• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      胃腸道Cajal間質(zhì)細(xì)胞起搏功能的研究進(jìn)展*

      2017-01-16 15:32:11陳健海孔桂美董小耘朱海航
      中國(guó)病理生理雜志 2017年1期
      關(guān)鍵詞:離子通道節(jié)律平滑肌

      陳健海, 仲 婕, 王 凡, 孔桂美, 董小耘, 朱海航, 卜 平

      (揚(yáng)州大學(xué)臨床醫(yī)學(xué)院,江蘇 揚(yáng)州 225000)

      ?

      胃腸道Cajal間質(zhì)細(xì)胞起搏功能的研究進(jìn)展*

      陳健海, 仲 婕, 王 凡, 孔桂美, 董小耘, 朱海航, 卜 平△

      (揚(yáng)州大學(xué)臨床醫(yī)學(xué)院,江蘇 揚(yáng)州 225000)

      正常的胃腸運(yùn)動(dòng)功能依賴于節(jié)律性的胃腸蠕動(dòng),這種規(guī)律性的蠕動(dòng)目前主要認(rèn)為與腸神經(jīng)系統(tǒng)及眾多的神經(jīng)遞質(zhì)有關(guān),但其具體的調(diào)控機(jī)制目前尚有爭(zhēng)議,主要爭(zhēng)論的焦點(diǎn)在于腸神經(jīng)系統(tǒng)所釋放的神經(jīng)遞質(zhì)是否直接作用于平滑肌細(xì)胞[1-2]。近年來(lái),越來(lái)越多的研究發(fā)現(xiàn),Cajal間質(zhì)細(xì)胞(interstitial cells of Cajal,ICC)在胃腸動(dòng)力調(diào)節(jié)方面扮演著至關(guān)重要的作用[3]。因此,本文擬就從生理結(jié)構(gòu)基礎(chǔ)、起搏、傳導(dǎo)等方面作一綜述,具體闡述ICC在胃腸動(dòng)力調(diào)控中的作用機(jī)制。

      1 ICC參與胃腸動(dòng)力調(diào)控具有結(jié)構(gòu)基礎(chǔ)

      ICC是胃腸道存在的一種特殊類型的細(xì)胞,按其分布位置及性質(zhì)可分為4類:(1) 腸肌間神經(jīng)叢ICC(myenteric ICC,ICC-MY),位于環(huán)肌層和縱肌層之間,與肌間神經(jīng)叢密切聯(lián)系;(2) 深肌層叢ICC(deep muscular plexus ICC,ICC-DMP),位于環(huán)肌層間;(3) 黏膜下ICC(submueosal ICC,ICC-SM),位于環(huán)肌層與黏膜下層間;(4) 肌內(nèi)ICC (intramuscular ICC,ICC-IM),位于環(huán)形肌肌束內(nèi)與縱形肌肌束內(nèi),分別稱為ICC-CM 及ICC-LM。透射電鏡顯示腸神經(jīng)系統(tǒng)與ICC的距離較它與平滑肌之間的距離更接近,免疫組化研究也表明ICC細(xì)胞膜上存在多種神經(jīng)遞質(zhì)受體,表明ICC參與神經(jīng)支配的胃腸蠕動(dòng)具有重要的結(jié)構(gòu)基礎(chǔ)[4-5]。

      2 ICC為胃腸道的起搏者

      膜電位自發(fā)性節(jié)律性的去極化與復(fù)極化活動(dòng)產(chǎn)生的慢波節(jié)律可引起胃腸平滑肌節(jié)律性的蠕動(dòng),是胃腸平滑肌收縮的基礎(chǔ)。應(yīng)用河豚毒素及硝苯地平分別阻斷神經(jīng)傳遞及平滑肌收縮,均不能抑制慢波的出現(xiàn),提示這種慢波可能為神經(jīng)元和平滑肌以外的細(xì)胞產(chǎn)生。大量研究發(fā)現(xiàn),ICC減少或缺失可引起慢波節(jié)律的異常,導(dǎo)致胃腸動(dòng)力障礙,說(shuō)明ICC在胃腸動(dòng)力調(diào)控方面具有重要作用。有學(xué)者發(fā)現(xiàn),特異性ICC-MY基因敲除小鼠胃腸道平滑肌記錄不到慢波電位;進(jìn)一步將胃腸道ICC及平滑肌細(xì)胞分離培養(yǎng)后發(fā)現(xiàn),只有ICC-MY可自發(fā)產(chǎn)生節(jié)律性的起搏電流,而其它ICC和平滑肌細(xì)胞均無(wú)產(chǎn)生起搏電流的能力[6]。以上證據(jù)充分表明ICC是胃腸道慢波節(jié)律的起搏者。這種慢波可經(jīng)縫隙連接在 ICC 網(wǎng)絡(luò)及平滑肌細(xì)胞之間傳播,使胃腸運(yùn)動(dòng)具有自主節(jié)律性。

      3 ICC的電生理學(xué)特征

      Kito 等[7-8]通過(guò)研究豚鼠胃竇ICC-MY電生理特征發(fā)現(xiàn),ICC-MY起搏電位由瞬時(shí)去極化的快速上升期及持續(xù)去極化的平臺(tái)期構(gòu)成,且前者可被低鈣或高鉀溶液抑制;利用BAPTA-AM螯合細(xì)胞內(nèi)Ca2+,得到的結(jié)果相同,提示這種瞬時(shí)去極化是由電壓門(mén)控鈣通道(voltage-gated calcium channel,VGCC)激活產(chǎn)生的;平臺(tái)期可被低氯溶液或鈣激活氯離子通道ANO1阻斷劑DIDS所抑制,說(shuō)明平臺(tái)期是由ANO1電流產(chǎn)生的。Ca2+-ATPase抑制劑CPA僅僅縮短了平臺(tái)期,對(duì)上升支并未產(chǎn)生影響,而三磷酸肌醇(inositol 1,4,5-trisphosphate,IP3)受體拮抗劑2-APB及CCCP(一種氧化磷酸化抑制劑,可阻斷線粒體ATP的正常產(chǎn)生)阻斷了起搏電位;表明起搏電位的產(chǎn)生與IP3敏感的鈣通道(IP3receptors,IP3Rs)釋放Ca2+及線粒體對(duì)Ca2+再攝取相關(guān)。隨后Kito等[9]又研究了家兔及小鼠小腸ICC-MY電生理學(xué)特征。與上述發(fā)現(xiàn)不同的是,家兔起搏電位上升支并不完全由VGCC激活而產(chǎn)生,此外,他們還發(fā)現(xiàn)家兔及小鼠ICC內(nèi)有鈉鉀氯交換體的存在;與ANO1相反的是,該交換體可將細(xì)胞外氯離子轉(zhuǎn)運(yùn)進(jìn)細(xì)胞內(nèi);利用特異性的藥物阻斷劑bumetanide可阻斷平臺(tái)期的產(chǎn)生,表明該交換體與ANO1共同負(fù)責(zé)維持細(xì)胞內(nèi)氯離子平衡。這些結(jié)果表明ICC起搏電流是由相關(guān)離子及離子通道的激活產(chǎn)生的。

      4 ICC起搏電流的產(chǎn)生機(jī)制

      4.1 細(xì)胞內(nèi)Ca2+振蕩 大量研究表明,細(xì)胞內(nèi)Ca2+水平及鈣振蕩是形成ICC起搏電流的前提。Means等[10]認(rèn)為內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)鈣庫(kù)釋放Ca2+及線粒體再攝取導(dǎo)致的局部Ca2+濃度下降是形成鈣振蕩的原因。多數(shù)學(xué)者認(rèn)為,ER鈣庫(kù)釋放鈣是由IP3Rs介導(dǎo)的,而與內(nèi)質(zhì)網(wǎng)存在的另一鈣敏通道——ryanodine受體(ryanodine receptors,RyRs)無(wú)關(guān)。為此,有學(xué)者通過(guò)藥物分別阻斷IP3Rs和RyRs介導(dǎo)的ER鈣庫(kù)釋放Ca2+及線粒體對(duì)Ca2+的再攝取,發(fā)現(xiàn)自發(fā)性瞬時(shí)內(nèi)向電流(spontaneous transient inward currents,STICs)及慢波電流均被明顯抑制,表明IP3Rs及RyRs激活引起ER鈣庫(kù)釋放Ca2+及線粒體Ca2+子再攝取導(dǎo)致的鈣振蕩是驅(qū)動(dòng)ICC起搏活動(dòng)的基礎(chǔ)[11-13]。這種鈣振蕩可導(dǎo)致相關(guān)離子通道的開(kāi)放,從而產(chǎn)生起搏電流。

      4.2 非選擇性陽(yáng)離子通道(nonselective cation channel,NSCC) 部分學(xué)者認(rèn)為,ICC起搏電流是由IP3Rs介導(dǎo)的ER鈣庫(kù)、線粒體及NSCC共同組成的起搏單位完成的。他們認(rèn)為, IP3Rs激活引起ER鈣庫(kù)釋放Ca2+及線粒體對(duì)Ca2+再攝取導(dǎo)致的鈣振蕩激活了細(xì)胞膜上的NSCC,進(jìn)而形成了慢波電流。研究發(fā)現(xiàn),一種電導(dǎo)為13 pS的NSCC的激活與慢波同步, 細(xì)胞內(nèi)Ca2+減少能夠激活該通道,推測(cè)13 pS 通道可能介導(dǎo)內(nèi)向離子流。Walker等[14]發(fā)現(xiàn)Ca2+調(diào)節(jié)的非電壓依賴性NSCC與瞬時(shí)受體電位通道(transient receptor potential channel,TRPC)家族的TRPC3 和TRPC4 結(jié)構(gòu)相似。分離培養(yǎng)的ICC 能表達(dá)TRPC4,從胃腸道平滑肌克隆的TRPC4 可見(jiàn)TRPC4α和TRPC4β 兩個(gè)剪接體, 其中TRPC4β可能參與形成ICC的起搏離子流。Zhu等[15]認(rèn)為,TRPC4的激活是由磷脂酶C刺激導(dǎo)致的,而不是由內(nèi)質(zhì)網(wǎng)鈣庫(kù)衰減或細(xì)胞內(nèi)低鈣誘發(fā)的。然而Kim等[16-19]發(fā)現(xiàn),TRPC4通道并不參與ICC起搏電流的產(chǎn)生,因?yàn)門(mén)RPC4-/-小鼠具有正常的慢波;他們認(rèn)為是瞬時(shí)受體電位通道M7型(transient receptor potential melastatin-type 7,TRPM7)參與了ICC起搏活動(dòng),因?yàn)镹SCC 與TRPM7在電生理及藥理學(xué)特性上表現(xiàn)相同,分子生物學(xué)也證明ICC上有TRPM7蛋白及 mRNA的表達(dá),而平滑肌細(xì)胞卻沒(méi)有該mRNA的表達(dá),此外,利用RNAi技術(shù)沉默TRPM7基因,可抑制ICC起搏活動(dòng)[14-18]。

      4.3 ANO1 ANO1是由TMEM16A基因編碼的一種Ca2+激活的氯離子通道,細(xì)胞內(nèi)局部Ca2+濃度升高可激活該氯離子通道,驅(qū)動(dòng)胞內(nèi)氯離子外流,從而產(chǎn)生大量?jī)?nèi)向電流,這種氯離子通道既參與起搏電位第一相的形成,也參與起搏電位第二相的形成,在ICC起搏活動(dòng)中具有關(guān)鍵作用[7-8]。ICCs低幅度的自發(fā)性瞬時(shí)膜電位去極化(spontaneous transient membrane potential depolarizations,STDS)是引起慢波電流產(chǎn)生的原因。Sanders等[2]發(fā)現(xiàn),STDs是由ICCs中ANO1激活導(dǎo)致STICs產(chǎn)生而引起的,并且STDS/STICS通過(guò)增加T型VGCC開(kāi)放概率,引起Ca2+內(nèi)流增加,激活額外的ANO1通道,最終產(chǎn)生慢波電流[11]。Singh等[20]利用基因敲除技術(shù)敲除了大鼠ANO1基因,發(fā)現(xiàn)大鼠小腸ICC鈣離子瞬變變得不協(xié)調(diào)、沒(méi)有節(jié)律性,小腸組織也失去節(jié)律性的收縮活動(dòng),這與通過(guò)藥物阻斷ANO1通道所得出的結(jié)果相同[21]。以上研究表明ANO1通道激活是觸發(fā)STDs/STICs及形成慢波的基礎(chǔ)。

      4.4 VGCC 有研究發(fā)現(xiàn),VGCC參與慢波電流的形成。Zheng等[22]利用小鼠空腸段離體ICC細(xì)胞進(jìn)行了相關(guān)研究,發(fā)現(xiàn)ICC去極化過(guò)程呈現(xiàn)雙向的內(nèi)向電流:低電壓激活的內(nèi)向電流與高電壓激活的內(nèi)向電流。后者電流密度較小,可被nicardipine阻斷;前者可被Ni2+或mibefradil抑制;用Ba2+取代細(xì)胞外液中Ca2+,電流值并未改變,表明2種電荷載體是等滲的;具有半激活及半失活特性,分別發(fā)生于-36 mV及-59 mV;對(duì)溫度敏感,溫度提高到30 °C,電流峰值增加到-19 pA,激活時(shí)間減少到7.5 ms;分子學(xué)研究顯示ICC有Cacna1g(Cav3.1)及Cacna1h(Cav3.2)的表達(dá)。這些結(jié)果表明,ICC有L型及T型VGCC的表達(dá),其中,T型鈣傳導(dǎo)是ICC慢波產(chǎn)生及傳播的主要方式。結(jié)合先前的研究,作者認(rèn)為:局部Ca2+釋放使得局部ANO1激活,產(chǎn)生STIs及STDs,當(dāng)STDs達(dá)到一定閾值,激活VGCC(以T型為主),Ca2+經(jīng)細(xì)胞膜上分布的鈣通道內(nèi)流,引起ER鈣庫(kù)同步釋放Ca2+,ANO1同步激活,產(chǎn)生慢波電流并經(jīng)縫隙連接傳遞到臨近的細(xì)胞[23]。

      4.5 超極化激活的環(huán)化核苷酸門(mén)控通道(hyperpolarisation-activated cyclic nucleotide-gated channels,HCNC) HCNC是一種起搏通道,存在于包括心肌細(xì)胞在內(nèi)的多種自律細(xì)胞中,與細(xì)胞興奮性密切相關(guān)。HCNC家族有4 個(gè)亞型,分別為HCNC1、HCNC2、HCNC3、HCNC4。O’Donnell等[24]在人類結(jié)腸組織中觀察到HCNC2、HCNC3及HCNC4的存在,結(jié)合先前的研究,他們認(rèn)為HCNC3通道及ICC的表達(dá)減少導(dǎo)致了巨結(jié)腸病患者的動(dòng)力障礙;采用免疫熒光雙標(biāo)記法研究大鼠胃腸道HCNC1分布特點(diǎn),發(fā)現(xiàn)HCNC1在食管、胃以及空回腸的 ICC-MY、ICC-SM 廣泛分布,以胃底、體交界處分布最為密集。HCNC1在ICC上的特異分布預(yù)示著該通道可能在ICC節(jié)律性起搏電流的產(chǎn)生中發(fā)揮重要作用。Si等[25]在原代培養(yǎng)的小鼠胃竇ICC中記錄到HCNC電流并發(fā)現(xiàn)細(xì)胞外Ca2+內(nèi)流與HCNC電流產(chǎn)生密切相關(guān);Shahi等[26]報(bào)道了小鼠結(jié)腸ICC中存在HCNC1及HCNC3,并且證明了該通道與結(jié)腸ICC起搏活動(dòng)相關(guān)。Yang等[27]在調(diào)查HCNC2在小鼠胃腸道中分布規(guī)律時(shí)發(fā)現(xiàn),HCNC2主要位于腸神經(jīng)系統(tǒng)的肌間神經(jīng)叢,利用膽堿能神經(jīng)元標(biāo)志物膽堿乙酰轉(zhuǎn)移酶和ICC的標(biāo)志物分別與HCNC2通道進(jìn)行雙重免疫染色,可見(jiàn)HCNC2存在于膽堿能神經(jīng)元,未見(jiàn)HCNC2存在于ICC的胞體,然而ICC的突起與HCNC2 陽(yáng)性神經(jīng)元距離很近,說(shuō)明HCNC2 可能主要在胃腸道的動(dòng)力調(diào)節(jié)方面起著較為重要的作用而并不直接參與ICC 起搏[28]。

      4.6 鉀通道 ICC上有多種鉀離子通道表達(dá)。Zhu等[29]利用雙染色法在小鼠結(jié)腸c-Kit陽(yáng)性細(xì)胞中觀察到BK通道的存在,并成功記錄到BK電流;Kim等[30]在豚鼠胃竇ICC中記錄到一種鈣激活的鉀電流;有研究在小鼠小腸ICC中記錄到一種鉀電流,可被ATP敏感鉀通道特異性阻斷劑格列本脲阻斷[31-32];隨后有學(xué)者在實(shí)驗(yàn)中證實(shí)了ATP敏感鉀通道的存在;進(jìn)一步研究發(fā)現(xiàn),ICC表達(dá)的ATP敏感鉀通道主要是Kir6.2及SUR2B兩個(gè)亞型[33-34];此后陸續(xù)在人類結(jié)腸組織中發(fā)現(xiàn)了hERG鉀通道,該通道主要存在于ICC及PDGFRA+細(xì)胞中[35-36]。這些鉀通道激活導(dǎo)致細(xì)胞膜超極化可能與慢波的復(fù)極及負(fù)電位的維持有關(guān),進(jìn)一步研究發(fā)現(xiàn),鉀通道的激活可抑制細(xì)胞外Ca2+內(nèi)流或細(xì)胞內(nèi)Ca2+釋放,從而阻斷細(xì)胞內(nèi)鈣振蕩,進(jìn)而抑制起搏電流的形成,導(dǎo)致細(xì)胞膜的超級(jí)化。

      5 起搏電流傳導(dǎo)機(jī)制

      研究發(fā)現(xiàn),平滑肌細(xì)胞不具有產(chǎn)生起搏電流的能力,而胃腸蠕動(dòng)節(jié)律與慢波節(jié)律一致,另外超微結(jié)構(gòu)也顯示ICC-IM和ICC-DMP不僅以突觸的方式與ICC-MY伴行,更以縫隙連接的方式與平滑肌細(xì)胞緊密相連,猜想ICC-MY產(chǎn)生的起搏電流可能是通過(guò)ICC-IM和ICC-DMP傳遞到平滑肌細(xì)胞,從而引起平滑肌細(xì)胞上L型鈣通道開(kāi)放,興奮收縮偶聯(lián),最終導(dǎo)致平滑肌收縮。這一觀點(diǎn)在ICC-IM基因突變小鼠W/Wv上得到了證實(shí)[1,37-38]。進(jìn)一步研究發(fā)現(xiàn),這種縫隙連接的基本結(jié)構(gòu)是由一種連接復(fù)合體connexins構(gòu)成,每一個(gè)連接小體由4~6個(gè)連接蛋白組成,其中,connexin 43作為最重要的連接蛋白,在慢波電流傳遞過(guò)程中存在重要作用,因?yàn)樵谖改c動(dòng)力障礙的患者中,connexin 43的表達(dá)明顯減少[39]。

      目前,ICC 作為胃腸道運(yùn)動(dòng)的起搏細(xì)胞, 已經(jīng)得到廣泛認(rèn)可, 但對(duì)其起搏機(jī)制及相關(guān)離子通道的作用尚存在爭(zhēng)議, 許多問(wèn)題仍不能得到合理的解釋。主要集中在以下幾個(gè)方面:(1) ICC有4種類型,然而各類型ICC在起搏活動(dòng)中的具體作用及相互之間的關(guān)系尚不明確;(2) RyRs是否參與細(xì)胞內(nèi)Ca2+釋放及ICC的起搏活動(dòng)仍有爭(zhēng)議;(3) Ca2 +是觸發(fā)ICC起搏活動(dòng)的基礎(chǔ),鈣振蕩可引起相關(guān)離子通道的開(kāi)放,在ICC 起搏中具有重要的作用;然而,ICC起搏活動(dòng)的完成及慢波的產(chǎn)生與哪些離子通道相關(guān),目前尚存在分歧,這些離子通道的具體作用機(jī)制及相互關(guān)系也不清楚;(4) 目前,關(guān)于ICC起搏功能相關(guān)離子通道的作用機(jī)制多局限于利用嚙齒類動(dòng)物進(jìn)行研究,人類ICC起搏活動(dòng)是否也符合這些特征尚未得到驗(yàn)證。 相信隨著對(duì)胃腸道運(yùn)動(dòng)起搏機(jī)理的進(jìn)一步深入研究,這些問(wèn)題將得到妥善解決,從而進(jìn)一步闡明ICC起搏功能及胃腸蠕動(dòng)調(diào)控機(jī)制,為胃腸道動(dòng)力障礙性疾病的治療提供理論依據(jù)。

      [1] Bautista-Cruz F, Paterson WG. Evidence for altered circular smooth muscle cell function in lower esophageal sphincter ofW/Wvmutant mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 301(6):G1059-G1065.

      [2] Sanders KM, Salter AK, Hennig GW, et al. Responses to enteric motor neurons in the gastric fundus of mice with reduced intramuscular interstitial cells of Cajal[J]. J Neurogastroenterol Motil, 2014, 20(2):171-184.

      [3] Sathar S, Trew ML, Cheng LK. Tissue specific simulations of interstitial cells of Cajal networks using unstructured meshes[J]. Conf Proc IEEE Eng Med Biol Soc, 2015, 2015:8062-8065.

      [4] Tanahashi Y, Waki N, Unno T, et al. Roles of M2and M3muscarinic receptors in the generation of rhythmic motor activity in mouse small intestine[J]. Neurogastroenterol Motil, 2013, 25(10):e687-e697.

      [5] Kim BJ, Kim HW, Lee GS, et al. Poneirus trifoliate fruit modulates pacemaker activity in interstitial cells of Cajal from the murine small intestine[J]. J Ethnopharmacol, 2013, 149(3):668-675.

      [6] 程闊菊, 羅 云, 彭 雷, 等. Cajal間質(zhì)細(xì)胞在胃腸功能紊亂中的研究進(jìn)展[J]. 胃腸病學(xué)和肝病學(xué)雜志, 2015, 24(6):749-750.

      [7] Kito Y, Fukuta H, Suzuki H. Components of pacemaker potentials recorded from the guinea pigstomach antrum[J]. Pflugers Arch, 2002, 445(2):202-217.

      [8] Kito Y, Suzuki H. Electrophysiological properties of gastric pacemaker potentials[J]. J Smooth Muscle Res, 2003, 39(5):163-173.

      [9] Kito Y, Mitsui R, Ward SM, et al. Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine[J]. Am J Physiol Gastrointest Liver Physiol, 2015, 308(5):G378-G388.

      [10]Means SA, Cheng LK. Mitochondrial calcium handling within the interstitial cells of Cajal[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307(1):G107-G121.

      [11]Pappas A, Wellman GC. Setting the pace for GI motility: ryanodine receptors and IP3receptors within interstitial cells of Cajal. Focus on "Intracellular Ca2+release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal"[J]. Am J Physiol Cell Physiol, 2015, 308(8):C606-C607.

      [12]Zhu MH, Sung TS, O’Driscoll K, et al. Intracellular Ca2+release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal[J]. Am J Physiol Cell Physiol, 2015, 308(8):C608-C620.

      [13]Lees-Green R, Gibbons SJ, Farrugia G, et al. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(8):G711-G727.

      [14]Walker RL, Koh SD, Sergeant GP, et al. TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal[J]. Am J Physiol Cell Physiol, 2002, 283(6):C1637-C1645.

      [15]Zhu MH, Lee YM, Jin N, et al. The transient receptor potential protein homologue TRPC4/5 as a candidate for the nonselective cationic channel activated by muscarinic stimulation in the murine stomach[J]. Neurophysiology, 2003, 35(3):302-307.

      [16]Kim BJ, So I, Kim KW. The relationship of TRP channels to the pacemaker activity of interstitial cells of Cajal in the gastrointestinal tract[J]. J Smooth Muscle Res, 2006, 42(1):1-7.

      [17]Kim BJ, Park KJ, Kim HW, et al. Identification of TRPM7 channels in human intestinal interstitial cells of Cajal[J]. World J Gastroenterol, 2009, 15(46):5799-5804.

      [18]Kim BJ, Nam JH, Kim KH, et al. Characteristics of gintonin-mediated membrane depolarization of pacemaker activity in cultured interstitial cells of Cajal[J]. Cell Physiol Biochem, 2014, 34(3):873-890.

      [19]Kim BJ, Lim HH, Yang DK, et al. Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity[J]. Gastroenterology, 2005, 129(5):1504-1517.

      [20]Singh RD, Gibbons SJ, Saravanaperumal SA, et al. Ano1, a Ca2+-activated Cl-channel, coordinates contractility in mouse intestine by Ca2+transient coordination between interstitial cells of Cajal[J]. J Physiol, 2014, 592(18):4051-4068.

      [21]Coyle D, Kelly DA, O’Donnell AM, et al. Use of anoctamin 1 (ANO1) to evaluate interstitial cells of Cajal in Hirschsprung’s disease[J]. Pediatr Surg Int, 2016, 32(2):125-133.

      [22]Zheng H, Park KS, Koh SD, et al. Expression and function of a T-type Ca2+conductance in interstitial cells of Cajal of the murine small intestine[J]. Am J Physiol Cell Physiol, 2014, 306(7):C705-C713.

      [23]Radulovic M, Anand P, Korsten MA, et al. Targeting ion channels: an important therapeutic implication in gastrointestinal dysmotility in patients with spinal cord injury[J]. J Neurogastroenterol Motil, 2015, 21(4):494-502.

      [24]O’Donnell AM, Coyle D, Puri P. Decreased expression of hyperpolarisation-activated cyclic nucleotide-gated channel 3 in Hirschsprung’s disease[J]. World J Gastroenterol, 2015, 21(18):5635-5640.

      [25]Si X, Huang L, Gong Y, et al. Role of calcium in activation of hyperpolarization-activated cyclic nucleotide-gated channels caused by cholecystokinin octapeptide in interstitial cells of Cajal[J]. Digestion, 2012, 85(4):266-275.

      [26]Shahi PK, Choi S, Zuo DC, et al. The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal[J]. J Gastroenterol, 2014, 49(6):1001-1010.

      [27]Yang S, Xiong CJ, Sun HM, et al. The distribution of HCN2-positive cells in the gastrointestinal tract of mice[J]. J Anat, 2012, 221(4):303-310.

      [28]徐 純, 王景杰. HCN 通道在生物胃腸道起搏機(jī)制中作用研究現(xiàn)狀[J]. 現(xiàn)代生物醫(yī)學(xué)進(jìn)展, 2012, 12(10):1992-1994, 1961.

      [29]Zhu Y, Huizinga JD. Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel[J]. J Cell Mol Med, 2008, 12(5A):1718-1727.

      [30]Kim YC, Suzuki H, Xu WX, et al. Ca2+-activated K+current in freshly isolated c-Kitpositive cells in guinea-pig stomach[J]. J Korean Med Sci, 2009, 24(3):384-391.

      [31]Ahn SW, Kim SH, Kim JH, et al. Phentolamine inhibits the pacemaker activity of mouse interstitial cells of Cajal by activating ATP-sensitive K+channels[J]. Arch Pharm Res, 2010, 33(3):479-489.

      [32]Jiao HY, Kim DH, Ki JS, et al. Effects of lubiprostone on pacemaker activity of interstitial cells of Cajal from the mouse colon[J]. Korean J Physiol Pharmacol, 2014, 18(4):341-346.

      [33]Lee S, Gim H, Shim JH, et al. The traditional herbal medicine, Ge-Gen-Tang, inhibits pacemaker potentials by nitric oxide/cGMP dependent ATP-sensitive K+channels in cultured interstitial cells of Cajal from mouse small intestine[J]. J Ethnopharmacol, 2015, 170:201-209.

      [34]Hong NR, Park HS, Ahn TS, et al. Ginsenoside Re inhibits pacemaker potentials via adenosine triphosphate-sensitive potassium channels and the cyclic guanosine monophosphate/nitric oxide-dependent pathway in cultured interstitial cells of Cajal from mouse small intestine[J]. J Ginseng Res, 2015, 39(4):314-321.

      [35]Tomuschat C, O’Donnell AM, Coyle D, et al. Reduced expression of voltage-gated Kv11.1 (hERG) K+channels in aganglionic colon in Hirschsprung’s disease[J]. Pediatr Surg Int, 2016, 32(1):9-16.

      [36]McKay CM, Huizinga JD. Muscarinic regulation ofether-a-go-go-related gene K+currents in interstitial cells of Cajal[J]. J Pharmacol Exp Ther, 2006, 319(3):1112-1123.

      [37]Apoznanski W, Koleda P, Wozniak Z, et al. The distribution of interstitial cells of Cajal in congenital ureteropelvic junction obstruction[J]. Int Urol Nephrol, 2013, 45(3): 607-612.

      [38]Lammers WJ, Al-Bloushi HM, Al-Eisaei SA, et al. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats[J]. Exp Physiol, 2011, 96(10):1039-1048.

      [39]Zhang G, Xie S, Hu W, et al. Effects of electroacupuncture on interstitial cells of Cajal (ICC) ultrastructure and connexin 43 protein expression in the gastrointestinal tract of functional dyspepsia (FD) rats[J]. Med Sci Monit, 2016, 22:2021-2027.

      (責(zé)任編輯: 陳妙玲, 羅 森)

      Research progress on pacemaker function of interstitial cells of Cajal in gastrointestinal tract

      CHEN Jian-hai, ZHONG Jie, WANG Fan, KONG Gui-mei, DONG Xiao-yun, ZHU Hai-hang, BU Ping

      (ClinicalMedicalCollegeofYangzhouUniversity,Yangzhou225000,China.E-mail:boping@yzu.edu.cn)

      Interstitial cells of Cajal (ICC) is the pacemaker in the gastrointestinal tract, which is closely associated with the formation of slow wave and the regulation of gastrointestinal motility. As the pacemaker of gastrointestinal tract, the activation of pacing signal is triggered by the local calcium oscillation in the ICC. The change of calcium concentration can activate many relevant ion channels, such as NSCC, ANO1, VGCC, HCN channels and potassium channels, which can generate a large number of pacing current to form the slow wave and then propagated by the gap junction between the ICC networks and smooth muscle cells to make the peristalsis of gastrointestinal tract in autonomic rhythm. However, the mechanism of these ion channels in the pacemaker activity is still unclear, so we refer to make a review about the research progress on these pacemaker channels in this article to illuminate the mechanism of pacemaker activity in ICC.

      Cajal間質(zhì)細(xì)胞; 起搏機(jī)制; 離子通道

      Interstitial cells of Cajal; Pacemaking mechanism; Ion channel

      1000- 4718(2017)01- 0184- 05

      2016- 07- 01

      2016- 10- 19

      國(guó)家自然科學(xué)基金資助項(xiàng)目(No. 81673736);江蘇省普通高校研究生實(shí)踐創(chuàng)新計(jì)劃(No. SJLX16-0604)

      R363

      A

      10.3969/j.issn.1000- 4718.2017.01.032

      雜志網(wǎng)址: http://www.cjpp.net

      △通訊作者 Tel: 0514-87978872; E-mail: boping@yzu.edu.cn

      猜你喜歡
      離子通道節(jié)律平滑肌
      電壓門(mén)控離子通道參與紫杉醇所致周?chē)窠?jīng)病變的研究進(jìn)展
      蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
      原發(fā)性腎上腺平滑肌肉瘤1例
      喉血管平滑肌瘤一例
      蜆木扦插苗人工幼林生長(zhǎng)節(jié)律
      腸系膜巨大平滑肌瘤1例并文獻(xiàn)回顧
      慢性給予GHRP-6對(duì)小鼠跑輪運(yùn)動(dòng)日節(jié)律的影響
      咽旁巨大平滑肌肉瘤一例MRI表現(xiàn)
      模擬微重力對(duì)NIH3T3細(xì)胞近日節(jié)律基因的影響
      疼痛和離子通道
      莱州市| 柘荣县| 普兰县| 江城| 陆良县| 承德县| 固始县| 江口县| 霞浦县| 凤城市| 海安县| 西安市| 无棣县| 临夏县| 凤凰县| 阿克苏市| 防城港市| 沁阳市| 上饶市| 黎城县| 泰来县| 佳木斯市| 新津县| 东乡县| 颍上县| 昌乐县| 永靖县| 阜新| 曲沃县| 齐齐哈尔市| 自贡市| 冷水江市| 宝坻区| 温州市| 通辽市| 睢宁县| 汉寿县| 错那县| 孟津县| 建瓯市| 屏东县|