王楠楠,白英龍
·新進(jìn)展·
與肥胖相關(guān)的慢性炎癥機(jī)制研究進(jìn)展
王楠楠,白英龍*
肥胖是一種嚴(yán)重危害人類健康的慢性疾病,而肥胖相關(guān)的慢性炎癥是胰島素抵抗以及脂質(zhì)代謝類疾病發(fā)病的關(guān)鍵因素,其發(fā)生機(jī)制已成為目前的研究熱點(diǎn)。脂肪組織慢性炎癥的特征主要包括促炎因子表達(dá)量增多而抗炎因子表達(dá)量下降以及脂肪組織巨噬細(xì)胞大量浸潤。本文就肥胖慢性炎癥狀態(tài)及與其相關(guān)聯(lián)的幾種慢性炎癥機(jī)制進(jìn)行簡單綜述。
肥胖癥;脂肪組織;炎癥
王楠楠,白英龍.與肥胖相關(guān)的慢性炎癥機(jī)制研究進(jìn)展[J].中國全科醫(yī)學(xué),2017,20(12):1527-1530.[www.chinagp.net]
WANG N N,BAI Y L.Recent developments in the pathogenesis of obesity-associated chronic inflammation[J].Chinese General Practice,2017,20(12):1527-1530.
肥胖是一種危害人類健康的慢性疾病,被世界衛(wèi)生組織列為威脅人類健康的十大疾病之一,已成為越來越不能被忽視的重大公共衛(wèi)生問題。肥胖可以引起脂質(zhì)代謝紊亂,如2型糖尿病、動脈粥樣硬化、脂肪肝等,同時(shí)其也是胰島素抵抗的重要誘因[1]。這些疾病的發(fā)生多由慢性炎癥引起,本文主要就肥胖的慢性炎癥狀態(tài)以及與其相關(guān)聯(lián)的幾種慢性炎癥機(jī)制加以綜述。
肥胖是指體內(nèi)脂肪堆積過多和/或分布異常而引起體質(zhì)量增加,是一種多因素的慢性代謝性疾病[2]。體內(nèi)脂肪組織不僅包括脂肪細(xì)胞,還包括基質(zhì)前脂肪細(xì)胞、免疫細(xì)胞以及廣泛的內(nèi)皮細(xì)胞網(wǎng)[3]。而哺乳動物體內(nèi)脂肪組織主要有兩大類,即白色脂肪組織和褐色脂肪組織。白色脂肪組織的特點(diǎn)是以三酰甘油的形式儲存能量,而褐色脂肪組織以擁有數(shù)目眾多的線粒體并可以高效產(chǎn)熱為主要特點(diǎn)。當(dāng)肥胖發(fā)生時(shí),機(jī)體下丘腦-垂體-腎上腺軸和自主神經(jīng)系統(tǒng)被激活,糖皮質(zhì)激素水平升高,類固醇激素誘導(dǎo)前脂肪細(xì)胞分化,導(dǎo)致白色脂肪組織進(jìn)一步生長堆積,從而加劇肥胖的發(fā)生。傳統(tǒng)觀念認(rèn)為體內(nèi)脂肪組織只是單純的儲存器官,具有貯存脂肪、供能等功能,在調(diào)節(jié)全身脂肪酸動態(tài)平衡的過程中扮演著至關(guān)重要的角色。隨著研究的不斷深入,人們發(fā)現(xiàn)脂肪組織不僅是一個(gè)能量貯存庫,還可分泌許多激素、細(xì)胞因子和趨化因子等[4],具有多種特異生物功能,對脂肪組織、免疫系統(tǒng)起著不可忽視的作用。通過對各種細(xì)胞因子生理功能、作用機(jī)制的不斷深入了解,人們逐漸認(rèn)識到肥胖不僅是脂肪組織的過度聚積,同時(shí)也是一種低水平的慢性炎癥狀態(tài)[5]。在發(fā)生肥胖的惡性循環(huán)中,白色脂肪組織的不斷擴(kuò)增導(dǎo)致促炎細(xì)胞因子分泌量增多,常見的有腫瘤壞死因子α(tumor necrosis factor α,TNF-α)、C反應(yīng)蛋白(C-reactive protein,CRP)、白介素6(interleukin 6,IL-6)和單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein-1,MCP-1)等,最終誘發(fā)慢性炎癥[6]。
本文創(chuàng)新點(diǎn):
肥胖及其并發(fā)癥對機(jī)體健康危害深遠(yuǎn),人們對肥胖的研究是多方面的,其中肥胖引起的慢性炎癥理論被普遍接受。本文概述了慢性炎癥的幾種發(fā)生機(jī)制及其與肥胖的關(guān)系,有助于加深對肥胖的理解與認(rèn)識,為疾病的治療提供新思路。
肥胖引起的慢性炎癥區(qū)別于傳統(tǒng)炎癥,并不出現(xiàn)“紅、腫、熱、痛”的癥狀,研究者將其命名為“低度慢性炎癥”[7]。從其被發(fā)現(xiàn)到被普遍接受,經(jīng)過了近十年的時(shí)間。HOTAMISLIGIL[8]發(fā)現(xiàn)脂肪組織可以分泌TNF-α并確定其對胰島素信號傳導(dǎo)有負(fù)調(diào)節(jié)作用,這是人們首次認(rèn)識到血漿炎性因子的增加與胰島素抵抗有關(guān)。TNF-α則成為聯(lián)系肥胖和胰島素抵抗的關(guān)鍵所在。1994年,瘦素作為一種脂肪特異性細(xì)胞因子被發(fā)現(xiàn),其對身體能量平衡的調(diào)節(jié)作用,使人們認(rèn)識到脂肪組織是一個(gè)強(qiáng)大的內(nèi)分泌器官[9]。隨后數(shù)年,更多參與調(diào)節(jié)脂質(zhì)和糖穩(wěn)態(tài)的細(xì)胞因子陸續(xù)被發(fā)現(xiàn),如脂聯(lián)素[10]、抵抗素[11]。直到Y(jié)UDKIN等[12]在1999年首次提出肥胖作為一種低水平的慢性炎癥狀態(tài),可以誘發(fā)胰島素抵抗和內(nèi)皮功能障礙,人們才開始接受肥胖是由不同炎性因子誘導(dǎo)產(chǎn)生的一種全身性的低水平慢性炎癥狀態(tài)。近年來新的細(xì)胞因子被不斷發(fā)現(xiàn),如網(wǎng)膜素[13]、Adipolin[14]、顆粒前體蛋白(progranulin,PGRN)[15]、色素上皮細(xì)胞衍生因子(pigment epithelium-derived factor,PEDF)[16]、Wnt1誘導(dǎo)信號通路蛋白-1(Wnt1-inducible signaling pathway protein-1,WISP1)[17]等。
肥胖引起的慢性炎癥具有兩方面的表型特征,首先是肥胖者血液中一些炎性標(biāo)志物的水平呈現(xiàn)不同的變化,其中促炎因子WISP1、IL-6、TNF-α、瘦素、抵抗素水平明顯上升,而抗炎因子脂聯(lián)素、網(wǎng)膜素、Adipolin等水平卻顯著下降。這些脂肪因子能夠調(diào)節(jié)脂肪組織與代謝器官之間的相互作用。以肝臟為例,非酒精性脂肪肝(nonalcoholic fatty liver disease,NAFLD)通常與腹型肥胖相伴存在,并可能增加肝硬化和肝癌的罹患風(fēng)險(xiǎn)[18]。NAFLD與肥胖誘導(dǎo)的肝臟胰島素抵抗均會使IL-6、TNF-α等水平上升[19]。而隨后有研究發(fā)現(xiàn)TNF-α與肝癌的發(fā)展緊密相連,通過應(yīng)用TNF-α拮抗劑對肝癌進(jìn)行治療發(fā)現(xiàn)其可以抑制肝癌的進(jìn)展[20]。這進(jìn)一步證實(shí)了TNF-α作為一種脂肪因子能夠調(diào)節(jié)脂肪組織與肝臟之間的相互作用。其次是脂肪組織中巨噬細(xì)胞能夠浸潤并吞噬凋亡的脂肪細(xì)胞[21]。
值得注意的是,越來越多的研究表明脂肪組織分泌的炎性因子恰恰是由巨噬細(xì)胞產(chǎn)生的[22-24]。脂肪組織具有獨(dú)特的異質(zhì)性,除含有大量的脂肪細(xì)胞之外,還包括巨噬細(xì)胞、成纖維細(xì)胞和內(nèi)皮細(xì)胞等[25]。巨噬細(xì)胞屬于單核吞噬細(xì)胞,主要功能是抵抗外來有機(jī)體以及清除細(xì)胞碎片。隨著肥胖的發(fā)生,血液中的單核細(xì)胞遷入到脂肪組織中,并分化成駐留型巨噬細(xì)胞,進(jìn)而吞噬壞死的脂肪細(xì)胞。此外巨噬細(xì)胞還通過自分泌、旁分泌激活c-Jun氨基末端激酶(JNK)、核因子κB(NF-κB)通路,干擾周邊組織的胰島素信號以促進(jìn)胰島素抵抗[26]。駐留在脂肪組織中的巨噬細(xì)胞存在兩種表型:M1型巨噬細(xì)胞(classically activated,有促炎作用)和M2型巨噬細(xì)胞(alternatively activated,有抗炎作用)。M1型巨噬細(xì)胞主要產(chǎn)生IL-6、TNF-α、一氧化氮合酶等[27],而M2型巨噬細(xì)胞主要產(chǎn)生抗炎細(xì)胞因子。肥胖會使脂肪組織巨噬細(xì)胞類型從M2型激活為M1型,導(dǎo)致促炎細(xì)胞因子以及活性氧(reactive oxygen species,ROS)水平升高,誘導(dǎo)胰島素抵抗[28]。
近年來,國內(nèi)外學(xué)者投入大量的時(shí)間、精力研究肥胖引起的慢性炎癥,旨在從根本上了解肥胖的發(fā)生機(jī)制,目前普遍認(rèn)為與以下幾種機(jī)制相關(guān)。
3.1 脂肪細(xì)胞增生肥大 肥胖發(fā)生過程中,隨著脂質(zhì)積累,脂肪細(xì)胞體積不斷增大,當(dāng)超出細(xì)胞可承受范圍時(shí),脂肪細(xì)胞就會破裂凋亡。凋亡的脂肪細(xì)胞被擁有特殊“冠狀結(jié)構(gòu)”的巨噬細(xì)胞所圍繞,同時(shí)細(xì)胞碎片被清除干凈[29],并最終引發(fā)慢性炎癥。增生肥大的脂肪細(xì)胞本身也可以產(chǎn)生多種促炎細(xì)胞因子以及趨化因子[30],其也會引起或促進(jìn)機(jī)體炎性反應(yīng)。同樣,增生肥大的脂肪細(xì)胞會分泌更多的趨化物與免疫相關(guān)基因,如血清淀粉樣蛋白A、跨膜蛋白4L家族1蛋白和CXC趨化因子修飾性配體2[31],而其可能進(jìn)一步募集巨噬細(xì)胞浸潤脂肪組織。SPALDING等[32]研究顯示,肥胖患者比非肥胖者擁有數(shù)量更多的脂肪細(xì)胞,相應(yīng)的,肥胖患者體內(nèi)淋巴細(xì)胞、T細(xì)胞數(shù)目也會增多,而這些適應(yīng)性免疫細(xì)胞均會對慢性炎癥狀態(tài)起到一定的促進(jìn)作用。
3.2 組織局部缺氧 隨著肥胖的發(fā)生,脂肪組織不斷生長,此過程伴隨著新的血管不斷生成。然而脂肪組織生長速度過快時(shí),血液循環(huán)系統(tǒng)不足以維持各處的氧供應(yīng),且當(dāng)脂肪細(xì)胞直徑≥120 μm時(shí),增生肥大的脂肪細(xì)胞會形成一道屏障阻止氧氣擴(kuò)散到脂肪組織的遠(yuǎn)端區(qū)域[33],最終導(dǎo)致局部組織缺氧。而缺氧與炎性細(xì)胞因子有一定的因果聯(lián)系,GROSFELD等[34]研究顯示,缺氧可以激活瘦素基因。除此之外,IL-6[35]、低氧誘導(dǎo)因子(hypoxia inducible factor -1α,HIF-1α)[36]、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)[35]和apelin[33]也因低氧而增多相應(yīng)基因的表達(dá)。這些細(xì)胞因子直接參與肥胖誘導(dǎo)的慢性炎癥狀態(tài),因此可以說組織局部缺氧是慢性炎癥的基礎(chǔ)。通常情況下脂肪組織局部缺氧會通過上調(diào)HIF-1基因的轉(zhuǎn)錄增多巨噬細(xì)胞葡萄糖轉(zhuǎn)運(yùn)體1(glucose transporter 1,GLUT1)的表達(dá)[37]。但值得注意的是,肌肉組織的GLUT1表達(dá)并不增多,這就提示缺氧導(dǎo)致的慢性炎癥是有組織特異性的,對于肥胖誘導(dǎo)的全身性、系統(tǒng)性的炎性反應(yīng),其還并不能進(jìn)行全面的解釋。
3.3 內(nèi)質(zhì)網(wǎng)應(yīng)激 內(nèi)質(zhì)網(wǎng)是一個(gè)特殊的胞質(zhì)細(xì)胞器,其負(fù)責(zé)分泌蛋白、膜蛋白的產(chǎn)生與折疊并對脂質(zhì)代謝起重要作用。內(nèi)質(zhì)網(wǎng)對組織缺氧、肥胖、能量不足等原因?qū)е碌募?xì)胞內(nèi)穩(wěn)態(tài)改變非常敏感[38]。當(dāng)細(xì)胞內(nèi)穩(wěn)態(tài)遭到破壞細(xì)胞發(fā)生損傷時(shí),內(nèi)質(zhì)網(wǎng)應(yīng)激觸發(fā)未折疊蛋白反應(yīng)(unfolded protein response,UPR)對抗損傷進(jìn)而對機(jī)體實(shí)施保護(hù)。標(biāo)準(zhǔn)的UPR由3個(gè)分支組成,分別由內(nèi)質(zhì)網(wǎng)上的3種跨膜蛋白介導(dǎo),分別為蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶、肌醇需求激酶1和轉(zhuǎn)錄激活因子6[39]。由這3者介導(dǎo)的信號通路與炎癥和壓力信號系統(tǒng)存在交叉作用,包括JNK-AP1與NF-κB-IκB信號通路的激活,同樣還有ROS和一氧化氮的產(chǎn)生。值得注意的是,這些信號通路和機(jī)制對肥胖誘導(dǎo)的慢性炎癥以及代謝異常均發(fā)揮著重要作用。此外,內(nèi)質(zhì)網(wǎng)應(yīng)激與炎癥的關(guān)系并不是單方面的,炎性遞質(zhì)和細(xì)胞應(yīng)激通路的激活,如IKK、JNK應(yīng)激通路,對內(nèi)質(zhì)網(wǎng)功能可能有負(fù)面影響。LI等[40]通過細(xì)胞內(nèi)實(shí)驗(yàn)誘導(dǎo)UPR反應(yīng)發(fā)現(xiàn)白介素8(IL-8)、IL-6、TNF-α、MCP-1等促炎細(xì)胞因子表達(dá)增多。然而肥胖誘導(dǎo)的慢性炎癥有多大程度可以歸因于內(nèi)質(zhì)網(wǎng)應(yīng)激,仍有待于進(jìn)一步研究發(fā)現(xiàn)。
3.4 巨噬細(xì)胞浸潤 脂肪組織與巨噬細(xì)胞的關(guān)系非常微妙,近年來巨噬細(xì)胞浸潤機(jī)制作為引發(fā)炎癥的可能機(jī)制已受到廣泛關(guān)注。在肥胖患者和肥胖大鼠模型的脂肪組織中均發(fā)現(xiàn)了巨噬細(xì)胞浸潤的現(xiàn)象[41-45]。首先脂肪組織分泌的瘦素、MCP-1等可以吸引巨噬細(xì)胞進(jìn)入脂肪組織;其次,脂肪組織與巨噬細(xì)胞之間通過旁分泌環(huán)可以形成一個(gè)惡性循環(huán),脂肪組織釋放過量飽和脂肪酸激活巨噬細(xì)胞,巨噬細(xì)胞可以釋放多種物質(zhì)影響脂肪形成[44],從而誘導(dǎo)脂肪細(xì)胞進(jìn)一步增生肥大。此外,組織局部缺氧也有利于巨噬細(xì)胞浸潤。研究發(fā)現(xiàn),在肥胖個(gè)體的脂肪組織中,局部缺氧刺激產(chǎn)生的趨化因子表達(dá)量增高[46-47],這有利于脂肪組織進(jìn)一步募集巨噬細(xì)胞。更有趣的是在肥胖者的脂肪組織中,巨噬細(xì)胞表現(xiàn)出從M2型到M1型的轉(zhuǎn)變[28],這為巨噬細(xì)胞加速脂肪組織慢性炎癥的發(fā)生提供了更加有力的證據(jù)。
肥胖引起的慢性炎癥涉及一系列復(fù)雜但又相互關(guān)聯(lián)的過程,而慢性炎癥又會進(jìn)一步誘發(fā)胰島素抵抗、2型糖尿病、心血管疾病等。作為聯(lián)系肥胖與其相關(guān)并發(fā)癥的紐帶,慢性炎癥機(jī)制的研究可以為疾病的治療提供新的思路。增生肥大的脂肪細(xì)胞分泌的抗炎、促炎因子是慢性炎癥狀態(tài)發(fā)生的基礎(chǔ),隨之發(fā)生的巨噬細(xì)胞浸潤加劇了這種炎癥狀態(tài)。本文僅概述了肥胖引起慢性炎癥的幾種機(jī)制,還有更多未解的領(lǐng)域有待于進(jìn)一步研究發(fā)現(xiàn),從根本上闡明慢性炎癥的機(jī)制將是未來肥胖研究工作的重點(diǎn)。
作者貢獻(xiàn):王楠楠進(jìn)行資料收集整理、撰寫論文及對文章的修訂;白英龍進(jìn)行質(zhì)量控制及審校,對文章整體負(fù)責(zé)。
本文無利益沖突。
[1]OUCHI N,PARKER J L,LUGUS J J,et al.Adipokines in inflammation and metabolic disease[J].Nat Rev Immunol,2011,11(2):85-97.
[2]孫長顥.營養(yǎng)與食品衛(wèi)生學(xué)[M].7版.北京:人民衛(wèi)生出版社,2013:264-265. SUN C H.Nutrition and food hygiene [M].7th ed.Beijing:People′s Medical Publishing House,2013:264-265.
[3]HALBERG N,WERNSTEDT-ASTERHOLM I,SCHERER P E.The adipocyte as an endocrine cell[J].Endocrinol Metab Clin North Am,2008,37(3):935-941.
[4]GALIC S,OAKHILL J S,STEINBERG G R.Adipose tissue as an endocrine organ[J].Mol Cell Endocrinol,2010,316(2):129-139.
[5]LUMENG C N,SALTIEL A R.Inflammatory links between obesity and metabolic disease[J].J Clin Invest,2011,121(6):2111-2117.
[6]KARALIS K P,GIANNOGONAS P,KODELA E,et al.Mechanisms of obesity and related pathology:linking immune responses to metabolic stress[J].FEBS J,2009,276(20):5747-5754.
[7]HOTAMISLIGIL G S.Inflammation and metabolic disorders[J].Nature,2006,444(7121):860-867.
[8]HOTAMISLIGIL G S.Inflammatory pathways and insulin action[J].Int J Obes Relat Metab Disord,2003,27 Suppl 3:S53-55.
[9]ZHANG Y,PROENCA R,MAFFEI M,et al.Positional cloning of the mouse obese gene and its human homologue[J].Nature,1994,372(6505):425-432.
[10]HU E,LIANG P,SPIEGELMAN B M.AdipoQ is a novel adipose-specific gene dysregulated in obesity[J].J Biol Chem,1996,271(18):10697-10703.
[11]STEPPAN C M,BAILEY S T,BHAT S,et al.The hormone resistin links obesity to diabetes[J].Nature,2001,409(6818):307-312.
[12]YUDKIN J S,STEHOUWER C D,EMEIS J J,et al.C-reactive protein in healthy subjects:associations with obesity,insulin resistance,and endothelial dysfunction:a potential role for cytokines originating from adipose tissue?[J].Arterioscler Thromb Vasc Biol,1999,19(4):972-978.
[13]HERDER C,OUWENS D M,CARSTENSEN M,et al.Adiponectin may mediate the association between omentin,circulating lipids and insulin sensitivity:results from the KORA F4 study[J].Eur J Endocrinol,2015,172(4):423-432.
[14]ENOMOTO T,OHASHI K,SHIBATA R,et al.Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism[J].J Biol Chem,2011,286(40):34552-34558.
[15]MATSUBARA T,MITA A,MINAMI K,et al.PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue[J].Cell Metab,2012,15(1):38-50.
[16]CHAVAN S S,HUDSON L K,LI J H,et al.Identification of pigment epithelium-derived factor as an adipocyte-derived inflammatory factor[J].Mol Med,2012,18(1):1161-1168.
[17]MURAHOVSCHI V,PIVOVAROVA O,ILKAVETS I,et al.WISP1 is a novel adipokine linked to inflammation in obesity[J].Diabetes,2014,64(3):856-866.
[18]MAHABIR S.Is nonalcoholic fatty liver disease driving the increased incidence of liver cancer?[J].Cancer,2016,122(14):2277-2278.
[19]GEORGOULIS M,KONTOGIANNI M D,TILELI N,et al.The impact of cereal grain consumption on the development and severity of non-alcoholic fatty liver disease[J].Eur J Nutr,2014,53(8):1727-1735.
[20]TIAN X,MA P,SUI C,et al.Comprehensive assessment of the association between tumor necrosis factor alpha G238A polymorphism and liver cancer risk[J].Tumour Biol,2014,35(1):103-109.
[21]GUSTAFSON B.Adipose tissue,inflammation and atherosclerosis[J].J Atheroscler Thromb,2010,17(4):332-341.
[22]MAURY E,EHALA-ALEKSEJEV K,GUIOT Y,et al.Adipokines oversecreted by omental adipose tissue in human obesity[J].Am J Physiol Endocrinol Metab,2007,293(3):E656-665.
[23]CURAT C A,WEGNER V,SENGENES C,et al.Macrophages in human visceral adipose tissue:increased accumulation in obesity and a source of resistin and visfatin[J].Diabetologia,2006,49(4):744-747.
[24]LAUDES M,OBERHAUSER F,SCHULTE D M,et al.Visfatin/PBEF/Nampt and resistin expressions in circulating blood monocytes are differentially related to obesity and type 2 diabetes in humans[J].Horm Metab Res,2010,42(4):268-273.
[25]BALISTRERI C R,CARUSO C,CANDORE G.The role of adipose tissue and adipokines in obesity-related inflammatory diseases[J].Mediators Inflamm,2010,2010(962/9351):802078.
[26]ZHANG Y,SHI L,MEI H,et al.Inflamed macrophage microvesicles induce insulin resistance in human adipocytes[J].Nutr Metab(Lond),2015,12(1):1-14.
[27]LEE B C,LEE J.Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance[J].Biochim Biophys Acta,2014,1842(3):446-462.
[28]SHAPIRO H,LUTATY A,ARIEL A.Macrophages,meta-inflammation,and immuno-metabolism[J].Scientific World Journal,2011,11:2509-2529.
[29]PELLEGRINELLI V,CAROBBIO S,VIDAL-PUIG A.Adipose tissue plasticity:how fat depots respond differently to pathophysiological cues[J].Diabetologia,2016,59(6):1075-1088.
[30]KL?TING N,FASSHAUER M,DIETRICH A,et al.Insulin-sensitive obesity[J].Am J Physiol Endocrinol Metab,2010,299(3):E506-515.
[31]JERN?S M,PALMING J,SJ?HOLM K,et al.Separation of human adipocytes by size:hypertrophic fat cells display distinct gene expression[J].FASEB J,2006,20(9):1540-1542.
[32]SPALDING K L,ARNER E,WESTERMARK P O,et al.Dynamics of fat cell turnover in humans[J].Nature,2008,453(7196):783-787.
[33]YE J,GAO Z,YIN J,et al.Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice[J].Am J Physiol Endocrinol Metab,2007,293(4):E1118-1128.
[34]GROSFELD A,ANDRE J,HAUGUEL-DE M S,et al.Hypoxia-inducible factor 1 transactivates the human leptin gene promoter[J].J Biol Chem,2002,277(45):42953-42957.
[35]WOOD I S,STEZHKA T,TRAYHURN P.Modulation of adipokine production,glucose uptake and lactate release in human adipocytes by small changes in oxygen tension[J].Pflugers Arch,2011,462(3):469-477.
[36]HE Q,GAO Z,YIN J,et al.Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors:adipogenesis,insulin,and hypoxia[J].Am J Physiol Endocrinol Metab,2011,300(5):E877-885.
[37]TRAYHURN P.Hypoxia and adipose tissue function and dysfunction in obesity[J].Physiol Rev,2013,93(1):1-21.
[38]HOTAMISLIGIL G S.Inflammation and endoplasmic reticulum stress in obesity and diabetes[J].Int J Obes(Lond),2008,32 Suppl 7:S52-54.
[39]SUNDAR R S,SRINIVASAN V,BALASUBRAMANYAM M,et al.Endoplasmic reticulum(ER) stress & diabetes[J].Indian J Med Res,2007,125(3):411-424.
[40]LI Y,SCHWABE R F,DEVRIES-SEIMON T,et al.Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6:model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis[J].J Biol Chem,2005,280(23):21763-21772.
[41]OSBORN O,OLEFSKY J M.The cellular and signaling networks linking the immune system and metabolism in disease[J].Nat Med,2012,18(3):363-374.
[42]LEE J.Adipose tissue macrophages in the development of obesity-induced inflammation,insulin resistance and type 2 diabetes[J].Arch Pharm Res,2013,36(2):208-222.
[43]GLASS C K,OLEFSKY J M.Inflammation and lipid signaling in the etiology of insulin resistance[J].Cell Metab,2012,15(5):635-645.
[44] 戴凌燕,莊榮.肥胖對嚴(yán)重膿毒癥患者預(yù)后的影響[J].中國全科醫(yī)學(xué),2015,18(8):911-914.DOI:10.3969/J.iSSn.1007-9572.2015.08.013. DAI L Y,ZHUANG R.Impact of obesity on prognosis of severe sepsis[J].Chinese General Practice,2015,18(8):911-914.DOI:10.3969/J.iSSn.1007-9572.2015.08.013.
[45]IDE J,GAGNON A,MOLGAT A S,et al.Macrophage-conditioned medium inhibits the activation of cyclin-dependent kinase 2 by adipogenic inducers in 3T3-L1 preadipocytes[J].J Cell Physiol,2011,226(9):2297-2306.
[46]SKURK T,MACK I,KEMPF K,et al.Expression and secretion of RANTES(CCL5) in human adipocytes in response to immunological stimuli and hypoxia[J].Horm Metab Res,2009,41(3):183-189.
[47]GAGNON A,YARMO M N,LANDRY A,et al.Macrophages alter the differentiation-dependent decreases in fibronectin and collagen Ⅰ/Ⅲ protein levels in human preadipocytes[J].Lipids,2012,47(9):873-880.
(本文編輯:崔莎)
Recent Developments in the Pathogenesis of Obesity-associated Chronic Inflammation
WANGNan-nan,BAIYing-long*
DepartmentofChildandAdolescentHealthandMaternalandChildHealthCare,SchoolofPublicHealth,ChinaMedicalUniversity,Shenyang110122,China
*Correspondingauthor:BAIYing-long,Associateprofessor;E-mail:ylbai@cmu.edu.cn
Obesity is a chronic disease which poses great threat to human health.As obesity-associated chronic inflammation is the key factor leading to insulin resistance as well as lipid metabolism disorders,the study of its pathogenesis has become a focus currently.Chronic inflammation of adipose tissue is characterized by increased expression of proinflammatory cytokines,decreased expression of anti-inflammatory cytokines,and massive macrophage infiltration in adipose tissue.This article summarized the features of chronic inflammation in obesity,and pathogeneses of several obesity-associated chronic inflammations.
Obesity;Adipose tissue;Inflammation
R 723.14
A
10.3969/j.issn.1007-9572.2017.12.024
2016-12-25;
2017-01-26)
110122遼寧省沈陽市,中國醫(yī)科大學(xué)兒少衛(wèi)生與婦幼保健學(xué)教研室
*通信作者:白英龍,副教授;E-mail:ylbai@cmu.edu.cn