摘要研究了常利率下具有相依索賠結(jié)構(gòu)的Sparre Andersen風(fēng)險(xiǎn)模型的破產(chǎn)問題,其中理賠間隔時(shí)間與隨后的理賠數(shù)額具有特殊相依結(jié)構(gòu).利用遞歸方法,得到該模型破產(chǎn)赤字分布的上界估計(jì),并且考察了參數(shù)為指數(shù)函數(shù)的例子,加深對(duì)定理中破產(chǎn)赤字上界的了解.
關(guān)鍵詞概率論;赤字分布;遞歸方法;Sparre Andersen模型;相依結(jié)構(gòu)
中圖分類號(hào)O211.4;F224文獻(xiàn)標(biāo)識(shí)碼A
AbstractUnder the constant interest rate, we studied the Sparre Andersen risk model with dependent claims,assuming a particular dependence structure among the interclaim time and the subsequent claim size . By recursive techniques, an upper bound for the deficit distribution at ruin in the model was given. Supposing that the parameters are exponential, we can much more understand the upper bound for the deficit distribution.
Keywordsprobability theory; deficit distribution; recursive techniques; Sparre Andersen model; dependence structure
1引言
在保險(xiǎn)實(shí)踐中,保險(xiǎn)公司的大部分盈余主要來源于投資收入,因此考慮具有固定利率的風(fēng)險(xiǎn)模型受到很多精算理論和實(shí)踐者的關(guān)注. Sundt和Teugels[1]最早提出常利率下的復(fù)合泊松模型,并利用更新技巧給出了破產(chǎn)概率滿足的分析表達(dá)式及上下界估計(jì);Yang和Zhang[2,3]則利用Sundt和Teugels[1]中的方法分別解決了該模型的破產(chǎn)前的盈余以及破產(chǎn)后的赤字分布;Cai和Dickson[4]研究了罰金折現(xiàn)期望,得到了它滿足的積分表達(dá)式,并且通過LS變換對(duì)它進(jìn)行了估計(jì).進(jìn)一步,Cai和Dickson[5]利用遞歸技巧及鞅方法研究了帶有常利率Sparre Andersen模型概率的上界估計(jì);而Bao和Ye[6]則同樣應(yīng)用遞歸方法給出了關(guān)于赤字分布的不同形式的上界.
需要指出的是,上述帶有常利率的模型中都假設(shè)索賠間隔時(shí)間和索賠額是相互獨(dú)立的.然而,在保險(xiǎn)實(shí)務(wù)中,獨(dú)立性假設(shè)可能導(dǎo)致對(duì)風(fēng)險(xiǎn)估計(jì)的較大偏離.因此在風(fēng)險(xiǎn)過程中考慮相依結(jié)構(gòu)是非常必要的.
考慮一類具有常值利率和索賠相依的風(fēng)險(xiǎn)過程,相依結(jié)構(gòu)由文獻(xiàn)[7]提出.采用遞歸技巧得到了赤字分布的上界估計(jì).
2模型的結(jié)構(gòu)
索賠間隔時(shí)間{Wn,n≥1}和索賠額{Yn,n≥1}為兩個(gè)獨(dú)立同分布的隨機(jī)變量序列, W和Y分別為對(duì)應(yīng)的遺傳變量. 假設(shè){(Yn,Wn),n≥1}為獨(dú)立同分布的隨機(jī)向量序列,而Yk與Wk不再相互獨(dú)立,兩者之間具有一定的相依關(guān)系:在已知時(shí)間間隔Wk條件下索賠額Yk的條件密度函數(shù)為:
4結(jié)論
相較于索賠額與索賠間隔時(shí)間的獨(dú)立假設(shè),相依問題的研究更具有實(shí)際意義.考慮了常利率下一類具有相依結(jié)構(gòu)的Sparre Andersen模型,利用遞歸方法,得到該模型破產(chǎn)赤字分布的函數(shù)型不等式.作為應(yīng)用,還得到了指數(shù)型上界以及一系列的推論.
參考文獻(xiàn)
[1]Bjrn SUNDT,Jozef L TEUGELS.Ruin estimates under interest force[J].Insurance Mathematics and Economics,1995,16(1):7-22.
[2]Hailiang YANG,Lihong ZHANG.On the distribution of surplus immediately before ruin under interest force[J].Statistics and Probability Letters,2001,55(3):329-338.
[3]Hailiang YAN,Lihong ZHANG.On the distribution of surplus immediately after ruin under interest force[J].Insurance:Mathematics and Economics,2001,29(2):247–255.
[4]Jun CAI,David C M DICKSON.On the expected discounted penalty function at ruin of a surplus process with interest[J].Insurance Mathematics and Economics,2002,30(3):389-404.
[5]Jun CAI,David C M DICKSON.Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest[J].Insurance Mathematics and Economics,2003,32(1):61-71.
[6]Zhenhua BAO,Zhongxing YE.The deficit at ruin in the Sparre Andersen model with interest[J]. Journal of Applied Mathematics and Computing,2007,23(1/2):87-99.
[7]Mathieu BOUDREAULT,Hélène COSSETTE,David LANDRIAULT,et al.On a risk model with dependence between interclaim arrivals and claim sizes.Scandinavian Actuarial Journal,2006,(5):265-285.
[8]蓋維丹.常利率下相依復(fù)合泊松風(fēng)險(xiǎn)模型的破產(chǎn)概率[J].高師理科學(xué)刊,2016,36(2):22-25.