresses of magnetic resonance spectroscopy in thalamo-cortical network of juvenile myoclonic epilepsy
CAOLipei1,2,WANGZhengge2,ZHANGBing2*
(1.MedicalschoolofNanjingUniversity,Nanjing210093,China; 2.DepartmentofRadiology,NanjingDrumTowerHospital,theAffiliatedHospitalofNanjingUniversityMedicalSchool,Nanjing210008,China)
Juvenile myoclonic epilepsy (JME) diagnosed with seizure history, semiology and electroencephalography is a syndrome of idiopathic generalized epilepsy. MRS can quantitatively detect the concentration of neurometabolites noninvasively, and assess the metabolic changes in brain. Currently, studies of pathogenesis of JME are focused on the dysfunction of thalamo-cortical network and the neurometabolites and imbalance of Glutamate and γ-aminobutyric acid in the network are alterted. Epilepsy is associated with the imbalance of the ratio of excitatory and inhibitory amino acid, and seizures lead to neuronal lesions which result in altered concentration of neuron related metabolites. This article reviewed MRS studies of JME by combining material metabolism, neural structure and function.
Juvenile; Epilepsies, myoclonic; Magnetic resonance spectroscopy; Thalamo-cortical network
國家自然科學基金青年基金(81301198、81300925)、國家自然科學基金面上項目(81571040)。
曹莉培(1989—),女,重慶人,在讀碩士。研究方向:癲癇的多模態(tài)功能磁共振研究。E-mail: m15996315779@163.com
張冰,南京大學醫(yī)學院附屬鼓樓醫(yī)院醫(yī)學影像科,210008。E-mail: zhangbing_nanjing@vip.163.com
2016-07-13
2017-04-24
R742.1; R445.2
A
1003-3289(2017)06-0954-05
10.13929/j.1003-3289.201607060